
COSC440 Lecture 6: Advanced char … 1

Overview
• This Lecture

– Advanced char driver
– Source: LDD ch6, ch9, WLDD ch21

COSC440 Lecture 6: Advanced char … 2

ioctl
• User space library

– int ioctl(int fd, unsigned long cmd, void
*argp);

• Kernel interface to device driver
– int (*ioctl) (struct inode *inode, struct file

*filp, unsigned int cmd, unsigned long arg);
– arg is either an integer or a pointer

• The function is normally implemented using
a switch statement

COSC440 Lecture 6: Advanced char … 3

ioctl commands
• ioctl commands should be unique!
• To avoid command clashes, the following rules

are recommended
– Four bit fields are used

• Type: magic number, we recommend ‘k’ (consult
Documentation/ioctl_number.txt)

• Number: command ordinal number (0-255)
• Direction: for data transfer. _IOC_NONE, _IOC_READ,

_IOC_WRITE, and _IOC_READ|_IOC_WRITE
• Size: size of user data involved. This field has 13 or 14 bits

– The macros used are
• _IO(type, nr), _IOR(type, nr, datatype), _IOW(type, nr,

datatype), _IOWR(type, nr, datatype)
• E.g #define my_cmd1 _IOW(MY_MAGIC, 1, int)

COSC440 Lecture 6: Advanced char … 4

Predefined commands
• The predefined commands are not passed to

drivers!
• They are divided into three groups:

– Those that can be issued on any file (regular, device,
FIFO, or socket)

– Those that are issued only on regular files
– Those specific to the file system type

• Device drivers are only interested in the first
group, whose magic number is ‘T’
– It is essential to never use ‘T’ as your magic number

COSC440 Lecture 6: Advanced char … 5

Predefined commands (cont.)
• The following predefined commands are

interesting to device drivers
– FIOCLEX: Set the close-on-exec flag. Setting this flag

causes the file descriptor to be closed when the calling
process executes a new program.

– FIONCLEX: Clear the close-on-exec flag
– FIOASYNC: Set or reset asynchronous notification.
– FIOQSIZE: This command returns the size of a file or

directory; when applied to a device file, however, it
yields an ENOTTY error return.

– FIONBIO: This call modifies the O_NONBLOCK flag
in filp->f_flags. The third argument to the system call is
used to indicate if the flag is to be set or cleared.

COSC440 Lecture 6: Advanced char … 6

Data transfer
• Care must be taken when transferring data

between user space and kernel space!
• copy_to_user and copy_from_user checks the

validation of user space address, but too expensive
• For ioctl, light-weight functions are used to copy

single values
– put_user(data, ptr);
– get_user(local, ptr);

• Direct validation check can be done with
– int access_ok(int type, const void *addr, unsigned

long size);
– __put_user and __get_user can be used with it.

COSC440 Lecture 6: Advanced char … 7

Capabilities
• Linux uses more capabilities rather than root and

normal user
– man capget and capset

• The capabilities interested to device drivers are
– CAP_NET_ADMIN: The ability to perform network

administration tasks.
– CAP_SYS_MODULE: The ability to load or remove

kernel modules.
– CAP_SYS_RAWIO: The ability to perform “raw” I/O

operations.
– CAP_SYS_ADMIN: A catch-all capability that

provides access to many system administration
operations.

COSC440 Lecture 6: Advanced char … 8

Capabilities (cont.)
• Capabilities are checked with the function

– int capable(int capability);
– Example

• if (! capable (CAP_SYS_ADMIN)) return -
EPERM;

• Issues with capabilities
– How to decide what operations need which

capabilities?
– How to make sure there is no security hole with

more complicated capability scheme?

COSC440 Lecture 6: Advanced char … 9

Blocking I/O
• When the O_NONBLOCK flag in filp->f_flags is

set, operations are non-blocking; otherwise they
are blocking.

• What the driver should respond if it can’t
immediately satisfy the request?
– Put the process to sleep

• A wait queue is needed to keep track of sleeping
processes
– DECLARE_WAIT_QUEUE_HEAD(name);
– wait_queue_head_t my_queue;

init_waitqueue_head(&my_queue);

COSC440 Lecture 6: Advanced char … 10

Sleep and wake-up
• The following functions put a process to sleep

– wait_event(queue, condition);
– wait_event_interruptible(queue, condition);
– wait_event_timeout(queue, condition, timeout);
– wait_event_interruptible_timeout(queue, condition,

timeout)
– Interruptible is recommended, otherwise the process

can’t be killed.
• The following functions wake up a process

– void wake_up(wait_queue_head_t *queue);
– void wake_up_interruptible(wait_queue_head_t

*queue);

COSC440 Lecture 6: Advanced char … 11

Non-blocking operations
• For blocking mode, the process waits until

some data are read or written
• For non-blocking mode, the process simply

return –EAGAIN or -EWOULDBLOCK if
there is no data read or written

COSC440 Lecture 6: Advanced char … 12

Blocking example
• How to implement a pipe with blocking

mode?

