
COSC440 Lecture 7: Hardware … 1

Overview
• This Lecture

– Hardware and interrupt handler
– Source: LDD ch9 & ch10, including time and

memory allocation from ch7 & ch8

COSC440 Lecture 7: Hardware … 2

Time measurement
• jiffies

– The number of timer interrupts so far
– HZ is the frequency of the timer interrupt (usually 100)
– Num-of-seconds = num-of-jiffies / HZ

• Functions for comparing time
– int time_after(unsigned long a, unsigned long b);
– int time_before(unsigned long a, unsigned long b);

• Caveat: integer wraps around!
• For 64 bit jiffies, use u64 get_jiffies_64(void);
• If you need high precision time, use processor

specific registers, e.g. counter of CPU clock cycles

COSC440 Lecture 7: Hardware … 3

Other time functions
– int time_after_eq(unsigned long a, unsigned long

b);
– int time_before_eq(unsigned long a, unsigned

long b);
– unsigned long timespec_to_jiffies(struct timespec

*value);
– void jiffies_to_timespec(unsigned long jiffies,

struct timespec *value);
– unsigned long timeval_to_jiffies(struct timeval

*value);
– void jiffies_to_timeval(unsigned long jiffies, struct

timeval *value);
– void do_gettimeofday(struct timeval *tv);

//familiar?:-)

COSC440 Lecture 7: Hardware … 4

Delaying execution
• Device drivers need to delay execution while

waiting for device being ready
• Busy waiting (not recommended)

– while (time_before(jiffies, j1)) cpu_relax();
• Yielding the CPU

– while (time_before(jiffies, j1)) { schedule(); }
• Timeout

wait_queue_head_t wait;
init_waitqueue_head (&wait);
wait_event_interruptible_timeout(wait, 0, delay);

COSC440 Lecture 7: Hardware … 5

Delaying execution (cont.)
• Use scheduler timeout

set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout (delay);

• For short delays, the following functions can be
used
void ndelay(unsigned long nsecs);
void udelay(unsigned long usecs);
void mdelay(unsigned long msecs);
void msleep(unsigned int millisecs);
unsigned long msleep_interruptible(unsigned int

millisecs);
void ssleep(unsigned int seconds)

COSC440 Lecture 7: Hardware … 6

Kernel timers
• Use kernel timers to schedule a parallel thread at

some future time, without blocking the current
thread
– A kernel timer is a data structure that instructs the

kernel to execute a programmer-defined function with a
programmer-defined argument at a programmer-
defined time.

– The programmer-defined function must be atomic
• No user space to access
• No scheduling or sleeping

– Use the following functions to test if your function can
sleep or not

• in_interrupt(): returns nonzero if in interrupt context
• in_atomic(): return nonzero if scheduling is not allowed

COSC440 Lecture 7: Hardware … 7

Timer API
#include <linux/timer.h>
struct timer_list { /* ... */
unsigned long expires;
void (*function)(unsigned long);
unsigned long data; };
void init_timer(struct timer_list *timer);
struct timer_list TIMER_INITIALIZER(_function,

_expires, _data);
void add_timer_on(struct timer_list * timer, int cpu);
int del_timer(struct timer_list * timer);
int mod_timer(struct timer_list *timer, unsigned long

expires);

COSC440 Lecture 7: Hardware … 8

Timer implementations
• Requirements

– Timer management must be as lightweight as possible.
– The design should scale well as the number of active

timers increases.
– Most timers expire within a few seconds or minutes at

most, while timers with long delays are pretty rare.
– A timer should run on the same CPU that registered it.

• Refer to ch7 of LDD for details.

COSC440 Lecture 7: Hardware … 9

Tasklet
• Tasklet

– A tasklet is like kernel timer. It is executed as a soft
interrupt and on the same CPU on which it is scheduled

– Used for non-crucial operations for interrupt handling
• Related data structure and macros

– #include <linux/interrupt.h>
– struct tasklet_struct { /* ... */
– void (*func)(unsigned long);
– unsigned long data; };
– void tasklet_init(struct tasklet_struct *t, void

(*func)(unsigned long), unsigned long data);
– DECLARE_TASKLET(name, func, data);

COSC440 Lecture 7: Hardware … 10

Tasklet features
• Tasklet has the following features

– Disabled and re-enabled later;
– Like timers, a tasklet can reregister itself.
– Normal priority or high priority.
– Tasklets may be run immediately if the system is not

under heavy load but never later than the next timer tick
(?).

