
Multi-core Computing

COSC440 1Multi-core Computing



Multi-core age (1)

COSC440 2Multi-core Computing

Single 
Processor

Symmetrical
Multi-processor (SMP)

Chip Multi-Threading 
(CMT)

1980 1990 2000 2010



Multi-core age (2)

• Physical limits for chip manufacturing
– Light speed, heat dissipation, power consumption

• Moore’s law is still true!
– Moore’s Law: The number of transistors that can be 

placed in a chip doubles approximately every two years
– A silicon die can accommodate more and more transistors

• New direction
– To build multiple (hundreds or thousands) less powerful 

cores (CPUs) into a single chip

COSC440 Multi-core Computing 3



Memory wall

• Memory wall is the growing disparity of speed 
between CPU and RAM
– From 1986 to 2000, CPU speed improved at 55% 

annually while memory speed only improved at 
10%.

– Now there are only a few cycles for the execution 
of one instruction, but hundreds of cycles for 
memory access outside chip.

– 90% CPU time is waiting for data from RAM

COSC440 Multi-core Computing 4



Multi-core architectures (1)

• Single core

COSC440 Multi-core Computing 5

Interrupt Logic

CPU State

Execution
Units

Cache



Multi-core architectures (2)

• Multiprocessor (SMP)

COSC440 Multi-core Computing 6

Interrupt Logic

CPU State

Execution
Units

Cache

Interrupt Logic

CPU State

Execution
Units

Cache



Multi-core architectures (3)
• Simultaneous Multithreading (SMT)

– Also called Hyper-Threading Technology (HTT) as Intel’s 
trademarked name

– SMT uses multiple simultaneous hardware threads (aka strands) 
to utilize the stalling time such as cache miss and branch 
misprediction in a processor.

– Can help hide memory wall.
– E.g. Intel Xeon, Pentium 4

COSC440 Multi-core Computing 7

Interrupt Logic

CPU State

Execution
Units

Cache

Interrupt Logic

CPU State



Multi-core architectures (4)

• Multi-core (CMP, Chip Multi-Processing)

COSC440 Multi-core Computing 8

Interrupt Logic

CPU State

Execution
Units

Cache

Interrupt Logic

CPU State

Execution
Units

Cache



Multi-core architectures (5)
• Multi-core with shared cache (CMP)
• E.g. Intel Core Duo, AMD Barcelona (Opteron 8300)

COSC440 Multi-core Computing 9

Interrupt Logic

CPU State

Execution 
Units

Interrupt Logic

CPU State

Execution 
Units

L2/L3 Cache

Cache Cache



Multi-core architectures (6)
• Multi-core with SMT and shared L2 cache (Sun 

Niagara CMT, Chip Multi-Threading)

COSC440 Multi-core Computing 10

Interrupt Logic

CPU State

Execution 
Units

L2 Cache

Interrupt Logic

CPU State

Interrupt Logic

CPU State

Interrupt Logic

CPU State

Cache Execution 
Units

Cache



CMP, SMT and CMT

• CMP + SMT = CMT

COSC440 Multi-core Computing 11

CMP SMT CMT



Parallel computing
• Parallel computing, computing with more than one 

processor, has been around for more than 50 years 
now.

COSC440 Multi-core Computing 12

Gill writes in 1958:
“... There is therefore nothing new in the idea of parallel programming, 
but its application to computers. The author cannot believe that there 
will be any insuperable difficulty in extending it to computers. It is not 
to be expected that the necessary programming techniques will be 
worked out overnight. Much experimenting remains to be done. After 
all, the techniques that are commonly used in programming today were 
only won at the cost of considerable toil several years ago. In fact the 
advent of parallel programming may do something to revive the 
pioneering spirit in programming which seems at the present to be 
degenerating into a rather dull and routine occupation ...”
Gill, S. (1958), “Parallel Programming,” The Computer Journal, vol. 1, April, pp. 2-10.



What is different now?

• Parallel computers are easily accessible
– Cluster computers (Beowulf cluster)
– Network of Workstations (NOW)
– Grid computing resources
– Multi-core

• No free ride on CPU speed. CPU speed is 
limited by
– Heat dissipation problem, and
– Eventually light speed.

COSC440 Multi-core Computing 13



Speedup

• The performance of a parallel program is 
mainly measured with speedup
– Speedup = Time of sequential program / Time  of 

parallel program

COSC440 Multi-core Computing 14



Amdahl’s Law

• Proposed by Gene Amdahl in 1967
• Speedup = n / (1 + (n – 1)f), 
– where f is the fraction of the computation that 

cannot be parallelized in a parallel algorithm, and 
n is the number of processors working on the 
concurrent parts of the algorithm.