COSC440 Lecture 6: Advanced char … 13

Advanced sleep
• How to manually put a process to sleep?
• How to manipulate sleep on multiple wait

queues?

COSC440 Lecture 6: Advanced char … 14

Exclusive wait
• Thundering herds problem

– Multiple processes are waken up, but only one
process can get the resources.

• How to solve thundering herds problem?

COSC440 Lecture 6: Advanced char … 15

Seek a device
• Use llseek to change current position of the

device
– loff_t llseek(struct file *filp, loff_t off, int

whence)
– whence should be one of the following values

• 0: SEEK_SET
• 1: SEEK_CUR
• 2: SEEK_END

– filp->f_pos is changed

COSC440 Lecture 6: Advanced char … 16

Single open device
• Use a counter (set to 1) to record the

number of processes allowed to use the
device

• When a process opens the device, decreases
the counter by one.

• If there is a process already using the
device, return -EBUSY

• When a process releases the device,
increase the counter by one.

COSC440 Lecture 6: Advanced char … 17

Single user access
• How to allow only processes from a single user?

– In open function
spin_lock(&scull_u_lock);
if (scull_u_count && (scull_u_owner != current->uid) && /* allow

user */
(scull_u_owner != current->euid) && /* allow whoever did su */
!capable(CAP_DAC_OVERRIDE)) { /* still allow root */
spin_unlock(&scull_u_lock);
return -EBUSY; /* -EPERM would confuse the user */ }
if (scull_u_count == 0) scull_u_owner = current->uid; /* grab it */
scull_u_count++;
spin_unlock(&scull_u_lock);

– In release function?

COSC440 Lecture 6: Advanced char … 18

Blocking open
• How?

spin_lock(&scull_w_lock);
while (! scull_w_available()) {
spin_unlock(&scull_w_lock);
if (filp->f_flags & O_NONBLOCK) return -EAGAIN;
if (wait_event_interruptible (scull_w_wait, scull_w_available()))

return -ERESTARTSYS; /* tell the fs layer to handle it */
spin_lock(&scull_w_lock); }
if (scull_w_count == 0) scull_w_owner = current->uid; /* grab it

*/
scull_w_count++;
spin_unlock(&scull_w_lock);

• What to do at release?

COSC440 Lecture 6: Advanced char … 19

Check read/write flags
• To know if a device file is opened write

only?
– if ((filp->f_flags & O_ACCMODE) ==

O_WRONLY) {

COSC440 Lecture 6: Advanced char … 20

Clone a device
• We can clone a device at open function
• Clone the device structure for each open
• How can other functions such as read know

which device it is operating?
– Use filp->private_data to store device data

structure when open
– Get the device structure through filp when read

or write.

COSC440 Lecture 6: Advanced char … 21

Microkernel
• OS abstractions are implemented with user-

space servers
• The kernel provides minimum functions

– Address space
– Process creation
– IPC (inter-process communication)

COSC440 Lecture 6: Advanced char … 22

Why microkernel?
• Isolation (for bugs)
• Fault tolerance

– Easy to restart a faulty server
• Modular

– Understandable and replaceable
• Suitable for distributed systems

– IPC allows servers on other hosts
• Natural concurrency on multiprocessor/multicore

– Multiple independent servers
• Easy to provide scheduling, priority
• Easy to provide security

COSC440 Lecture 6: Advanced char … 23

History of microkernel
• Individual ideas around at the beginning
• Lots of research projects starting early

1980s
• Big hit with CMU's Mach in 1986
• Was too slow in early 1990s
• Now slowly returning (L4, OKL4, seL4,

QNX in embedded systems/routers, etc)
• Ideas very influential on non-microkernel

COSC440 Lecture 6: Advanced char … 24

Microkernels in practice
• Big issue: Unix compatibility

– It is critical to widespread adoption
– But Unix not designed in a modular fashion

• Mach, L4: one big Unix server
– not a big practical difference from a single

Linux kernel
– Mach in particular was quite slow, but L4

improved a lot

• KeyKOS: more interesting structure
– split up Unix into many entities

COSC440 Lecture 6: Advanced char … 25

The problem
• KeyKOS proposed to solve the access

control problem
• Traditional access control model

– A process has some privileges based on U/GID
– For each syscall, kernel checks the process’

privileges allow it

• What problem the KeyKOS authors faced?
– Fortran compiler need one more privilege to

access /sysx/stat
– Allowed write access to /sysx
– user executed "/sysx/fort code.f -o /sysx/bill"

COSC440 Lecture 6: Advanced char … 26

Whose problem?
• The problem was that the compiler was

given more privileges than necessary
– Only /sysx/stat needs to be written
– But to avoid mistakes, the compiler has to

check all places when opening files

COSC440 Lecture 6: Advanced char … 27

Proposal
• Explicitly specify privileges to use for every

operation
• Pros: easier to write secure, privileged programs

– Program will not grant its privileges to things
done on user's behalf

• Cons
– Invasive design implications
– Have to pass around capabilities instead of

user-meaningful names
– Notion of a user identity is at odds with a pure-

capability design

COSC440 Lecture 6: Advanced char … 28

Capability
• Capability (AKA key)

