Overview

e This Lecture

— Hardware and interrupt handler

— Source: LDD ch9 & chl10, including time and
memory allocation from ch7 & ch8

COSC440 Lecture 7: Hardware ... 1

Time measurement
. jiffies

— The number of timer interrupts so far
— HZ 1s the frequency of the timer interrupt (usually 100)
— Num-of-seconds = num-of-jiffies / HZ
e Functions for comparing time
— int time_after(unsigned long a, unsigned long b);
— int time_before(unsigned long a, unsigned long b);
e (Caveat: integer wraps around!
e For 64 bit jiffies, use u64 get_jiffies_64(void);

e If you need high precision time, use processor
specific registers, €.g. counter of CPU clock cycles

COSC440 Lecture 7: Hardware ... 2

Other time functions

— int time_after_eqg(unsigned long a, unsigned long
b);

— int time_before_eq(unsigned long a, unsigned
long b);

— unsigned long timespec_to_jiffies(struct timespec
*value);

— void jiffies_to_timespec(unsigned long jiffies,
struct timespec *value);

— unsigned long timeval_to_jiffies(struct timeval
*value);

— void jiffies_to_timeval(unsigned long jiffies, struct
timeval *value);

— void do_gettimeofday(struct timeval *tv);
[familiar?:-)

COSC440 Lecture 7: Hardware ... 3

Delaying execution

* Device drivers need to delay execution while
waiting for device being ready
* Busy waiting (not recommended)
— while (time_before(jiffies, j1)) cpu_relax();
* Yielding the CPU
— while (time_before(jiffies, j1)) { schedule(); }
e Timeout
wait_queue_head_t walit;
init_waitqueue_head (&wait);
wait_event_interruptible_timeout(wait, O, delay);

COSC440 Lecture 7: Hardware ... 4

Delaying execution (cont.)

e Use scheduler timeout
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout (delay);

e For short delays, the following functions can be
used
void ndelay(unsigned long nsecs);
void udelay(unsigned long usecs);
void mdelay(unsigned long msecs);
void msleep(unsigned int millisecs);

unsigned long msleep_interruptible(unsigned int
millisecs);

void ssleep(unsigned int seconds)
COSC440 Lecture 7: Hardware ... 5

Kernel timers

e Use kernel timers to schedule a parallel thread at
some future time, without blocking the current
thread

— A kernel timer 1s a data structure that instructs the
kernel to execute a programmer-defined function with a
programmer-defined argument at a programmer-
defined time.

— The programmer-defined function must be atomic
* No user space to access
e No scheduling or sleeping
— Use the following functions to test if your function can
sleep or not

* in_interrupt(): returns nonzero if in interrupt context
* in_atomic(): return nonzero if scheduling is not allowed
COSC440 Lecture 7: Hardware ... 6

Timer API

#include <linux/timer.h>

struct timer_list { [*...%
unsigned long expires;

void (*function)(unsigned long);
unsigned long data; };

void init_timer(struct timer_list *timer);

struct timer_list TIMER_INITIALIZER(_function,
_expires, _data);

void add_timer_on(struct timer_list * timer, int cpu);

int del_timer(struct timer_list * timer);

int mod_timer(struct timer_list *timer, unsigned long
expires);

COSC440 Lecture 7: Hardware ... 7

Timer implementations

* Requirements
— Timer management must be as lightweight as possible.

— The design should scale well as the number of active
timers increases.

— Most timers expire within a few seconds or minutes at
most, while timers with long delays are pretty rare.

— A timer should run on the same CPU that registered it.

e Refer to ch7 of LDD for details.

COSC440 Lecture 7: Hardware ... 8

Tasklet

e Tasklet

— A tasklet 1s like kernel timer. It 1s executed as a soft
interrupt and on the same CPU on which it 1s scheduled

— Used for non-crucial operations for interrupt handling

e Related data structure and macros
— #include <linux/interrupt.h>
— struct tasklet_struct { [... "
— void (*func)(unsigned long);
— unsigned long data; };

— void tasklet_init(struct tasklet_struct *t, void
(*func)(unsigned long), unsigned long data);

— DECLARE_TASKLET(name, func, data);
COSC440 Lecture 7: Hardware ... 9

Tasklet features

e Tasklet has the following features

— Disabled and re-enabled later;

— Like timers, a tasklet can reregister itself.

— Normal priority or high priority.