• What does Amdahl’s Law tell us?
– Even with an infinite number of processors, the 

maximum speedup is bounded by 1/f

COSC440 Multi-core Computing 15



Gustafson's Law

• Amdahl’s Law does not take into account 
problem size

• John L. Gustafson proposed the following formula 
in 1988
– Speedup = n – α (n-1)
– Where n is the number of processors, and α is the 

time for the non-parallelizable part of the parallel 
computation and β is the time for the parallel part 
(α+β=1 is the parallel execution time)

– When α diminishes with problem size, the speedup 
approaches n

COSC440 Multi-core Computing 16



A metaphor
• Suppose a person is traveling between two cities 10 km 

apart, and has already spent one hour walking half the 
distance at 5 km/h.

• Amdahl's Law suggests:
– “No matter how fast the person runs the last half, it is 

impossible to achieve 20 km/h average before reaching the 
second city. Since it has already taken 1 hour and there is 
only a distance of 10 km total; running infinitely fast would 
only achieve 10 km/h.”

• Gustafson's Law argues:
– “Given enough time and distance to walk, the person's 

average speed can always eventually reach 20 km/h, no 
matter how long the person has already walked. In the 
two-cities case this could be achieved by running at 25 
km/h for additional three hours.”

COSC440 Multi-core Computing 17



Counter-Amdahl’s Law
• Suppose f is the fraction of the computation that is 

serial in a parallel algorithm, and p is the speedup for 
the parallel fraction of the algorithm. Then, if p > (1 − 
f)/f, which means p is greater than the ratio between 
the parallel fraction and the serial fraction, it is more 
efficient to improve the serial fraction rather than the 
parallel fraction in order to increase the overall 
speedup of the algorithm.

• Detailed proof can refer to
– Z. Huang, et al, Virtual Aggregated Processor in Multi-core 

Computers, NZHPC Workshop, In Proceedings of the 
International Conference on Parallel Distributed 
Computing, Applications and Technologies 2008 
(PDCAT08), IEEE Computer Society, Dunedin, 2008. 

COSC440 Multi-core Computing 18



Modern programming models
• SIMD (Single Instruction Multiple Data)

– The same instruction is executed at any time by many cores but on 
different data

– E.g. GPU, GPGPU with languages like CUDA and OpenCL
• SPMD (Single Program, Multiple Data)

– Multiple processors simultaneously execute the same program, 
but on different data sets.

– Unlike SIMD, there is no lockstep at instruction level and can 
thus be implemented on general purposed processors

– E.g. MPI 1.0 and VOPP
• MPMD (Multiple Program, Multiple Data)

– Multiple processors simultaneously execute different programs 
on different data sets.

– Can spawn new processes/threads during execution.
– E.g. OpenMP, PVM, and MPI 2.0

COSC440 Multi-core Computing 19



Parallelization methods (1)

• Data decomposition
– Breaks down a task by the data it works on

• Example
– Matrix addition A+B=C

COSC440 Multi-core Computing 20

A1

A5

A9

A13

A2 A3 A4

A6 A7 A8

A10 A11 A12

A14 A15 A16

B1

B5

B9

B13

B2 B3 B4

B6 B7 B8

B10 B11 B12

B14 B15 B16

C1

C5

C9

C13

C2 C3 C4

C6 C7 C8

C10 C11 C12

C14 C15 C16

+ =



Parallelization methods (2)
• Task decomposition

– Decompose a task by the functions it performs.
• Example

– Gardening decomposed into mowing, weeding, and trimming
– The task of a simulated soccer game can be divided into 22 sub-

tasks, each of which simulate one player.

COSC440 Multi-core Computing 21



Parallelization methods (3)

• Data flow decomposition
– Decompose a task by how data flows between 

different stages.
• Example
– Producer/consumer problem, pipelining

COSC440 Multi-core Computing 22

F1 F2 F3 F4



Parallelization methods (4)

• Divide and Conquer
– Decompose a task into sub-tasks dynamically during 

execution. Often task queues are used.
• Example
– mergesort

COSC440 Multi-core Computing 23

N
1

N
2

N
3

N
4

N
5



Multithreading

• Threads are divided into
– Heavy-weight, traditionally called processes
– Light-weight, also called light-weight processes

• The light-weight threads
– Unlike processes which have individual address spaces, 

they share the same address space and the following
• process instructions, heap, open files (desrciptors), signal 

handlers, current working directory, user and group IDs
– However, LWT has its own of the following

• thread ID, set of registers (including program counter and stack 
pointer), stack (for local variables and return addresses), signal 
mask, priority

COSC440 Multi-core Computing 24



Shared memory

• No matter with LWT or HWT, if shared memory 
space is used, we need to deal with the data race 
issue

• Race conditions
– Determinacy race: A race condition that occurs when 

two threads access the same memory location and at 
least one of the threads performs a write.

