Object-Oriented
Programming and
User Interfaces

COSC346

Instructors

* Paul Crane (OOP)
e Owheo 2.50
* pPCrane@cs.otago.ac.nz

* Hamza Bennani (Ul)
e Owheo 2.51
e hamza@cs.otago.ac.nz

COSC346 Lecture 1, 2018

mailto:pcrane@cs.otago.ac.nz
mailto:hamza@cs.otago.ac.nz

Oousd

otago uni students’ association

CLASS REPS

SEMESTER TWO 2018

Are you

*proactive, friendly and keen to contribute to your learning environment?
*a great communicator who can represent your peers?

What’s in it for you?

*Kudos & Karma

*Great friendships

*Access to FREE professional training opportunities and support
*Afeed (or three)

*A reference letter from OUSA for your CV
*Invitations to Class Rep social events throughout the year
Don’t wait any longer... sign up now!
Talk to your lecturer or email:
COSC346 Lecture 1, 2018 classrep@ousa.org.nz

Schedule

* Lectures:
* Tuesday 13:00-13:50, UOCE Tower Block Room G08, (TGO08)
* Thursday 13:00-13:50, UOCE Tower Block Room G08, (TG08)

* Labs (separate streams):
* Wednesday 10:00 - 11:50, Owheo G.38 (Lab F)
* Wednesday 12:00 - 13:50, Owheo G.38 (Lab F)
* Thereis alab in the first week

* Tutorials (separate streams):
* Tuesday 10:00 - 10:50, Richardson, RGS2
* Friday 10:00 - 10:50, Castle, Room C
* Run as requested

COSC346 Lecture 1, 2018

http://www.cs.otago.ac.nz/cosc346/index.php

Assessment

* Assignment 1: 20%, due Monday Sep 3rd
* Assignment 2: 20%, due Friday Oct &th
* Final Exam: 60%

COSC346 Lecture 1, 2018

Course OverV1ew Lectures

nnnnnnn

coda
Tuesday
ourse overview (F
Jul 1
Thursday
introduction to Swi
Jul 12
Tuesday
asses and objects (PC)
Jul 1
Thursday
rking with objec
Jul 1
TTTTTT
th (PC)
Jul 24
Thursday
| (PC)
Jul 2
Tues
P
Jul 3
TTTTTT
Memory management (PC)
Aug
TTTTTT
bject interco
Au
TTTTTT
t Libraries
Aug
Tuesday
bject oriente
Aug
Thursday bject orientes
Aug pattems (PC)
Tuesday
P review (P
Aug
Thursday
ntroduction to
Aug

Thursday | Usabiity and visual

TTTTTT

COSC346 Lecture

1,2018

. Objec’r Oriented Pr

General concepts: abstraction, encapsulation,
inheritance, polymorphism, coupling, cohesion

Swift language and Foundation Framework

* Swift development tools - Xcode
* Object oriented design principles

* User Interfaces

* Cocoa Environment and Xcode

* Interface design principles: usability, basics of
graphic design

Everything you need will be in the
lectures

Course Overview: Labs

* On the course
webpage

* Not assessed

* First lab
TOMOorrow

COSC346 Lecture 1, 2018

COSC346 - Object Oriented Programming and User Interfaces

Week 1 - Xcode and Swift

Goals

o Familiarise yourself with the Xcode development environment.
« Create an Xcode project.

o Write a Swift program.

« Debug a Swift program.

Preparation

« Take a good look at Xcode Overview
« Watch Apple's Introduction to Swift

« From Apple's "The Swift Programming Language" read:
o About Swift

o A Swift Tour

o The Basics

These labs are to be viewed from the browser. If you find the provided screenshots too small or too large, resize the width of the
browser window to scale the images accordingly.

The code provided can be easily copied to clipboard and pasted into Xcode. You can also get the contents of the entire file by clicking on the
file name on the top of the code window. However, unless instructed otherwise, you're strongly encouraged to type it out yourself. Copying
and pasting will shorten your lab time, but it will also reduce the benefit of the exercise.

Labs are not assessed, the two assignments are. If you take your time and do the labs properly, you'll have a much easier time with your
assignments.