— Tasklets may be run immediately if the system 1s not
under heavy load but never later than the next timer tick
(7).

— A tasklet can be concurrent with other tasklets but 1s
strictly serialized with respect to itself, 1.e. the same
tasklet never runs simultaneously on more than one

processor. Also, a tasklet always runs on the same CPU
that schedules it.

COSC440 Lecture 7: Hardware ... 10

Tasklet functions

— void tasklet_disable(struct tasklet_struct *t);

— void tasklet_disable_nosync(struct tasklet_struct
ik

— void tasklet_enable(struct tasklet_struct *t);

— void tasklet_schedule(struct tasklet_struct *t);

— void tasklet_hi_schedule(struct tasklet_struct *t);

— void tasklet_Kill(struct tasklet_struct *t);

COSC440 Lecture 7: Hardware ... 11

Work queues

e Similar to tasklets, but

— Run 1n the context of special kernel process,
and thus can sleep.

— Can be delayed at a specified time

e Shared workqueue
— The default queue provided by the system

— Cannot sleep for a long time; otherwise it may
affect other queue users.

COSC440 Lecture 7: Hardware ... 12

Memory allocation

e The most convenient function
#include <linux/slab.h>
void *kmalloc(size_t size, int flags);
* Flags are worth paying attention
— GFP_ATOMIC: no sleep

— GFP_KERNEL: normal, may sleep
— GFP_USER: memory for user space, may sleep

e Memory zones: normal, DMA, high-mem
— Flags: _ GFP_DMA, __ GFP_HIGHMEM

* Smallest allocated size: 32 or 64 bytes

COSC440 Lecture 7: Hardware ... 13

[.ookaside caches

e A facility to create a pool of memory blocks with
the same size

e This helps with optimal use of memory when the
same data structure 1s used repeatedly in the
kernel, e.g. skb for networking

e Check the details at LDD ch8. They are very
useful when a serious device driver 1s written

* You may reserve a large block of memory for use
of critical situations

— Memory pool is another option

COSC440 Lecture 7: Hardware ... 14

Handling free pages

— get_zeroed_page(unsigned int flags);
— __get_free_page(unsigned int flags);

— __get_free_pages(unsigned int flags, unsigned int
order);

— void free_page(unsigned long addr);

— void free_pages(unsigned long addr, unsigned
long order);

— struct page alloc_page(unsigned int flags);

e Previous functions return physically contiguous
pages

e Occasionally you may use vmalloc, which may

return non-continuous pages, but 1s not
recommended for device drivers

COSC440 Lecture 7: Hardware ... 15

Per-CPU variables

e A feature in 2.6 kernel

e A variable is defined once, but has a copy for each
CPU

e Important for SMP or CMT machines

 When the variable 1s modified, only the local copy
1s modified.

e There is no need of locking when modifying the
variable (high performance)

e The total value of the variable 1s the sum of all
local copies of the CPUs, of course:)

COSC440 Lecture 7: Hardware ... 16

I/O ports and I/O memory

* Devices have registers which are mapped to I/0
address space (I/O ports) or the memory address
space (I/0 memory)

e The main difference between I/O memory and
conventional memory

— Side effect on I/O memory

— Can’t get optimized as RAM, such as cache and
reordering (no cache used for I/O memory)

* To counter against compiler optimization, memory
barriers are used

— void barrier(void); void rmb(void); void wmb(void);
void mb(void);
COSC440 Lecture 7: Hardware ... 17

I/O ports

e [/O port allocation

— #include <linux/ioport.h>

— struct resource *request_region(unsigned long
first, unsigned long n, const char *name);

— void release_region(unsigned long start, unsigned
long n);
— int check_region(unsigned long first, unsigned
long n);
 Manipulating I/O ports
— unsigned inb(unsigned port);
— void outb(unsigned char byte, unsigned port);

COSC440 Lecture 7: Hardware ... 18

I/O ports (cont.)