– Data race: A determinacy race that occurs without 
mutual exclusive mechanisms protecting the involved 
memory location.

COSC440 Multi-core Computing 25



Data race (1)

• Data race causes bugs in programs.
• Example
– Suppose two threads execute the same statement, 

and X is 0 initially

COSC440 Multi-core Computing 26

T1 T2

X=X+1               X=X+1



Data race (2)

• In machine language, the two threads will 
execute the following instructions:

COSC440 Multi-core Computing 27

T1 T2

LOAD X, R1         LOAD X, R2
INC R1                 INC R2
STORE R1, X       STORE R2, X 



Data race (3)
• In a concurrent environment, there is no guarantee regarding in 

which order the instructions of the two threads are executed
• Suppose the instructions are executed in the following order:

COSC440 Multi-core Computing 28

T1 T2

LOAD X, R1         
LOAD X, R2
INC R2
STORE R2, X

INC R1
STORE R1, X 

R1 is 0 R2 is 0

R2 is 1

X is 1R1 is 1

X is 1

The final result 
of X is NOT what 

we expected!

T1 is suspended 
for some reason



Solution for data race

• The problem of the previous example is the violation 
of atomicity of X=X+1
– The execution should be uninterruptible by competitors.
– Atomicity means the set of operations should have all-or-

nothing feature: they should all be completed or none of 
them is done before other competing operations start.

• There are two solutions to guarantee atomicity
– Mutual exclusion (pessimistic approach)
– Transactional memory (optimistic approach)

COSC440 Multi-core Computing 29



Mutual exclusion
• Atomic variables

– Use hardware supported CAS (conpare-and-swap) instruction
• Semaphore

– An integer variable S (≥0) which is only accessed by two 
atomic operations: down (P, test and decrease) and up (V, 
increase)

– If S is 0, down has to wait.
• Mutex

– When a semaphore is initialized to 1, it is called mutex, 
which allows only one thread to get in with down at any 
time

– It is generally called lock, which is the only interesting 
application of a semaphore.

– The code section protected by mutex through down and 
up is often called critical section

COSC440 Multi-core Computing 30



Deadlock 

• When locks are nested, deadlock can happen.
– Deadlock is a situation where threads are waiting 

for locks that will never be released.

COSC440 Multi-core Computing 31

Acquire lock 1 Acquire lock 2

Acquire lock 2 Acquire lock 1

T1 T2Acquired 
lock 1

Wait for lock 2 
forever

Acquired 
lock 2

Wait for lock 1 
forever



Synchronization (1)
• Barrier is often used to synchronize threads.
– When a barrier is called in a thread, it is blocked until 

all other threads arrive at the barrier.
– Similar mechanism like join is used in Pthreads

• Barrier can be used to avoid data race as well.

COSC440 Multi-core Computing 32

Array A

Work on red part of A Work on blue part of A

barrier barrier
Work on blue part of A Work on red part of A

T1 T2



Synchronization (2)

• In message passing based programming, 
messages are used for synchronization.

COSC440 Multi-core Computing 33

Send_to(T2) Recv_from(T1)

T1 T2

Recv_from(T1)

T2 is blocked until 
the message from 

T1 arrives



Determinacy race
• Even with locks, there exists a kind of non-determinacy in 

parallel programs called determinacy race, which will cause 
the non-determinate results of parallel programs

COSC440 Multi-core Computing 34

Acquire lock 1 Acquire lock 1

X=X+100 printf(“The value of X is %d\n”, X
Release lock 1 Release lock 1

T1 T2
Suppose X=0 

initially

The printed result of X is not 
determined, depending on which 

thread acquires the lock first!



Processor optimizations
• Memory ordering is often optimized for performance 

reason
– For example, for two writes W1 and W2 from P1 can be 

seen by P1 as W1->W2, but by P2 as an order W2->W1 
(which is allowed by Partial Store Order, PSO in SPARC)

– In Intel processors, if P1 writes W1 and P2 writes W2, it is 
possible for P1 to observe W1->W2 while P2 observes W2-
>W1

• Read operations can overtake previous write 
operations waiting to be completed in the write buffer.

• These optimizations can cause problems for 
programmers assuming Sequential Consistency.

COSC440 Multi-core Computing 35



Sequential Consistency
• SC defined by Lamport in 1979

– The result of any execution is the same as if the operations 
of all processes were executed in some global sequential 
order, and the operations of each individual process 
appear in this sequence in the order specified by its own 
program

– Example 

COSC440 Multi-core Computing 36

Initially X=Y=0; P1

X = 1;
T1 = Y;

P2

Y = 2;
T2 = X;

What are the possible 
Values of T1 and T2?

T1             T2
2               1
2               0
0               1
0               0

✔

✖

✔

✔



Example 1

COSC440 Multi-core Computing 37

What value can T3 get from X?