– A tasklet can be concurrent with other tasklets but is
strictly serialized with respect to itself, i.e. the same
tasklet never runs simultaneously on more than one
processor. Also, a tasklet always runs on the same CPU
that schedules it.

COSC440 Lecture 7: Hardware … 11

Tasklet functions
– void tasklet_disable(struct tasklet_struct *t);
– void tasklet_disable_nosync(struct tasklet_struct

*t);
– void tasklet_enable(struct tasklet_struct *t);
– void tasklet_schedule(struct tasklet_struct *t);
– void tasklet_hi_schedule(struct tasklet_struct *t);
– void tasklet_kill(struct tasklet_struct *t);

COSC440 Lecture 7: Hardware … 12

Work queues
• Similar to tasklets, but

– Run in the context of special kernel process,
and thus can sleep.

– Can be delayed at a specified time

• Shared workqueue
– The default queue provided by the system
– Cannot sleep for a long time; otherwise it may

affect other queue users.

COSC440 Lecture 7: Hardware … 13

Memory allocation
• The most convenient function

#include <linux/slab.h>
void *kmalloc(size_t size, int flags);

• Flags are worth paying attention
– GFP_ATOMIC: no sleep
– GFP_KERNEL: normal, may sleep
– GFP_USER: memory for user space, may sleep
– …

• Memory zones: normal, DMA, high-mem
– Flags: __GFP_DMA, __GFP_HIGHMEM

• Smallest allocated size: 32 or 64 bytes

COSC440 Lecture 7: Hardware … 14

Lookaside caches
• A facility to create a pool of memory blocks with

the same size
• This helps with optimal use of memory when the

same data structure is used repeatedly in the
kernel, e.g. skb for networking

• Check the details at LDD ch8. They are very
useful when a serious device driver is written

• You may reserve a large block of memory for use
of critical situations
– Memory pool is another option

COSC440 Lecture 7: Hardware … 15

Handling free pages
– get_zeroed_page(unsigned int flags);
– __get_free_page(unsigned int flags);
– __get_free_pages(unsigned int flags, unsigned int

order);
– void free_page(unsigned long addr);
– void free_pages(unsigned long addr, unsigned

long order);
– struct page alloc_page(unsigned int flags);

• Previous functions return physically contiguous
pages

• Occasionally you may use vmalloc, which may
return non-continuous pages, but is not
recommended for device drivers

COSC440 Lecture 7: Hardware … 16

Per-CPU variables
• A feature in 2.6 kernel
• A variable is defined once, but has a copy for each

CPU
• Important for SMP or CMT machines
• When the variable is modified, only the local copy

is modified.
• There is no need of locking when modifying the

variable (high performance)
• The total value of the variable is the sum of all

local copies of the CPUs, of course:)

COSC440 Lecture 7: Hardware … 17

I/O ports and I/O memory
• Devices have registers which are mapped to I/O

address space (I/O ports) or the memory address
space (I/O memory)

• The main difference between I/O memory and
conventional memory
– Side effect on I/O memory
– Can’t get optimized as RAM, such as cache and

reordering (no cache used for I/O memory)
• To counter against compiler optimization, memory

barriers are used
– void barrier(void); void rmb(void); void wmb(void);

void mb(void);

COSC440 Lecture 7: Hardware … 18

I/O ports
• I/O port allocation

– #include <linux/ioport.h>
– struct resource *request_region(unsigned long

first, unsigned long n, const char *name);
– void release_region(unsigned long start, unsigned

long n);
– int check_region(unsigned long first, unsigned

long n);
• Manipulating I/O ports

– unsigned inb(unsigned port);
– void outb(unsigned char byte, unsigned port);