Course Overview: Git

* Labs and Assignments distributed via GitHub
repositories

e hifps://github.com (create an account here)

e hitps://education.github.com/pack/offers
* Check email & website

* email will be sent out before the start of the lab
e https://www.katacoda.com/courses/qit

* inferactive git futorial

* https://guides.githubb.com
* various guides for git/github

COSC346 Lecture 1, 2018

https://github.com
https://education.github.com/pack/offers
https://www.katacoda.com/courses/git
https://guides.github.com

Course Overview: Tutorials

* As needed

®0e gameEngine.playground
B = A &< gameEngine 8| < Timeine | @ gameEngine.playground (Timeiine)
) 3| V77t Playaround = noun a place where people can play
7
v [Sources. ? // Created by Lech Szymanski on 24/07/15.
© ClroColiderswitt 7| ¢ // Copyright (c) 2015 Lech Szymanski. ALL rights reserved.
7
. Coliderswift »
) GameEngine.swift ? import Cocoa
. GameObject switt 2| o
- Pectangiatororsuitt 7 | 10 Gone object with behaviour specific to the player
) Scene.switt 2| w o
e —— . class Player: Sprite {
s SupportCode.swift ? override init(imageNamed: String, scale: (GFloat) {
2 print("Player:”, terminator: Player:
v [Resources super.init(imageNamed: imageNamed, scale: scale)
asteroid.png ? ¥
 rocketpng ’
sonpng ? ject behaviour when collided with another
- parameter other: Gane object with which there was a
coltision
”
override func collidedWith(other: GameObject) {
77°1¢ collided with an Enemy game object,
77 destory sel
if other is Enemy {
setf.destroy()
}
-
Specifies object state change in each frane
- paraneter dt: Tine passed since last update
*/
override func update(dt: CGFloat) {
// Define the velocity vector (magnitude is
/1 speed, direction is the direction of movement)
et velocity = Covector(dx: -20, dy:) (54 times)
// Compute the change in position based on
7 y and tine passed since last update
Selfposition.x 4= velocity.desdt
Self.position.y +- velocity.dysdt
}
deinit {
print(“Players*, terinator:
}
-
Game object with behaviour specific to an eneny
“
class Enemy: Sprite {
override init(imageNamed: String, scale: CGFloat) {
super.init(imageNamed: imageNamed, scale: scale)
}
Jo
Specities object state change in each frane
- paraneter dt: Tine passed since last update
‘/
override func update(dt: CGFloat) {
Fine the velocity vector (nagnitude is
7/ speed, direction it the direction of movenent)
Lot velocity = Covector(dx: 70, dy: ~70) (54 times)
/7 Conpute the change in position based on
77 velocity and tine passed since last update
Self.position.x += velocity.dxedt
self.position.y += velocity.dysdt
}
}
GameObject (8x00007 fdeed52e4ed) init.
Scene init.
Sprite “"sun.png":GameObject (0x080007f9ee@54fb20) init.
Player:Spri “rocket.pt init.
i i init.
Sprite " i " j init.
Circle:Collider:GameObject (0x0000719eed75b930) init.
+ >E

COSC346 Lecture 1, 2018

Course Overview: Plagiarism

* We place a high value on Academic
Integrity and treat Academic Misconduct
seriously

* The work you submit for assessment must be
your own

In short: Don't copy others’ work!

e Academic Integrity - A Briet Guide for Students

COSC346 Lecture 1, 2018 10

https://www.otago.ac.nz/administration/policies/otago116838.html
https://www.otago.ac.nz/administration/policies/otago116838.html
https://www.otago.ac.nz/administration/policies/otago116850.html
http://www.cs.otago.ac.nz/cosc241/pdf/Academic-Integrity-A-Brief-Guide-for-Students.pdf

Readings

e Lots of material to use

* We expect you to do reading to figure out
problems
* |ots of versions of swift that break old versions
* take care to use the proper version

* We're not going to hand-hold

COSC346 Lecture 1, 2018

Reading

The Swift Programming Language (2017)

/\ p p | e | I l C . The Swift Programming Language iBooks CSearch iOS Developer Libra

Welcome to Swift

About Swift
A Swift Tour

Language Guide

Language
Reference

Revision History

e HTML, IBoo The Swift

format Programming
Language
Swift 4.1 Edition

On This Page

A Swift Tour

Tradition suggests that the first program in a new language should print the
words “Hello, world!” on the screen. In Swift, this can be done in a single line:

println("Hello, world!")