 Manipulating I/O ports
— unsigned inw(unsigned port);
— void outw(unsigned short word, unsigned port);
— unsigned inl(unsigned port);
— void outl(unsigned longword, unsigned port);
e [/O port access from user space
— Use ioperm or iopl to get permission
* String operations
— Can read/write repeatedly
— E.g. void insb(unsigned port, void *addr, unsigned
long count);

* You may need to pause when doing I/0
COSC440 Lecture 7: Hardware ... 19

Parallel port

7 6543210

Control port: base_addr + 2

irg enable — "

76543210 >
Status port:base_addr + 1 101121131151 []] o
7 6
Data port:base_addr+ 0 |9|3|7l6|5|4|312|
- 1 4
L >
,>/ 111
L NN
({3] Dl/ NN =
Input line > : : : :
— . '\ —
Output line 1 T | | j
Bit# 15 -
/‘ . |
non/nverted P —
inverted N 13 25

Figure 9-1. The pinout of the parallel port
COSC440 Lecture 7: Hardware ... 20

Parallel port

* Base address
— 0x378 for the first parallel port, 0x278 for the second

e Port0O

— Bidirectional data register

 Port 1
— Read-only status register

— Bit 7 (0x80) can be used by the device to trigger
interrupt when 1ts value 1s changed from O to 1

e Port?2

— Write-only control register
— Bit 4 (0x10) 1s used to enable interrupt

COSC440 Lecture 7: Hardware ... 21

GPIO

e A programmable circuit

* Behavior can be defined by user
— E.g. input or output, enable/disable, high/low
e Use by System-on-Chip, embedded
applications for reading various sensors
e Our second assignment uses 10 GPIO pins

— Five pairs, four pairs used for data transmission
and one pair used for IRQ

— You should read half byte at every interrupt
COSC440 Lecture 7: Hardware ... 22

RPI GPIO pms

BN A%l el RN N

Revision 2
Pinout

http://www.pinballsp.com

e I~ e X e f e

C N~ L R

l N om

N, mmmmm o

. =1 Q0 v »
- '”“ 122e81) ! -t .’J .'_; .
5 .

>~ '

X ...OE ‘\J |l1.‘::

—-r‘—- —h—

[“:
| r

"
a‘:.

. e
..................

Ground

COSC440 Lecture 7: Hardware ... 23

Using I/0 memory

* [/O memory allocation (physical)

— struct resource *request_mem_region (unsigned
long start, unsigned long len, char *name);

— void release_mem_region(unsigned long start,
unsigned long len);

— int check_mem_region(unsigned long start,
unsigned long len);

 Mapping to virtual address (linear address)

— #include <asm/io.h>

— void *ioremap(unsigned long phys_addr, unsigned
long size);

— void iounmap(void * addr);

COSC440 Lecture 7: Hardware ... 24

Using I/O memory (cont.)

e Accessing I/O memory
— unsigned int ioread8(void *addr);
— unsigned int ioread16(void *addr);
— unsigned int ioread32(void *addr);
— void iowrite8(u8 value, void *addr);
— void iowrite16(u16 value, void *addr);
— void iowrite32(u32 value, void *addr);

— void ioread8_rep(void *addr, void *buf, unsigned
long count);

— void ioread16_rep(void *addr, void *buf, unsigned
long count);

COSC440 Lecture 7: Hardware ... 25

Interrupt handling

e Install an interrupt handler
— int request_irg(unsigned int irq,
irgreturn_t (*handler)(int, void *, struct pt_regs *),
unsigned long flags, const char *dev_name, void
*dev_id);
— void free_irg(unsigned int irq, void *dev_.id);
e Flags
— SA_INTERRUPT, SA_SHIRQ,
SA_SAMPLE_RANDOM
e Example

— result = request_irg(short_irq, short_interrupt,
SA_INTERRUPT, "short", NULL);

COSC440 Lecture 7: Hardware ... 26

Autodetecting IRQ number

* Based on knowledge of devices

* Kernel assisted probing
— unsigned long probe_irg_on(void);
— int probe_irqg_off(unsigned long);

* Do it yourselt (DIY)

— Install a handler for all possible irq numbers and check
which one respond when interrupt occurs

 Dynamically config

e Interesting proc directories
— /proc/interrupts; /proc/iomem; /proc/stat;

COSC440 Lecture 7: Hardware ... 27

Write a handler

e Remember a handler 1s 1n the context of hard
interrupt

e Args for interrupt handler
— irgreturn_t short_interrupt(int irg, void *dev_id,
struct pt_regs *regs)
— IRQ number
— Device data (for shared IRQ)

— Saved register values when interrupt occurs (may not
need them, architecture dependent)

e Return value
_ IRQ_HANDLED or IRQ_NONE

COSC440 Lecture 7: Hardware ... 28

Disable interrupts

e Functions are provided to enable and
disable a particular interrupt

— void disable_irg(int irq);
— void disable_irg_nosync(int irq);
— void enable_irq(int irq);
 But when do we need to disable interrupts?

