COSC342: Computer Graphics

2017

Tutorial

TRANSFORMATIONS IN 3D

Stefanie Zollmann

3D COORDINATE SYSTEMS

• What is the difference between a left- and a right handed coordinate system?

• Where are left-handed coordinate system used? Where are right-handed used?

3D COORDINATE SYSTEMS

• What is the difference between a left- and a right handed coordinate system?

http://viz.aset.psu.edu/qho/sem_notes/3d_fundamentals/html/3d_coordinates.html

• Where are left-handed coordinate system used? Where are right-handed used?

TRANSFORMATIONS: SCALE

• Describe scale in 3D:

TRANSFORMATIONS: SCALE

• Describe scale in 3D:

$$egin{bmatrix} s & 0 & 0 & 0 & 0 \ 0 & s & 0 & 0 \ 0 & 0 & s & 0 \ 0 & 0 & 0 & 1 \ \end{bmatrix} egin{bmatrix} x \ y \ z \ \end{bmatrix} = egin{bmatrix} sx \ sy \ sz \ \end{bmatrix}$$

• Describe translation in 3D:

Describe translation in 3D:

$$\begin{bmatrix} 1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & \Delta z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x + \Delta x \\ y + \Delta y \\ z + \Delta z \\ 1 \end{bmatrix}$$

• With the following starting 3D scene what would be the difference of applying $M = S_1 T_1$ or $M = T_1 S_1$?

$$S_1 = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_1 = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• With the following starting 3D scene what would be the difference of applying $M = S_1 T_1$ or $M = T_1 S_1$?

$$\mathbf{M} = \begin{bmatrix} 2 & 0 & 0 & 4 \\ 0 & 2 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• With the following starting 3D scene what would be the difference of applying $M = S_1 T_1$ or $M = T_1 S_1$?

$$\mathbf{M} = \begin{bmatrix} 2 & 0 & 0 & 2 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Describe rotation around the z axis in 3D:

Describe rotation around the z axis in 3D:

$$R_{Z}\mathbf{v} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

• Describe rotation around the x axis in 3D:

Describe rotation around the x axis in 3D:

$$R_{X}\mathbf{v} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) & 0 \\ 0 & \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

• Describe rotation around the y axis in 3D:

Describe rotation around the y axis in 3D:

$$R_{Y}v = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

STEFANIE ZOLLMANN

• What is the result of applying rotation matrix R1 to the following scene?

$$\mathrm{R_1} = egin{bmatrix} 0 & -1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} egin{bmatrix} x \ y \ z \ 1 \end{bmatrix}$$

STEFANIE ZOLLMANN

• What is the result of applying rotation matrix RI to the following scene?

$$\mathrm{R_1} = egin{bmatrix} 0 & -1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} egin{bmatrix} x \ y \ z \ 1 \end{bmatrix}$$

• What is the result of applying rotation matrix $M = R_1 T_1$ to the following scene?

$$\mathrm{R}_1 = egin{bmatrix} 0 & -1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}_1 = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• What is the result of applying rotation matrix $M = R_1 T_1$ to the following scene?

$$\mathbf{M} = \begin{bmatrix} 0 & -1 & 0 & -2 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

COLUMN-MAJOR VS ROW-MAJOR ORDER

• What is the difference between column major and row-major order matrices?

COLUMN-MAJOR VS ROW-MAJOR ORDER

• What is the difference between column major and row-major order?

0	4	8	12
1	5	9	13
2	6	10	14
3	7	11	15

• column-major order

row-major order

Thank You!

For more material visit http://www.cs.otago.ac.nz/cosc342/