T1

X = 1; 

Initially X=Y=0;

T2

while(X!=1) ;
Y = 1;

T3

while(Y!=1);
tmp = X;

Suppose T1, T2, and T3 run on C1, C2, and C3 respectively. 
Since the updates on X and Y can be seen by C3 as Y->X, it is 
possible for T3 to see Y:1 and execute tmp=X before X:1 arrives.

1

0?



Example 2

COSC440 Multi-core Computing 38

T1

flag1 = 1;
If(flag2 == 0)

critical section;

T2

flag2 = 1;
If(flag1 == 0)

critical section;

Initially flag1 and flag2 are set 0

However, if a read operation can overtake write operations, 
the critical section may be executed by both threads at the 
same time.

The critical section should be executed by at most one thread 
at any time.

A possible order:
T2 read flag1(0);
T1 write flag1(1);
T1 read flag2(0)
T2 write flag2 (1)



Solution--fence
• A fence instruction (called barrier in Linux) is often used to 

avoid previous problems.
• At execution time, a fence instruction guarantees 

completeness of all pre-fence memory operations and 
delays all post-fence memory operations until the 
completion of fence instruction cycles
• Fences have performance problems. Intel has multiple kinds of 

fences to relieve the problems.
• The following gives an example of fence:

COSC440 Multi-core Computing 39

T1

flag1 = 1;
fence;
If(flag2 == 0)

critical section;

T2

flag2 = 1;
fence;
If(flag1 == 0)

critical section;



Cache coherence (1)

COSC440 Multi-core Computing 40

C1 C2 C3 C4

A|old A|old A|new A|old

BUS

A|old

Cache

Core

Memory



Cache coherence (2)

• Cache coherence protocol is used to propagate a 
write to other copies

• There are two basic protocols
– Invalidate: remove old copies from other caches
– Update: update old copies in other caches to the new 

value
• A cache line is used as the basic unit to invalidate 

or update caches.
• Normally an invalidate protocol is used in 

processors

COSC440 Multi-core Computing 41



False sharing
• A false sharing occurs when two independent variables 

are located in the same cache line
– A cache line in modern processors can be up to 64 bytes or 

more
• False sharing can cause unnecessary performance loss 
• Suppose eight threads work on an array A[8] in parallel, 

which happen to be in the same cache line.

COSC440 Multi-core Computing 42

T1

A[0] = 0;

T2

A[1] = 1;

T8

A[7] = 7;
…

The performance will be the same as if these statements are 
executed serially, since each time a thread has to own the cache 
line before the write access. Even worse, each time the copies of 
the cache line in other caches are invalidated. Solution: padding!



Priority inversion (1)
• Locking can cause priority inversion in real time 

systems
– priority inversion is a situation where a low priority task 

holds a lock that is required by a high priority task, which 
causes the high priority task to be blocked until the low 
priority task has released the lock and thus invert the 
priorities of the two tasks. 

• A typical priority inversion was experienced by the 
Mars lander “Mars Pathfinder”.
– There three tasks: 

• Data gathering task (DGT): low priority, infrequent, short running;
• Bus management task (BMT): high priority, frequent;
• Communications task (CT): medium priority, infrequent, long 

running;
– GDT and BMT share an information bus and synchronized 

with a mutex.
COSC440 Multi-core Computing 43



Priority inversion (2)
• The following scenario causes frequent reset 

of the pathfinder:

COSC440 Multi-core Computing 44

Bus management task: 
blocked by the data 

gathering task which is 
holding the lock

Data gathering task: 
preempted by the 

communications task 
which is long running 

Communications task: 
enjoying the CPU cycles

Eventually a watchdog timer would go off, 
notice that the bus management task had not 
been executed for some time, conclude that 
something had gone drastically wrong, and 
initiate a total system reset.



Transactional memory
• TM is a good solution to deadlock and priority inversion, 

though it still has data race issue and livelock problem.
• The idea is to treat shared memory operations as 

transactions, which can be committed or aborted but rolled 
back for execution again.
– Operation conflicts such as W/W and R/W need to be detected 

by the conflict manager in order to commit or abort a 
transaction. 

COSC440 Multi-core Computing 45

T1

Begin_transaction;
X = 1 ;
if (Y == 0) {};
End_transaction;

T2

Begin_transaction;
Y = 1 ;
if  (X == 0) {};
End_transaction;



Livelock
• If a memory location is heavily contended, it is 

possible for transactions to abort each other, 
which causes livelock

• A livelock is a situation where transactions abort 
each other, resulting in no useful progress at all 
for any transaction.

COSC440 Multi-core Computing 46

T
1

T
2

T
1

Rollback
T
2

Abort

Abort

Rollback


