
COSC346 - 2018 - Values and References

Pass by Value/Reference
To describe this, I’m going to use examples from C where this is a lot more explicit as well as it
being a language you’ve seen before.

The call stack (or stack for short) is used to keep track of the execution state of a program. It is
used for storing things with a known fixed-size at compile-time. Some examples of these sorts of
types from languages you probably have seen:

C
	 int, double, char, float, struct

Java
	 int, double, char, float, short, long

Swift
	 structs, enums

Note that the exact size of these things is
dependant on the compiler of machine
you’re working on. I’ll work on an example in
C to illustrate what’s going on.

Suppose we have a program that looks like
the code to the right:

1. Pass by Value
1.1 Before you go further, what does the program above output?

If you said ’42’, then you’re correct!

Why does it do that? Well it’s because the
argument (42) is being copied into the call to
change. When you call a function, the compiler
needs to gather all the information together to pass
to the called function. If we could examine the call
stack just before actually calling change, we’d end
up with something that looks like the diagram to
the left.

There are a couple of things to note about the
diagram. I’ve drawn the stack growing upwards
(indicated by the green arrow). In the white boxes
to the right I’ve indicated the labels of the variable
names. The return address is determined by the
compiler and allows the change function to resume
execution where it left off.

The yellow/orange boxes belong to the call to change, while the blue box is the local variables for
main. The actual way this is represented in the computer is architecture and compiler specific.

Page � of �1 6

#include <stdio.h>

void change(int y){
 int val = 3;
 y += val;
}

int main() {
 int x = 42;
 change(x);
 printf("%d\n", x);
}

42

42

return address

x

y

COSC346 - 2018 - Values and References
So, what happens when we actually execute the change function? Well we add the local variables
to the top of the stack …

… and then execute the rest of the function by performing the addition …

… before we finally return.

Page � of �2 6

42

42

return address

3

x

y

val

42

45

return address

3

x

y

val

42 x

COSC346 - 2018 - Values and References

2. Pass by Reference
Suppose we make a small change to the original
program so that instead of accepting a raw
integer, we instead have a pointer to an integer,
so that our program looks like the one on the
right. What effect does that have?

2.1 What do you expect to be printed with this
program?

2.2 What do you think is going on with this
program’s call stack?
Draw the stages of it before you read on.

I f
you said ’45’, then you’re correct! What’s going on
here? Well it’s almost the same thing as before, but
we’re now using a pointer.

Before we execute the change function, we have a
stack that looks like the one below on the left. Do
you notice that y is now the address of x?

How does the rest of the execution play out? Let’s
have a look. We still setup out local variable as
before. When we come to do the addition, we’re
saying to treat y as an address and to lookup the
value stored there. This is what the *y is doing at
the end of the change function.

Because we’re treating y as an address, we’re able
to go to the original value (in the main function) and
change it’s value.

Page � of �3 6

#include <stdio.h>

void change(int* y){
 int val = 3;
 *y += val;
}

int main() {
 int x = 42;
 change(&x);
 printf("%d\n", x);
}

42

address of x

return address

x

y

42

address of x

return address

3

x

y

val

COSC346 - 2018 - Values and References
We then execute the rest of the function by performing the addition …

… before we finally return.

I want to make it clear here, that the address is still being copied but the way it’s interpreted is
different. It’s not making a copy of the thing at that location.

2.3 When might this be a good thing to do?

2.4 What do the following snippets of code print?
2.5 Sketch the call stacks for these programs two.  

Page � of �4 6

45

address of x

return address

3

x

y

val

45 x

#include <stdio.h>

void swap(int* y, int* z){
 int temp = *y;
 *y = *z;
 *z = temp;
}

int main() {
 int p = 42;
 int q = 24;
 swap(&p, &q);
 printf(“%d -> %d\n”, p, q);
}

#include <stdio.h>

void swap(int y, int z){
 int temp = y;
 y = z;
 z = temp;
}

int main() {
 int p = 42;
 int q = 24;
 swap(p, q);
 printf(“%d -> %d\n”, p, q);
}

COSC346 - 2018 - Values and References

3. Object Oriented Programming and Pass by Value/Reference
So, what does that mean for OO languages like Java and Swift? Well, if all variables are pointers
to objects then it means that the language is inherently pass by reference.

3.1 What do you expect the following code snippets to print?

If you answered 45 in both cases, you’re right. What does this look like in memory? Well, we have
to introduce the idea of a heap as well as the stack. The heap is used for dynamically sized things
at compile time, and is used for objects (anytime you use new in Java/C++ or call the init function
in Swift) or dynamic memory allocation (malloc in C). If we focus on the Thing class (from Swift)
we get something like this:

Page � of �5 6

class Thing{
 var x: Int = 0
}

func change(t: Thing){
 t.x += 3
}

var p = Thing()
p.x = 42

change(t:p)
print(p.x)

Sw
ift

public class Thing{
 int x = 0;

 static void change(Thing t){
 t.x += 3;
 }

 public static void main(String[] args){
 Thing t = new Thing();
 t.x = 42;
 change(t);
 System.out.println(t.x);
 }
}

Ja
va

42

address of p

address of p

return address

3

H
ea

p

St
ac

k

COSC346 - 2018 - Values and References
Really this looks (something) like this in memory (if the width of the page were my entire memory
space):

3.2 What would the stack look like if I have an infinitely recursive function?

4. Swift Lab Exercise
Because Swift (by default) doesn’t allow modification of variables passed in as a parameter to a
function, there is a slightly different method to test what’s going on.

4.1 What do you expect the following code to print?

4.2 Do you get what you were expecting? If not, draw the call stack.

4.3 Does this tell you if you have a reference type or a value type?

4.4 Does this change if I were to use let instead of var?

4.5 Determine if the following Swift types are pass by reference or pass by value using a
pattern similar to the above code snippet.

• int

• double

• float

• struct

• class

• String

• Dictionaries

• List

• Set 

Compare your answers with https://developer.apple.com/swift/blog/?id=10

4.6 Does this change if I were to use let instead of var?

4.7 When might I want to deliberately use a value type over a reference type? What side
effects can I avoid? What are the drawbacks?

In Swift you can declare that the parameter is inout which is like making it an explicit pointer in
the C examples above. Explore Swifts inout keyword with reference to the above types. What
changes?

Page � of �6 6

42

ad
dr

es
s

of
 p

ad
dr

es
s

of
 p

re
tu

rn
 a

dd
re

ss

HeapStack
3

class Thing{
 var x: Int = 42
}

var p = Thing()
var q = p
p.x = 0
print("\(p.x), \(q.x)")

https://developer.apple.com/swift/blog/?id=10