If you have written code in C or Objective-C, this syntax looks familiar to you—in
Swift, this line of code is a complete program. You don’t need to import a
separate library for functionality like input/output or string handling. Code written
at global scope is used as the entry point for the program, so you don’t need a
main function. You also don’t need to write semicolons at the end of every
statement.

This tour gives you enough information to start writing code in Swift by showing
you how to ish a variety of p tasks. Don’t worry if you don’t
understand something—everything introduced in this tour is explained in detail
in the rest of this book.

NOTE
For the best experience, open this chapter as a playground in Xcode.
Playgrounds allow you to edit the code listings and see the result immediately.

Download Playground

Simple Values

Use let to make a constant and var to make a variable. The value of a constant
doesn’t need to be known at compile time, but you must assign it a value exactly
once. This means you can use constants to name a value that you determine
once but use in many places.

1 var myVariable = 42
2 myvariable = 50
3 let myConstant = 42

https://docs.swift.org/swift-book/Guided Tour/Guided Tour.html

COSC346 Lecture 1, 2018

https://docs.swift.org/swift-book/GuidedTour/GuidedTour.html

Reading

Advanced Swift (2016)

C. Eidhof, A. Velocity

Objc.io

* For programmers
that come from
other languages
such as Java

e E-book formats:
PDF, mobi

COSC346 Lecture 1, 2018

objc ™
Advance
Swift

By Chris Eidhof and Airspeed Velocity

Learning more about these features is what this book is about. We intend to answer
many of the “How do I do this?” or “Why does Swift behave like that?” questions we've
seen come up on various forums. Hopefully once you've read it, you'll have gone from
being aware of the basics of the language to knowing about many advanced features and
havinga much better understanding of how Swift works. Being familiar with the
material presented is probably necessary, if not sufficient, for calling yourself an
advanced Swift programmer.

Who Is This Book For?

‘This book targets experienced (though not ily expert) suchas
existing Apple-platform developers, or those coming from other languages such as Java
or C++, who want to bring their knowledge of Swift to the same level as that of
Objective-C or some other language. It’s also suitable for new programmers who have
started on Swift, grown familiar with the basics, and are looking to take things to the
next level.

It's not meant as an introduction to Swift; it assumes you are familiar with the syntax
and structure of the language. If you want some good, compact coverage of the basics of
Swift, the best source is the official Apple Swift book (available on {Books or at
developer.apple.com/swift/resources/. If you're already a confident programmer, you
could try reading both our book and the Apple Swift book in parallel.

‘This is also not a book about programming for OS X or i0S devices. Of course, since Swift
is currently mainly used on Apple platforms, we have tried to include examples of
practical use, but we hope this book will be useful for non-Apple-platform programmers
aswell.

Themes

‘We've organized the book under the heading of basic concepts. There are in-depth
chapters on some fundamental basic concepts like optionals or strings, and some deeper
dives into topics like C interoperability. But throughout the book, hopefully a few
themes regarding Swift emerge:

Swiftis both a high- and low-level language. Swift allows you to write code similarly
to Ruby and Python, with map and reduce, and to write your own higher-order functions

Reading

ocoa Programming for Mac OS X, 5th ed. (2015)

. Hillegass, A. Preble, N. Chandler
ig Nerd Ranch Guides

* Written for Xcode 6
and Swift 2.x

* Excellent examples

* Still probably one of
the best books on
Cocoda development

Chapter 17. Custom Views

All visible objects in an application are either windows or views. In this
chapter, you will create a subelass of Nsview. From time to time, you may
need to create a custom view to do custom drawing or event handling. Even
if you do not plan to do custom drawing or event handling, you will learn a
Iot about how Cocoa works by learning how to create a new view class

Windows are instances of the class Nswindow. Each window has a collection
of views, each of which is responsible for a rectangle of the window. The view
draws inside that rectangle and handles mouse events that oceur there. A
view may also handle keyboard events. You have worked with several
subclasses of NSview already: NSButton, NSTextField, NSTableView, and
NsColorwell are all views. (Note that a window is not a subclass of Nsview.)

