
COSC440 Lecture 10: Virtualization & Security 1

Overview
• This Lecture

– Virtualization and security
– Source: A comparison of software and

hardware techniques for x86 virtualization,
Backtracking intrusions

– VM hypervisor on Raspberry Pi
• http://www.raspberrypi.org/forums/viewtopic.php?p

=357354#p357354

http://www.raspberrypi.org/forums/viewtopic.php%3Fp=357354%2523p357354

COSC440 Lecture 10: Virtualization & Security 2

Virtualization
• What is virtualization?

– Accurate simulation of a computer on VMM

• Virtual Machine Monitor
– VMM is used to facilitate the simulation
– Three essential characteristics

• Fidelity: software on VMM executes identically to
its execution on hardware except the timing effect

• Performance: most instructions are executed directly
on HW

• Safety: VMM manages all hardware resources

– Guest OS/virtual machine

COSC440 Lecture 10: Virtualization & Security 3

Why use VMM?
• One computer, multiple operating systems
• Server consolidation
• Better security and fault isolation
• Simplify management of big machines
• Debugging for OS development (QEMU)
• Current VMM

– VMware, Xen, Virtual PC, VirtualBox, AMD
SVM, Intel VT, UML, etc.

– Note we don’t talk about in-kernel VMM

COSC440 Lecture 10: Virtualization & Security 4

Approaches to virtualization
• Trap-and-emulate (classical)

– Emulate privilege instructions using trap

• Para-virtualization
– Modify OS to fit the VMM interface in order to

improve performance, e.g. Xen
• Binary translation

– Convert special instructions into a sequence of
simulation instructions, e.g. VMware

• Hardware VMM
– Hardware implementation supporting VMM

COSC440 Lecture 10: Virtualization & Security 5

x86 virtualization
• Primary and shadow structures

– VMM uses shadow structures to mirror the
primary structures in a virtual machine

– On-CPU privileged state such as page table
pointer CR3 can be easily handled, since VMM
can maintain an image of the registers for the
guest OS and traps are used to maintain the
consistency between the shadow and the
primary

– Off-CPU privileged structures such as page
table are more troublesome to maintain

COSC440 Lecture 10: Virtualization & Security 6

Memory traces
• Memory traces are used to maintain the coherency

of shadow off-CPU structures
– For example, guest page table is write protected.
– When guest modifies the page table, there is page fault

which brings control to VMM
– VMM can simulate the faulting guest instruction to

change the guest page table as well as the shadow page
table in VMM, after some validation check of the
modification

– How to make the changes more efficient?
– How to balance among trace cost, hidden faults and

context switch?

COSC440 Lecture 10: Virtualization & Security 7

X86 obstacles
• Visibility of privileged state

– The guest can observe that it has been
deprivileged when it reads its code segment
selector %CS since the CPL is stored in the low
two bits of %CS

• Lack of traps when privileged instructions
executed at user mode
– For example, popf (load ALU and system flags

from stack) can change system flags like IF (for
control of interrupt delivery) in kernel mode,
but in user mode attempts to modify IF are
simply suppressed. No traps to use for VMM.

COSC440 Lecture 10: Virtualization & Security 8

Solutions
• Binary interpretation

– Run guest OS on an interpreter
– The interpreter can prevent leakage of the

privileged state such as CPL from the physical
CPU to the guest

– Very slow

• Binary translation (by VMware)
– Convert the instructions into a set of mostly

user-mode instructions
– Some instructions like popf can be replaced

with INT and then emulated by the translator

COSC440 Lecture 10: Virtualization & Security 9

Advantages of BT
• Full virtualization instead of paravirtualization

– No assumption about the guest code
– Input is full x86 instruction set, output is a safe subset

(mostly user-mode instructions)

• Dynamic
– The translation happens at runtime, interleaved with

execution of the converted code
• On-demand

– Code is translated only when it is about to execute,
which need not tell code and data apart in advance

• Adaptive
– Translated code can be adjusted according to guest

behavior in order to improve overall efficiency

COSC440 Lecture 10: Virtualization & Security 10

How BT works?
• Read guest’s memory at the address indicated by the guest

PC (i.e. IP in x86) register
• Classify the bytes as prefix, opcode, operands, and produce

intermediate representation (IR) objects
– Each IR object represents one guest instruction

• Organize IR objects into translation units (TU)
– Stop at 12 instructions or a termination instruction such as jump

instructions for changing control flow

• Translate most IR objects except the termination
instruction identically into x86 instructions
– The termination instruction is turned into invocation of a translator

continuation.

