
User Interfaces

Lecture 21

Cocoa: Controllers & Undo/Redo

Hamza Bennani
hamza@hamzabennani.com

September 25, 2018



KVO

1

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018



Model-View-Controller

Recall that the MVC pattern is a good way to organise your
application code

The AppKit Framework provides several controller classes that
help with this task

2

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018



NSController

I Don’t confuse with NSControl
I AppKit framework provides abstract NSController class

that has several bindings-compatible classes
I Are also other controller classes: NSViewController,

NSWindowController, NSDocumentController
I Controllers offer the following advantages:

I Less code (if using bindings)
I Takes care of selection/editing for you (e.g., text fields in

tables, aborted input, committing edits to model, etc.)
I Controllers are compatible with other advanced features,

such as undo/redo and Core Data

3

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018



NSController

4

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018



Controllers

5

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018



Controllers

6

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018



Using Controllers

I Step 1. Set Controller’s Content:
I Set object class (in Interface Builder’s Attribute Inspector or

by calling setObjectClass:)
I Bind content (to contentObject)

I Step 2. Connect View to Controller:
I Controller key points to content (e.g., arrangedObjects or

selection)
I Model key is key path into object
I Complete key path is "<controller key>.<model key>"

Bindings can be done in Interface Builder or programmatically
using bind:toObject:withKeyPath:options:

7

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018



Timer Object Controller

8

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018



Undo/redo

I Undo/Redo is handled by UndoManager in the Foundation
framework

I An instance of UndoManager corresponds to two stacks
for undo and redo actions

I To use UndoManager:
1. Decide what should be undo-able
2. Implement an "inverse" message for every message that

causes an undo-able action
3. Register your messages with the UndoManager

9

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018



Undoable actions

I Not all actions are undoable
I Document/Image changes should be undoable:

I Changes to the state of a document, e.g., inserts, removals,
etc.

I Application changes should NOT be undoable:
I Selections, changing modes (e.g., tool types, colours)
I Changes to interface (e.g., font size, window size,

preferences)

10

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018



Undo/Redo Messages

Each undoable action should correspond to a message:

Make it hotter by 5◦ (makeItHotter)

For each undoable action there has to be a reverse message:

Make it colder by 5◦ (makeItColder)

11

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018



How UndoManager Works

I Suppose the user does the following in the Hotter/Colder
application:

1. makeItColder
2. makeItColder
3. makeItHotter

12

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018



How UndoManager Works

I Next the user invokes ‘undo’
I Message on the top of the undo stack gets executed
I The opposite message goes onto the redo stack

13

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018



How Undo Manager Works

I Next the user invokes ‘undo’ again
I Message on top of undo stack gets executed
I The opposite message goes onto the redo stack

I If the user invokes ‘redo’, opposite messages go from the
‘redo’ to the ’undo’ stack

14

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018



Invocation

I Undo/redo messages can be either "simple":
I Callback to a selector with single argument with: “func

registerUndo(withTarget: Any, selector: Selector, object:
Any?)" (selector is called for undo).
I Or with the potential for passing more state:

15

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018



Labelling Undo/Redo actions

UndoManager also lets you describe the effect of undo to keep
the user informed (this is displayed in the Edit menu’s items).

16

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018



Summary

Controllers
I are objects whose purpose is to bind model data and view

controls (internal glue logic is already pre-defined: can be
bound through Interface Builder)

I NSController - abstract class
I NSObjectController
I NSArrayController

Und/Redo actions
I are registered with undo manager by providing the

invocations for the opposite actions
I UndoManager - a class implementing the undo and redo

stacks - typically one per model
17

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018



Timer App Undo/Redo

18

Hamza Bennani -*- COSC346 -*- Cocoa: Controllers & Undo/Redo -*- September 25, 2018