– Communicable, unforgeable token of authority
– A value that references an object along with an

associated set of access rights

• Capabilities used in many settings
– Hardware: Cambridge CAP system, x86

segments (in a way)
– OS kernel: Hydra, KeyKOS (and its successors)
– Distributed systems: Amoeba
– Others: Unix FDs, URLs, Java object refs

COSC440 Lecture 6: Advanced char … 29

KeyKOS
• Capability

– Used as the base access control mechanism,
more structural than Mach

• Very small kernel
– Provides a few kinds of objects to applications

• Devices - access to underlying hardware, used by
device driver processes

• Pages - 4KB of data, a page of memory
• Nodes - a block of 16 keys (key is the term for a

capability)

COSC440 Lecture 6: Advanced char … 30

KeyKOS (cont.)
– More objects provided

• Segments - a virtual address space, like a page table
or page directory. It is implemented using nodes,
mapping to page keys at the leaves. Segments can be
constructed out of other segments

• Meters - CPU time allocation (CPU-time explicitly
allocated!)

• Domains - something like a Unix process

COSC440 Lecture 6: Advanced char … 31

Domain
• Domains are the most interesting object

– 16 general-purpose key slots (similar to
capability registers). It is effectively an implicit
node object

– Address slot: key to entire virtual memory of
process

– Meter slot: key to CPU meter for process
– Keeper slot: key to another domain that will

handle exceptions

COSC440 Lecture 6: Advanced char … 32

Objects
• Objects are named by keys

– Key is a 12-byte blob, but its bytes can’t be
handled directly

– Key bytes are manipulated through explicit
operations, like FDs (open, close, dup)

– The KeyBits service returns the actual 12 bytes
behind any key given to it

– Unknown: can you supply a virtualized
KeyBits to hide the fact that other keys are
being virtualized as well?

COSC440 Lecture 6: Advanced char … 33

Kernel API
• At a low level, 3 system calls are provided

– void FORK(key k, msg m): send m to k's
domain, continue running afterwards

– msg *CALL(key k, msg m): send m to k's
domain (+ newly-formed resume key for
sender) and suspend

– msg *RETURN(key k, msg m): send m to k
(which will be returned from its CALL) and
dequeue the domains waiting for the calling
domain.

COSC440 Lecture 6: Advanced char … 34

Domain states
• Domain/process has three states

– Available, running, waiting
– State transition diagram?
– Why require receiver to be available?

• Other system calls are implemented through
messages to kernel objects (e.g. devices)

• Kernel design suggests an object-oriented
structure for applications

COSC440 Lecture 6: Advanced char … 35

Key operations
• How to give keys to others?

– Clone keys (like dup on Linux FD)

• Keys include access restrictions like RO
• IPC primitive allowed passing 4 keys

– They can refer to nodes for more keys
• Can append a byte onto a key on creation

– Useful for keeping track of the origin of the key
– Distinguish multiple callers of the same service

domain

COSC440 Lecture 6: Advanced char … 36

Object keeper
• Handle exceptions
• Segment keeper

– A domain to handle page faults
• Meter keeper

– A domain to call when CPU time expires, controls CPU
time allocation

• Domain keeper
– A domain to call for other CPU exceptions

• Faults look like a CALL from the faulting domain
to keeper
– Invoked keeper gets a "service key" to the faulting

object, to fix it up as needed

COSC440 Lecture 6: Advanced char … 37

Bank
• Bank is a domain

– Top-level bank has all nodes and pages in a
system

– Other objects (e.g. domain) are special forms of
a node

• Invoke a bank to allocate a new object
– Returns a “service key” to the object
– For domain object, with the service key, it can

populate the domain’s slots and make it running

COSC440 Lecture 6: Advanced char … 38

Persistent single-level store
• Applications have no notion of a disk, just

memory
– Kernel periodically saves complete system state

to disk
• Applications store data in memory

– Kernel saves it to disk eventually
– To access data, just access memory and the

kernel will demand the page if necessary

COSC440 Lecture 6: Advanced char … 39

Difference from Linux
• Differences of KeyKOS

– No file system root, every user has their own home directory
(names mapped to keys)

– Keys include both files and processes that can be invoked
– One user’s home dir is not namable by other users (unless granted)
– Every user has a persistent shell domain that keeps a key to the

user's home dir
– A login process keeps a password and start key for each user's

shell domain
– User types in password, login does an RPC call into user's shell,

passing in a key for user's terminal
– When invoking a command in shell, must say if argument is a

string or a capability for file of that name
– Must specify all capabilities at invocation time

COSC440 Lecture 6: Advanced char … 40

KeyNIX
• Use Unix keeper for each Unix process to

emulate Unix
– Shared state stored in explicitly shared segment

• File system
– Separate domain for each inode
– Implement Unix access control model

• Capabilities have to be implemented at all
levels

• Performance is ok, but hard to know why

COSC440 Lecture 6: Advanced char … 41

Discussion
• Comparison with other microkernels
• Comparison with exokernel
• Comparison with Unix/Linux
• Why didn’t pure-capability systems catch

on?
• How about microkernels?