• Translation Cache (TC) is used for translated code for code
reuse

COSC440 Lecture 10: Virtualization & Security 11

IsPrime C code
– int isPrime(int a) {
– for (int i = 2; i < a; i++) {
– if (a % i == 0) return 0;
– }
– return 1;
– }

COSC440 Lecture 10: Virtualization & Security 12

IsPrime assembly
– Compile the C code into 64-bit binary:
– isPrime: mov %ecx, %edi ; %ecx = %edi (a)
– mov %esi, $2 ; i = 2
– cmp %esi, %ecx ; is i >= a?
– jge prime ; jump if yes
– nexti: mov %eax, %ecx ; set %eax = a
– cdq ; sign-extend
– idiv %esi ; a % i
– test %edx, %edx ; is remainder zero?
– jz notPrime ; jump if yes
– inc %esi ; i++
– cmp %esi, %ecx ; is i >= a?
– jl nexti ; jump if no
– prime: mov %eax, $1 ; return value in %eax
– ret
– notPrime: xor %eax, %eax ; %eax = 0
– ret

COSC440 Lecture 10: Virtualization & Security 13

BT example
• isPrime:

– mov %ecx, %edi
– mov %esi, $2
– cmp %esi, %ecx
– jge prime

• isPrime’:
– mov %ecx, %edi ; IDENT
– mov %esi, $2
– cmp %esi, %ecx
– jge [takenAddr] ; JCC
– jmp [fallthrAddr]

COSC440 Lecture 10: Virtualization & Security 14

Optimization
– isPrime’: *mov %ecx, %edi ; IDENT
– mov %esi, $2
– cmp %esi, %ecx
– jge [takenAddr] ; JCC
– ; fall-thru into next CCF
– nexti’: *mov %eax, %ecx ; IDENT
– cdq
– idiv %esi
– test %edx, %edx
– jz notPrime’ ; JCC
– ; fall-thru into next CCF
– *inc %esi ; IDENT
– cmp %esi, %ecx
– jl nexti’ ; JCC
– jmp [fallthrAddr3]
– notPrime’: *xor %eax, %eax ; IDENT
– pop %r11 ; RET
– mov %gs:0xff39eb8(%rip), %rcx ; spill %rcx
– movzx %ecx, %r11b
– jmp %gs:0xfc7dde0(8*%rcx)

COSC440 Lecture 10: Virtualization & Security 15

Non-IDENT instructions
• PC-relative addressing

– The translated code resides at a different address from
the original code

• Direct control flow
– Control flow must be reconnected in TC since code

layout has been changed by the translation
• Indirect control flow (jmp %cs:off, call, ret)

– Since the target is not fixed, translation-time binding is
not possible

• Privileged instructions
– Use TC sequence to replace simple operations
– E.g. cli (clear interrupts) takes longer time than

vcpu.flags.IF := 0

COSC440 Lecture 10: Virtualization & Security 16

Further optimizations
• Use direct execution for guest user code

– Switching guest execution between BT mode and direct execution
when the guest switches between kernel- and user-mode

– Caveat: there is no protection for the guest kernel from the user
code

• Adaptive binary translation
– BT can avoid privileged instruction traps which are expensive for

modern CPU
– rdtsc: trap-and-emulate (2030 cycles), callout-and-emulate (1254

cycles), in-TC emulation (216 cycles)
– Some other traps remain: non-privileged instructions accessing

sensitive data like page table
– Adaptive BT

• Start in the innocent state until proven guilty
• For code with frequent traps, retranslate the non-IDENT to avoid the trap, or

patch the original IDENT translation with a forwarding jump to the new
translation.

COSC440 Lecture 10: Virtualization & Security 17

Hardware assisted VMM
• VMCB is used for VM state
• A guest mode is used, in contrast of host mode
• When VMM schedules a guest to run,

– It fills in a VMCB with the current guest state
– Call vmrun
– Hardware loads guest state from VMCB and continues

execution in guest mode until some condition expressed
by VMM in VMCB

– When a condition occurs, hardware performs an exit
operation, which is the inverse of vmrun.

