Image Mosaicing 2

COSC342

Lecture 7 21 March 2017

Mosaicing So Far

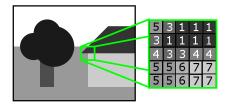
- \blacktriangleright Mosaicing is defined by a homography, $p'=\mathrm{H}p$
 - H is a 3×3 matrix, defined up to a scale
 - Can compute a homography from 4 corresponding points
- Features are points which can be accurately located in images
 - Corners points with high gradient in all directions
 - Blobs have a location and a characteristic scale
- Given features in two images, how do we find a correspondence?

Feature Descriptors

- Features are matched on the basis of some descriptor
- This is a list of numbers, represented as a vector
 - Typically this is a high-dimensional vector
 - ► SIFT descriptors, for example, have 128-dimensions
- The distance between matching vectors should be small
- The distance should be low regardless of changes in the image
 - Translation and rotation in the image plane
 - Changes in viewing direction
 - Changes in scale
 - Changes in lighting and brightness

A Simple Feature Descriptor

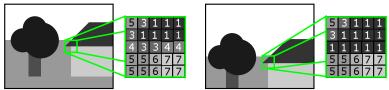
- ▶ We could use the pixel values in a window around the feature
 - This is easy to compute, and works well in some cases
 - For simplicity we'll use greyscale images
 - Generalises easily to colour images
- If we take a $n \times n$ window, we get a vector of n^2 values
- ▶ We can compare them with the usual (Euclidean) vector distance



(5,3,1,1,1,3,1,1,1,1,4,3,3,4,4,5,5,6,7,7,5,5,6,7,7)

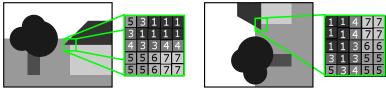
Feature Invariance

Translation



 $|(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)| = \sqrt{35}$

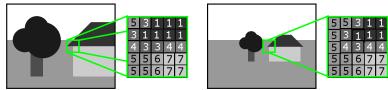
Rotation



 $|(4, 2, -3, -6, -6, -2, 0, -3, -6, -6, \dots, 0, 2, 2, 2, 2)| = \sqrt{260}$

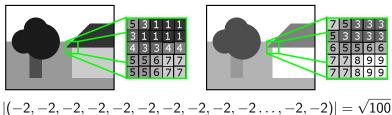
Feature Invariance

Scale



 $|(0, -2, -2, 0, 0, -2, -2, 0, 0, 0, -1, -1, 0, 0 \dots, 0, 0)| = \sqrt{18}$

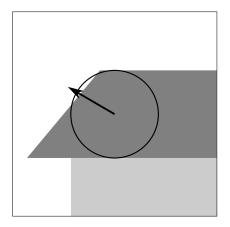
Brightness changes

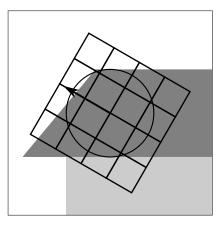


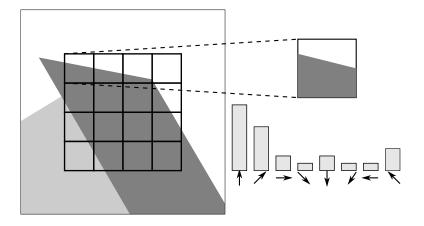
- In 1999 David Lowe proposed an invariant feature detector¹
- Translation invariance is easy, as we've seen
- Scale invariance comes from using blob features
 - Descriptor is computed from a window around the feature
 - The size of the blob determines the size of the window
- Brightness invariance comes from using image gradients
 - The relative brightness of pixels is fairly constant
 - Gradients do not change much under moderate intensity change
- Rotation invariance comes from finding a dominant gradient direction
 - The window is oriented to the dominant gradient

¹D. G. Lowe, *Object recognition from local scale-invariant features*, ICCV 1999 COSC342 Image Mosaicing 2