COSC440 Lecture 7: Hardware … 19

I/O ports (cont.)
• Manipulating I/O ports

– unsigned inw(unsigned port);
– void outw(unsigned short word, unsigned port);
– unsigned inl(unsigned port);
– void outl(unsigned longword, unsigned port);

• I/O port access from user space
– Use ioperm or iopl to get permission

• String operations
– Can read/write repeatedly
– E.g. void insb(unsigned port, void *addr, unsigned

long count);
• You may need to pause when doing I/O

COSC440 Lecture 7: Hardware … 20

Parallel port

COSC440 Lecture 7: Hardware … 21

Parallel port
• Base address

– 0x378 for the first parallel port, 0x278 for the second
• Port 0

– Bidirectional data register
• Port 1

– Read-only status register
– Bit 7 (0x80) can be used by the device to trigger

interrupt when its value is changed from 0 to 1
• Port 2

– Write-only control register
– Bit 4 (0x10) is used to enable interrupt

COSC440 Lecture 7: Hardware … 22

GPIO
• A programmable circuit
• Behavior can be defined by user

– E.g. input or output, enable/disable, high/low
• Use by System-on-Chip, embedded

applications for reading various sensors
• Our second assignment uses 10 GPIO pins

– Five pairs, four pairs used for data transmission
and one pair used for IRQ

– You should read half byte at every interrupt

COSC440 Lecture 7: Hardware … 23

RPI GPIO pins

COSC440 Lecture 7: Hardware … 24

Using I/O memory
• I/O memory allocation (physical)

– struct resource *request_mem_region (unsigned
long start, unsigned long len, char *name);

– void release_mem_region(unsigned long start,
unsigned long len);

– int check_mem_region(unsigned long start,
unsigned long len);

• Mapping to virtual address (linear address)
– #include <asm/io.h>
– void *ioremap(unsigned long phys_addr, unsigned

long size);
– void iounmap(void * addr);

COSC440 Lecture 7: Hardware … 25

Using I/O memory (cont.)
• Accessing I/O memory

– unsigned int ioread8(void *addr);
– unsigned int ioread16(void *addr);
– unsigned int ioread32(void *addr);
– void iowrite8(u8 value, void *addr);
– void iowrite16(u16 value, void *addr);
– void iowrite32(u32 value, void *addr);
– void ioread8_rep(void *addr, void *buf, unsigned

long count);
– void ioread16_rep(void *addr, void *buf, unsigned

long count);
– …

COSC440 Lecture 7: Hardware … 26

Interrupt handling
• Install an interrupt handler

– int request_irq(unsigned int irq,
irqreturn_t (*handler)(int, void *, struct pt_regs *),
unsigned long flags, const char *dev_name, void
*dev_id);

– void free_irq(unsigned int irq, void *dev_id);
• Flags

– SA_INTERRUPT, SA_SHIRQ,
SA_SAMPLE_RANDOM

• Example
– result = request_irq(short_irq, short_interrupt,

SA_INTERRUPT, "short", NULL);

COSC440 Lecture 7: Hardware … 27

Autodetecting IRQ number
• Based on knowledge of devices
• Kernel assisted probing

– unsigned long probe_irq_on(void);
– int probe_irq_off(unsigned long);

• Do it yourself (DIY)
– Install a handler for all possible irq numbers and check

which one respond when interrupt occurs
• Dynamically config
• Interesting proc directories

– /proc/interrupts; /proc/iomem; /proc/stat;

COSC440 Lecture 7: Hardware … 28

Write a handler
• Remember a handler is in the context of hard

interrupt
• Args for interrupt handler

– irqreturn_t short_interrupt(int irq, void *dev_id,
struct pt_regs *regs)

– IRQ number
– Device data (for shared IRQ)
– Saved register values when interrupt occurs (may not

need them, architecture dependent)
• Return value

– IRQ_HANDLED or IRQ_NONE

COSC440 Lecture 7: Hardware … 29

Disable interrupts
• Functions are provided to enable and

disable a particular interrupt
– void disable_irq(int irq);
– void disable_irq_nosync(int irq);
– void enable_irq(int irq);

• But when do we need to disable interrupts?