– On exit, the hardware saves guest state to the VMCB,
loads VMM-supplied state into the hardware, resumes
the host mode and executes the VMM.

COSC440 Lecture 10: Virtualization & Security 18

Security
• Source: Backtracking intrusions

COSC440 Lecture 10: Virtualization & Security 19

TOCTTOU
• Time-Of-Check To Time-Of-Use (TOCTTOU)

bug
– Example: cleaning a /tmp directory
– root runs: rm /tmp/*/* (which is really something like

find /tmp -not-accessed-recently | xargs rm)
– two phases: expand list of files, then unlink them
– attacker: mkdir /tmp/a; echo >/tmp/a/passwd
– root's rm: finds /tmp/a/passwd
– attacker: rm /tmp/a/passwd; rmdir /tmp/a; ln -s /etc

/tmp/a
– root's rm: unlink("/tmp/a/passwd"), unlinks passwd

from /tmp/a==/etc
• Fix?

COSC440 Lecture 10: Virtualization & Security 20

Unix/Linux security model
• Uid/gid are used for access control
• Uid 0 (root) is treated specially
• Uid/gid are used for the following checks

– Inode access (3-bit permissions for U, G, O)
– Root (uid 0) can change uid (with setuid() syscall),

create device inodes, chown, reboot, etc
– However, file descriptor access is via pid

• Login
– Run as root, check user name, password against

/etc/shadow, setuid(user), run user’s shell

• How to get back to root? How su is implemented?
– Hint: setuid bit

COSC440 Lecture 10: Virtualization & Security 21

Limitations of Unix security
• Can't pass privileges to other processes
• Can't have multiple privileges at once
• Not a very general mechanism

– cannot create a user unless root

• Subjective policy
– Can have unexpected results
– Easy to escape from chroot with root

• fd=open("/"), chroot("/tmp"), fchdir(fd), chroot("./../../../..")
– Can create hard link to any file
– Buggy code remains setuid even if root rm's it
– Users can keep a copy of sensitive data once they obtain root

access

• Mandatory access control vs discretional access control
• KEYKOS, every object needs a key (capability) to access

COSC440 Lecture 10: Virtualization & Security 22

Backtracking intrusions
• Purpose

– Provide information for system admin to understand
how an attack happened.

• Idea
– Log objects and events at OS level
– Objects: files, file names, processes
– Events: system calls
– Establish a dependency relationship between them

• Kernel level logging vs application level logging
– Application-level: semantically rich but easily disabled
– Kernel-level: difficult to disable but semantically poor

COSC440 Lecture 10: Virtualization & Security 23

Dependency
• Process/process dependency

– Fork(), clone(), P->C

• Process/file dependency
– Modify file: process->file
– Read file: file->process
– Or both

• Process/filename dependency
– Any system call including a file name (open, creat, link,

unlink, mkdir, rename, rmdir,stat, chmod) causes a
filename->process

– Any successful system call that modify a filename
argument causes a process->filename. E.g. creat, link,
unlink, rename, mkdir, rmdir, mount

COSC440 Lecture 10: Virtualization & Security 24

Dependency graph
• Create a dependency graph offline based on the log

information
– Start at a detection point when system admin found any suspicious

behavior of the system, e.g a system file has been changed
– Example

• Time 0: process A creates process B
• Time 1: process B writes file 1
• Time 2: process B writes file 2
• Time 3: process A reads file 0
• Time 4: process A creates process C
• Time 5: process C reads file 1
• Time 6: process C writes file X
• Time 7: process C reads file 2
• Time 8: process A creates process D

COSC440 Lecture 10: Virtualization & Security 25

Example graph

COSC440 Lecture 10: Virtualization & Security 26

Simplified graph

COSC440 Lecture 10: Virtualization & Security 27

Results
• Implemented with virtual machine

– EventLogger is implemented in VMM

• 1.2G log file in 24 hours
• Three attacks are tracked
• GraphGen can take up to 3 hours for

tracking
– 26 seconds if irrelevant events are ignored

COSC440 Lecture 10: Virtualization & Security 28

Limitations of BackTracker
• If an attacker can change guest kernel

– E.g. load module

• If an attack can attain access to VMM
– Very difficult

• If use hidden channel
– Send password through internet
– Login with the right password

• Hide actions in a huge dependency graph
• Hide actions by intermingling with innocent

events
• Prolonged the attack period