- Blob features are detected and their scale determined
- A histogram of gradients around the blob are computed
- Peak(s) in the histogram determine the orientation
- A square region is used to compute the descriptor
 - The size of the square comes from the size of the blob
 - The square is aligned to the feature's orientation
- \blacktriangleright This region is divided into a 4 \times 4 grid of squares
- In each sub-region a gradient histogram is made with 8 bins
- ▶ This gives $4 \times 4 \times 8 = 128$ values, which is the descriptor





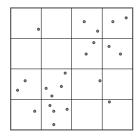


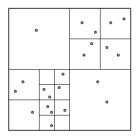
Matching Features

- The final descriptor is 128 values, usually bytes
 - Finding the distance between two descriptors takes 256 operations
 - OK to compute squared difference (no square root needed)
- If we find 10,000 features in each image
 - \blacktriangleright Matching one feature takes $\sim 2,500,000$ operations
 - \blacktriangleright Matching all features takes $\sim 25,000,000,000$ operations
- This is often too expensive, so approximate methods are used

Space Subdivision and Approximate Neighbours

- Split space into smaller regions
- 2D examples easier to draw...
- Uniform subdivision
 - Division into regular grid
 - Look for neighbours in the same cell as the point we are matching
- Quadtrees, octrees, etc.
 - Recursively split in half
 - Stop splitting when only a few elements in a cell
 - 2D gives a quadtree 3D gives an octree





Space Subdivision

- This gets difficult in high dimensions
- Consider uniform subdivision with 8 divisions along each axis
 - In 2D this is $8 \times 8 = 64$ cells
 - In 3D we get $8 \times 8 \times 8 = 512$ cells
 - In *n*D we get 8^n cells, and $8^{128} \approx 3.9 \times 10^{115}$
- ▶ Even if we just have 2 divisions (such as one layer of a generalised quad-/oct-tree), we have $2^{128} \approx 3.4 \times 10^{38}$ cells
- So we can't split along all axes

k-d Trees

- A common solution is the use of k-d trees
- Choose one axis and split the data along it
 - Could choose the axis with the greatest spread
 - Could use the first axis, or a random one
 - Try to split the data roughly in half
- Then take each half and split along another axis
 - The axis could be chosen as above
 - Try to split each cell's data in half
- And repeat until cells have only a few items in them

k-d Trees in 2D

ο ο ° °° ο ° 0 0 ο 00 ο ο 0 ° °. ° ိ 0 ο ο о ° 0 0 ° 0 0 ο ο ° 0 ۰° 0 ο ο ο ° 8 00 °° ° 0 00 ο ο ο 0 °. °0 ° ο ο 0 ο ο ° 0 ο ο ိ ο ο ο 0 ° 0 0 ۰°. ο

k-d Trees and Feature Matching

- Put all the features in one image into a k-d Tree
- Given a feature from the other image:
 - Find which cell in the k-d Tree it lies in
 - Compute the distance to all features in that cell
 - The nearest one is probably the best match
- ▶ For a tree with *n* layers and 10,000 features this requires:
 - n comparisons to find the appropriate cell
 - > $256\frac{10,000}{Q(2^n)}$ operations in the distance computations
 - If n = 10, then $\frac{10,000}{O(2^n)} \approx 10$
- This doesn't always find the best match why not?

Matching SIFT features

- ► Even if we use brute-force matching most SIFT matches are wrong
 - A lot of blob features don't have much texture detail
 - A lot of scenes have repeating features
 - This leads to ambiguous matches
 - SIFT is often the best we have ²
- ▶ With *k*-d Trees this gets a little worse, but not much
- Solution: Find the two best matches to check for ambiguity
 - Can use other methods to reject unreliable matches³
- Only keep matches if the best distance is much lower than the second
- This makes things better, but still some wrong matches
- Need robust methods (next lecture)

²N. Kahn, B. McCane, S. Mills *Better than SIFT*?, MVA 26(6), 2015

³S. Mills, Relative Orientation and Scale for Improved Feature Matching, ICIP, 2013

COSC342

Coming up...

- Tutorial this week
 - 2D Transforms again
- Next lecture
 - Robust homography estimation
 - Mosaicing in OpenCV