The View Hierarchy

Views are arranged in a hierarchy (Figure 17.1). The window has a content
view that completely fills its interior. The content view usually :
subviews. Each subview may have subviews of its own. Every view knows its
superview, its subviews, and the window it lives on.

Figure 17.1. Views Hierarchy

600 Window

| o Tiie

contentView

[Nsview |

NSColorWell
L 1

I

* Hardcopy in the lab

COSC346 Lecture 1, 2018

Reading

Object-Oriented P

Timothy Budd
Addison-Wesley

* General O
principles

* Hardcopy in
Science Library

on reserve

COSC346 Lecture 1, 2018

rogramming, 3rd ed. (2002)

TIMOTHY BUDD

Chapter 4

Classes and Methods

s have

Although the tern nay be different, all object-oriented langu
in common the concepts introduced in Chapter 1: classes, instances, message
passing, methods, and inheritance. As noted already, the use of different terms for
similar concepts is rampant in object-oriented programming languages. We will
use a consistent and, we hope, clear terminology for all languages, and we will
note in language-specific sections the various synonyms for our terms. Readers
can refer to the glossary at the end of the book for explanations of unfamiliar
terms.
This chapter will describe the definition or creati and Chapter 5
their dyn Here we will illustrate the m nics of dec]
ass and defining methods a; ted with instances of the class. In Chapter 5 we
will examine how instances of ges are passed to
those instances. For the most part we will defer an explanation of the mechanics
of inheritance until Chapter 8.

S0
s are created and how m

4.1 Encapsulation

In Chapter 1, we noted that object-oriented programming, and objects in par-
ticular, can be viewed from many perspectives. In Chapter 2 we described the
many levels of abstraction from which one could examine a program. In this
chapter, we wish to view objects as examples of abstract data types.

Programming that makes use of data abstractions is a methodological ap-
proach to problem solving where information is consciously hidden in a small
part of a program. In particular, the programmer develops a series of abstract
data types, each of which can be viewed as having two faces. This lar to
the dichotomy in Parn: principles, discussed in Chapter 3. From the outside,
a client (user) of an abstract data type sees only a collection of operations that
define the behavior of the abstraction. On the other side of the interface, the
programmer defining the abstraction sees the data variables that are used to
maintain the internal state of the object.

73

Reading

Designing Interfaces (2002)

Jenifer Tidwell
O’'Reilly Media Inc.

* User Interface
principles and
design patterns

* Electronic

version from the
cience Library

COSC346 Lecture 1, 2018

O'REILLY"

Patterns for

fective Interaction Design

Designing
Interfaces

Jenifer Tidwell

This chapter's patterns cover both of the approaches to application design just discussed. Some of them
mix content structure with physical structure. They illustrate combinations that are known to work ex-
ceedingly well, such as the first four patterns

13 Two-Panel selector
14 canvas Plus Palette
15 one-window Drilldown

16 Atternative Views

The next few patterns don't go much into physical presentation, but instead deal with content in the ab-
stract. Wizard talks about “linearizing” a path through a task; it can be implemented as any number of
physical presentations. Extras on Demand and Intriguing Branches describe additional ways to divide up
content.

17 wizard
18 Extras on Demand

19 intriguing Branches

Many patterns, here and elsewhere in the book, contribute in varying degrees to the learnability of an
interface. Multi-Level Help sets out ways to integrate help directly into the application, thus supporting
learnability for a broad number of users and situations.

20 Multi-Level Help

16

Reading

e The Swift Programming Language (2017), Apple Inc.

e C. Eidhof, A. Velocity (2016), Advanced Swift, Objc.io.

* A. Hillegass, A. Preble, N. Chandler (2015), Cocoa
Programming for Mac OS X (5t ed), Big Nerd Ranch Guides.

* Timothy Budd (2002), Object-Oriented Programming (39 ed),
Addison-Wesley.