COSC440 Lecture 7: Hardware ... 29

20 programming assignment

Install an interrupt handler for the dummy port
device using GPIO pins

The handler should assemble two half-bytes from
the port into one byte and write to a circular buffer
and then wake up a sleeping tasklet.

The tasklet should copy the data from the circular
buffer to an infinite buffer

A reader continuously fetches the data from the
infinite buffer; if the buffer i1s empty, it sleeps.

The current IRQ 1s blocked 1n the handler.

COSC440 Lecture 7: Hardware ... 30

Microkernel

e Minimize the kernel

— Implement outside the kernel whatever possible

* Pros
— More modular system structure

— Servers run at user level so malfunction 1s
1solated as other user processes

— Flexible and tailorable

e Different policies and APIs can be implemented by
different servers that coexist.

e Cons: lack of efficiency due to frequent IPC

and context switches
COSC440 Lecture 7: Hardware ... 31

L4 1deology

* Principle

— A concept 1s tolerated inside the kernel only 1f
moving it outside the kernel would prevent the
implementation of the system’s required
functionality

e Assumptions

— Support interactive and not completely
trustworthy applications

— Page-based virtual memory

COSC440 Lecture 7: Hardware ... 32

L4 1deology (cont.)

e Requirements

— Principle of independence: a programmer must
be able to implement an arbitrary subsystem S
in such a way that it cannot be disturbed or
corrupted by other subsystem S’

* S can give guarantees independent of S’
— Principle of integrity: other subsystems must be
able to rely on the guarantees of a subsystem

e There must be a way for S1 to address S2 and to
establish a communication channel which can
neither be corrupted nor eavesdropped by S’

COSC440 Lecture 7: Hardware ... 33

Example

e Use a key server as an example

* A key server can only be realized with
mechanisms that

— Protect its code and data
— Ensure nobody else reads or modifies the key

— Enable the demander to check weather the key
comes from the key server

e Finding the key server can be done by a name server
and public key based authentication

COSC440 Lecture 7: Hardware ... 34

Address space

A mapping between virtual pages with
physical pages

Support recursive construction of address
spaces outside the kernel

By magic, there 1s the initial address space
0, which maps all physical pages and 1s
controlled by the first subsystem S,
Initially all other address spaces are empty

COSC440 Lecture 7: Hardware ... 35

Address space (cont.)

e For constructing and maintaining further
address spaces on top of 0y, L4 provides the
following three operations:

— Grant

e Grant a page to another space and the granted page
1s removed from the granter’s space

— Map

e Similar to grant but the mapper keeps the page in its
space

— Flush

e Remove a page from other spaces that receives the

page from the flusher
COSC440 Lecture 7: Hardware ... 36

Address space (cont.)

user A

wlt

user X

F
%p
f1 2
map
std pager
(3
COSC440 Lecture 7: Hardware ... 37

Threads

e A thread 1s an activity excuting inside an
address space

It is characterized by a set of registers
— 1nstruction pointer, stack pointer and state info
— Address space it 1s executing on

e Threads are included 1n the kernel due to its
tight association with address spaces

* All changes to thread’s address space must
be controlled by the kernel

COSC440 Lecture 7: Hardware ... 38

IPC

* Cross-address-space communication (IPC) must
be supported by the kernel

— The classical method is transferring messages between
threads by the kernel
e [PC protocol

— The sender decides to send information and determines
1ts content

— The receiver determines if it 1s willing to receive
information and is free to interpret the received
message

COSC440 Lecture 7: Hardware ... 39

IPC (cont.)

e IPC 1s not only the basic concept for comm.
between subsystems, but also, with address
spaces, the foundation of independence.

e Interrupts

— The natural abstraction of hardware interrupts
1s the IPC message

— The hardware 1s regarded as a set of threads
which have special IDs and send empty
messages to corresponding software threads

e Unique Identifiers
COSC440 Lecture 7: Hardware ... 40

User space servers

* Memory manager

* Pager

e Multimedia resource allocation
e Device driver

e Second level cache and TLB

e Remote communication

e Unix server

COSC440 Lecture 7: Hardware ... 41

Performance

e Switching overhead
e IPC overhead
e Non-portability

COSC440 Lecture 7: Hardware ... 42

