
2D Graphics Techniques

COSC342

Lecture 4
9 Mar 2017

So What’s This All About?

I A selection of 2D graphics techniques

I Drawing lines, circles, etc.

I Flood fill

I Intersection calculations

COSC342 2D Graphics Techniques 2

Points, Lines, Polylines, Polygons

I A point is a 2D location, (x , y)
I A line is defined by a pair of points, (x0, y0), (x1, y1)

I Mathematicians tend to count from 1, but we usually count from 0

I A polyline with k segments is a sequence of k + 1 points,
(x0, y0), (x1, y1), . . . , (xk , yk)

I A polygon is polyline where (x0, y0) = (xk , yk)
I Can usually omit the duplicate point

COSC342 2D Graphics Techniques 3

Points, Lines, Polylines, Polygons

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

I A point, (5, 7)

I A line, (4, 5), (1, 7)

I A polyline,
(1, 4), (2, 2), (4, 1), (1, 1)

I A polygon,
(7, 6), (8, 4), (6, 1), (3, 3), (6, 4)

I We want to be able to draw lines, and fill polygons

COSC342 2D Graphics Techniques 4

Representing Points etc.

I A basic Point representation in C/C++ might be

struct Point {

double x, y;

};

I Two possible Triangle representations:

struct Triangle1 {

Point p1 , p2 , p3;

};

struct Triangle2 {

Point *p1 , *p2, *p3;

};

I Which is better, and why?

COSC342 2D Graphics Techniques 5

Drawing Lines

I Suppose we want to draw a line between two pixels

I Näıve algorithm:

// Line from (x0 , y0) to (x1 , y1)

double slope = double(y1 -y0)/double(x1 -x0);

for (int x = x0; x <= x1; ++x) {

int y = int(y0 + slope *(x-x0));

paint(x,y);

}

I What’s wrong with this?

COSC342 2D Graphics Techniques 6

Bresenham’s Line Algorithm (1965)

// Line from (x0 , y0) to (x1 , y1)

// This is for the case x0 < x1 , |x1 -x0| > |y1=y0|

int dx = x0 - x1;

int dy = y0 - y1;

double err = 0;

double derr = abs(double(dy)/double(dx)); // Note , derr < 1

for (int x = x0; x <= x1; ++x) {

paint(x,y);

err += derr;

if (err > 0.5) {

y += sign(dy);

err -= 1;

}

}

COSC342 2D Graphics Techniques 7

Bresenham’s Line Algorithm

I How it works:
I We loop over the possible x values
I Track the error between the pixel locations and the ideal y value
I If the error ≥ 1/2 a pixel, increment y and drop the error by 1

I This code is for ‘mostly horizontal’ lines from left-to-right
I To go from right-to-left, swap the points
I For mostly vertical lines loop over y and compute errors in x

I This assumes pixels are on or off, and lines go between integer points
I Often we want to anti-alias lines, or draw lines between arbitrary points
I Other algorithms exist for this – Wu’s Line Algorithm (1991) is one
I Basically the error value tells you how to antialias

COSC342 2D Graphics Techniques 8

Filling Polygons

I Suppose we’ve drawn some lines

I We’re given a point and want to fill until we reach the lines

I This is called ‘flood fill’ Simple algorithm:

floodFill(Point p) {

paint(p);

foreach neighbour , q, of p {

if (! painted(q)) {

floodFill(q);

}

}

}

COSC342 2D Graphics Techniques 9

Filling Polygons

I Recursion is a concise way of representing this algorithm

I But it is a bad idea in languages like C/C++ (Why?)

I We can implement flood fill with a stack

floodFill(Point p) {

stack S;

paint(p);

S.push(p);

while (!S.empty()) {

q = S.pop();

foreach neighbour , r, of q {

if (! painted(r)) {

paint(r);

S.push(r);

}

}

}

}

COSC342 2D Graphics Techniques 10

Filling Polygons

I The stack-based algorithm is a depth-first fill

I The stack can grow very quickly

I Better to use a queue, and fill breadth first

floodFill(Point p) {

queue Q;

paint(p);

Q.enqueue(p);

while (!Q.empty()) {

q = Q.dequeue ();

foreach neighbour , r, of q {

if (! painted(r)) {

paint(r);

Q.enqueue(r);

}

}

}

}

COSC342 2D Graphics Techniques 11

Scanline Filling

I A smarter way is to fill a polygon by scanline

I For each y value (row), find intersections with the polygon

I Fill in across the row between the intersections

COSC342 2D Graphics Techniques 12

Scanline Filling

I This leads to issues with glancing intersections with the boundary

I In these cases there can be an odd number of intersections

I It is also possible to get an even number but no filling required

COSC342 2D Graphics Techniques 13

Scanline Filling

I This can be avoided by shifting the vertices of the polygon

I If the vertex y values are never integers, there are no issues

I Co-ords are often integers, so add/subtract a small offset

COSC342 2D Graphics Techniques 14

Finding Intersections

I Suppose we have a polygon edge from (x0, y0) to (x1, y1)

I Where does the scanline for some row intersect the edge?

I The line can be expressed as

(x , y) = (x0, y0) + λ(x1 − x0, y1 − y0)

I We know y so we can solve

y = y0 + λ(y1 − y0)

for λ, and substitute back to find x

I Note that if λ < 0 or λ > 1 there is no intersection

COSC342 2D Graphics Techniques 15

Tutorials and Labs

I Monday’s Lab:
I Matrices in C/C++/ OpenCV introduction

I Next week’s tutorial:
I Transformations in 2- and 3-dimensions
I Representing transformations as matrices
I Combining transformations

COSC342 2D Graphics Techniques 16

