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Mosaicing So Far

I Mosaicing is defined by a homography, p′ = Hp
I H is a 3× 3 matrix, defined up to a scale
I Can compute a homography from 4 corresponding points

I Features are points which can be accurately located in images
I Corners – points with high gradient in all directions
I Blobs – have a location and a characteristic scale

I Given features in two images, how do we find a correspondence?
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Feature Descriptors

I Features are matched on the basis of some descriptor
I This is a list of numbers, represented as a vector

I Typically this is a high-dimensional vector
I SIFT descriptors, for example, have 128-dimensions

I The distance between matching vectors should be small
I The distance should be low regardless of changes in the image

I Translation and rotation in the image plane
I Changes in viewing direction
I Changes in scale
I Changes in lighting and brightness
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A Simple Feature Descriptor

I We could use the pixel values in a window around the feature
I This is easy to compute, and works well in some cases
I For simplicity we’ll use greyscale images
I Generalises easily to colour images

I If we take a n × n window, we get a vector of n2 values

I We can compare them with the usual (Euclidean) vector distance

1

(5, 3, 1, 1, 1, 3, 1, 1, 1, 1, 4, 3, 3, 4, 4, 5, 5, 6, 7, 7, 5, 5, 6, 7, 7)
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Feature Invariance

I Translation

1 1

|(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)| =
√

35

I Rotation

1
1

|(4, 2,−3,−6,−6,−2, 0,−3,−6,−6, . . . , 0, 2, 2, 2, 2)| =
√

260
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Feature Invariance

I Scale

1 1

|(0,−2,−2, 0, 0,−2,−2, 0, 0, 0,−1,−1, 0, 0 . . . , 0, 0)| =
√

18

I Brightness changes

1

|(−2,−2,−2,−2,−2,−2,−2,−2,−2,−2 . . . ,−2,−2)| =
√

100
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SIFT Features

I In 1999 David Lowe proposed an invariant feature detector1

I Translation invariance is easy, as we’ve seen
I Scale invariance comes from using blob features

I Descriptor is computed from a window around the feature
I The size of the blob determines the size of the window

I Brightness invariance comes from using image gradients
I The relative brightness of pixels is fairly constant
I Gradients do not change much under moderate intensity change

I Rotation invariance comes from finding a dominant gradient direction
I The window is oriented to the dominant gradient

1D. G. Lowe, Object recognition from local scale-invariant features, ICCV 1999
COSC342 Image Mosaicing 2 7

http://ieeexplore.ieee.org/document/790410/


SIFT Features

I Blob features are detected and their scale determined

I A histogram of gradients around the blob are computed

I Peak(s) in the histogram determine the orientation
I A square region is used to compute the descriptor

I The size of the square comes from the size of the blob
I The square is aligned to the feature’s orientation

I This region is divided into a 4× 4 grid of squares

I In each sub-region a gradient histogram is made with 8 bins

I This gives 4× 4× 8 = 128 values, which is the descriptor
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SIFT Features
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SIFT Features
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Matching Features

I The final descriptor is 128 values, usually bytes
I Finding the distance between two descriptors takes 256 operations
I OK to compute squared difference (no square root needed)

I If we find 10,000 features in each image
I Matching one feature takes ∼ 2, 500, 000 operations
I Matching all features takes ∼ 25, 000, 000, 000 operations

I This is often too expensive, so approximate methods are used
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Space Subdivision and Approximate Neighbours

I Split space into smaller regions

I 2D examples easier to draw. . .
I Uniform subdivision

I Division into regular grid
I Look for neighbours in the

same cell as the point we
are matching

I Quadtrees, octrees, etc.
I Recursively split in half
I Stop splitting when only a

few elements in a cell
I 2D gives a quadtree

3D gives an octree
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Space Subdivision

I This gets difficult in high dimensions
I Consider uniform subdivision with 8 divisions along each axis

I In 2D this is 8× 8 = 64 cells
I In 3D we get 8× 8× 8 = 512 cells
I In nD we get 8n cells, and 8128 ≈ 3.9× 10115

I Even if we just have 2 divisions (such as one layer of a generalised
quad-/oct-tree), we have 2128 ≈ 3.4× 1038 cells

I So we can’t split along all axes
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k-d Trees

I A common solution is the use of k-d trees
I Choose one axis and split the data along it

I Could choose the axis with the greatest spread
I Could use the first axis, or a random one
I Try to split the data roughly in half

I Then take each half and split along another axis
I The axis could be chosen as above
I Try to split each cell’s data in half

I And repeat until cells have only a few items in them
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k-d Trees in 2D
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k-d Trees and Feature Matching

I Put all the features in one image into a k-d Tree
I Given a feature from the other image:

I Find which cell in the k-d Tree it lies in
I Compute the distance to all features in that cell
I The nearest one is probably the best match

I For a tree with n layers and 10,000 features this requires:
I n comparisons to find the appropriate cell
I 256 10,000

O(2n) operations in the distance computations

I If n = 10, then 10,000
O(2n) ≈ 10

I This doesn’t always find the best match – why not?
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Matching SIFT features

I Even if we use brute-force matching most SIFT matches are wrong
I A lot of blob features don’t have much texture detail
I A lot of scenes have repeating features
I This leads to ambiguous matches
I SIFT is often the best we have 2

I With k-d Trees this gets a little worse, but not much
I Solution: Find the two best matches to check for ambiguity

I Can use other methods to reject unreliable matches3

I Only keep matches if the best distance is much lower than the second

I This makes things better, but still some wrong matches

I Need robust methods (next lecture)

2N. Kahn, B. McCane, S. Mills Better than SIFT?, MVA 26(6), 2015
3S. Mills, Relative Orientation and Scale for Improved Feature Matching, ICIP, 2013

COSC342 Image Mosaicing 2 20

http://dl.acm.org/citation.cfm?id=2807892
http://ieeexplore.ieee.org/abstract/document/6738719/


Coming up. . .

I Tutorial this week
I 2D Transforms again

I Next lecture
I Robust homography estimation
I Mosaicing in OpenCV
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