COSC440 Lecture 7: Hardware … 30

2nd programming assignment
• Install an interrupt handler for the dummy port

device using GPIO pins
• The handler should assemble two half-bytes from

the port into one byte and write to a circular buffer
and then wake up a sleeping tasklet.

• The tasklet should copy the data from the circular
buffer to an infinite buffer

• A reader continuously fetches the data from the
infinite buffer; if the buffer is empty, it sleeps.

• The current IRQ is blocked in the handler.

COSC440 Lecture 7: Hardware … 31

Microkernel
• Minimize the kernel

– Implement outside the kernel whatever possible

• Pros
– More modular system structure
– Servers run at user level so malfunction is

isolated as other user processes
– Flexible and tailorable

• Different policies and APIs can be implemented by
different servers that coexist.

• Cons: lack of efficiency due to frequent IPC
and context switches

COSC440 Lecture 7: Hardware … 32

L4 ideology
• Principle

– A concept is tolerated inside the kernel only if
moving it outside the kernel would prevent the
implementation of the system’s required
functionality

• Assumptions
– Support interactive and not completely

trustworthy applications
– Page-based virtual memory

COSC440 Lecture 7: Hardware … 33

L4 ideology (cont.)
• Requirements

– Principle of independence: a programmer must
be able to implement an arbitrary subsystem S
in such a way that it cannot be disturbed or
corrupted by other subsystem S’

• S can give guarantees independent of S’

– Principle of integrity: other subsystems must be
able to rely on the guarantees of a subsystem

• There must be a way for S1 to address S2 and to
establish a communication channel which can
neither be corrupted nor eavesdropped by S’

COSC440 Lecture 7: Hardware … 34

Example
• Use a key server as an example
• A key server can only be realized with

mechanisms that
– Protect its code and data
– Ensure nobody else reads or modifies the key
– Enable the demander to check weather the key

comes from the key server
• Finding the key server can be done by a name server

and public key based authentication

COSC440 Lecture 7: Hardware … 35

Address space
• A mapping between virtual pages with

physical pages
• Support recursive construction of address

spaces outside the kernel
• By magic, there is the initial address space
σ0 which maps all physical pages and is
controlled by the first subsystem S0

• Initially all other address spaces are empty

COSC440 Lecture 7: Hardware … 36

Address space (cont.)
• For constructing and maintaining further

address spaces on top of σ0, L4 provides the
following three operations:
– Grant

• Grant a page to another space and the granted page
is removed from the granter’s space

– Map
• Similar to grant but the mapper keeps the page in its

space
– Flush

• Remove a page from other spaces that receives the
page from the flusher

COSC440 Lecture 7: Hardware … 37

Address space (cont.)
user A user X

grant

map

std pager

map

disk

F

f1 f2

COSC440 Lecture 7: Hardware … 38

Threads
• A thread is an activity excuting inside an

address space
• It is characterized by a set of registers

– instruction pointer, stack pointer and state info
– Address space it is executing on

• Threads are included in the kernel due to its
tight association with address spaces

• All changes to thread’s address space must
be controlled by the kernel

COSC440 Lecture 7: Hardware … 39

IPC
• Cross-address-space communication (IPC) must

be supported by the kernel
– The classical method is transferring messages between

threads by the kernel

• IPC protocol
– The sender decides to send information and determines

its content
– The receiver determines if it is willing to receive

information and is free to interpret the received
message

COSC440 Lecture 7: Hardware … 40

IPC (cont.)
• IPC is not only the basic concept for comm.

between subsystems, but also, with address
spaces, the foundation of independence.

• Interrupts
– The natural abstraction of hardware interrupts

is the IPC message
– The hardware is regarded as a set of threads

which have special IDs and send empty
messages to corresponding software threads

• Unique Identifiers

COSC440 Lecture 7: Hardware … 41

User space servers
• Memory manager
• Pager
• Multimedia resource allocation
• Device driver
• Second level cache and TLB
• Remote communication
• Unix server

COSC440 Lecture 7: Hardware … 42

Performance
• Switching overhead
• IPC overhead
• Non-portability