* Jenifer Tidwell (2006), Designing Interfaces, O'Reilly Media, Inc.

We'll give you the material you'll need for the course

COSC346 Lecture 1, 2018 17

What is OOP?

Procedural

@i?

3#

[HAmsanﬂ { comBoRATEl

LISTEN

xkcd.com

1. Functions act on data.
A program organises
function calls to
manipulate data.

COSC346 Lecture 1, 2018

Object-Oriented

r@“

— Mmessage ﬂ

1. Objects contain encapsulated
data and associated methods.

2. Aprogram describes how
objects interact via messages.

18

What is OOP?

Some other programming paradigms:

* |mperative
« directly change computed state

* Declarative
» defines logic but not control flow

* Functional
* mathematical functions avoiding state and mutable data

* Event Driven
« control flow is determined by events

This is not an
exhaustive list!

COSC346 Lecture 1, 2018 19

What is OOP?

COSC346 Lecture 1, 2018 20

Why OOP?

Application

A

AppKit

Foundation
Framework

Swift

Objective-C
runtime v

Computer

Speed Code Development Environment

Slow Re-usable Team, Fast

Runtime
Decisions

User Interface

Complex,
Graphical

Individual,
Fast Specific Slow

Compile-time Simple, Text-

Decisions

based

COSC346 Lecture 1, 2018

Reusability

?Fﬂ)

\i

i
i

WHAT 1S ALL
THIS CRAP?

WHY 18 THIS
STRUCTURE HERE 7

R
&,

WHERE CouLD THIS BRIDGE
PossIBLY LEAD ?

THIS SIGN DOESN'T
HELP ME MUCH.

WHAT A HORRIBLY DESIGNED
STREET, MOST INEFFICIENT.

.

SR

GooD GoD! WHAT THE HELL
DOES THIS CONTRAPTION DO?

COSC346 Lecture 1, 2018

| hate reading
other people's code.

abstrusegoose.com

22

Why Swift? N

 Modern Oy

* Result of research on programming languages

* Multi-paradigm - takes best features from many
languages (in COSC346 we focus on the Object-
Oriented aspect)

e Safe

 Compiler forces you to do things right

* Tries to detect errors at compile time, not run-time
* Concise

* Easier and faster to develop software

* Easier to create development tools

* Cocoa environment — good example of natural
progression from OOP to User Interfaces
COSC346 Lecture 1, 2018 23

What is Cocoa?

* Object-oriented framework for application
development for macOS and iOS
* |n this course we will focus on macOS only

* “Its elegant and powerful design is ideally
suited for the rapid development of software”
— Cocoa Fundamentals Guide (2010, retired), Apple Inc.
* Huge number of classes and frameworks
* Overwhelming for the first-time user

* Powerful environment that abstracts away a lot of
the details of application programming — you can

concentrate on high level functionality
COSC346 Lecture 1, 2018 24

What is Xcode?

* Integrated Development Environment (IDE) for
application development for macOS & iOS

* |t comes with I0OS platform simulator

* Compiler and debugging tools

e Cocoad libraries and
frameworks

* |nferface builder -
GUI for building GUIs

e Editor and tools for
analysis

COSC346 Lecture 1, 2018

. Editor |
s

ormer{ Dabug e i e
area [T =T

Debug bar

25

Mac Platform

f
Xcode IDE
OOP Design
Principles

\

COSC346 Lecture 1, 2018

OOP <

Application

AppKit

Foundation
Framework

User
> Interfaces

Swift

Objective-C

runtime

Computer

r

UI Design
Principles

Goals

* Object-Oriented
Programming:
* () Learn Swift
language
* (b) Understand OOP
design principles
* User Interfaces:

* (a) Learn Application
Kit Framework

* (b) Understand Ul
design principles

COSC346 Lecture 1, 2018

Cocoa (Application)

AppKit

Media

AV Foundation Core Animation Core Audio Core Image

Core Text OpenAL OpenGL Quartz

Core Services

Address Book Core Data Core Foundation Foundation

Quick Look Social Security WebKit

Core OS
Accelerate Directory Services Disk Arbitration
OpenCL System Configuration

Kernel and Device Drivers

BSD File System Mach Networking

27

