Overview

e This Lecture
— Distributed FS and Distributed OS

— Source: Fault tolerance under Unix

COSC440 Lecture 9: Distributed OS 1

GES (Google FS)

Application

(file name, chunk index)

GFS master

GFS client

(chunk handle,
chunk locations)

(chunk handle, byte range)

1
§
/

- /foo/bar

File namespace ,’

chunk 2ef0

Y

Instructions to chunkserver

Chunkserver state

Y

- GFS chunkserver

chunk data

Legend:
mmmd Data messages

—_—

GFS chunkserver

Linux file system

Linux file system

B9 .

COSC440 Lecture 9: Distributed OS 2

B9

Control messages

Hadoop DFS

: Distributed J.-
HDFS FileSystem
dient ‘

client node

_ FSData
‘ InputStream
client JYM :

datanode

2: get block locations

datanode

NameNode

DataNode

datanode

MapReduce

: HDFS
. replication

. replication

COSC440 Lecture 9: Distributed OS 4

Background

e Fault tolerance with multiple machines 1n a
distributed environment

e Uses IPC and virtual memory to help achieve fault
tolerance

* Intended applications

— Large multi-user applications such as airline reservation
and bank transactions

— Lots of interactive processes using FS
— Need more power from multiple machines

— Need more fault tolerance to against HW crashes

e In 1980s, it was unheard of for computers to stay up for years
COSC440 Lecture 9: Distributed OS 5

Vector time

e Used in distributed systems for causal
ordering

e Use a vector to represent the local time of
each node 1n a distributed system.

 Comparing the vector time allows us to
know which events are ordered and which
events are concurrent.

COSC440 Lecture 9: Distributed OS 6

Vector Time

[2, 0, 0] [3, 0, 0] [4, 4, 1] [5, 4, 1]
P1 {) @ @-
[1, 0, 0]
[2, 0, O]
[2,3, 1]
P2 o ® @
[0, 1, 0] [2, 2, 0] [2. 4, 1] [2, 5, 1]
[0, O, 1]

P3 @ @

[0, 0, 1] [0, 0, 2]
TIME
@ =EVENT EXECUTING RULE 1

Q = EVENT EXECUTING RULE 2

COSC440 Lecture 9: Distributed OS 7

General approach

 Up to 16 machines
— Each with CPU, memory, some with disk

e A broadcast bus connects all machines
— Maybe very fast and uses dedicated HW

* ES resides on a “root” machine (pair)

* There are multiple server processes

— Process server where global state such as a list of
processes 1s kept, residing on the “root”

— File server for all file accesses, residing on “root”
— Page server manages virtual memory backing store

— TTY server, raw server

COSC440 Lecture 9: Distributed OS 8

General approach (cont.)

 JPC over bus 1s used to communicate with servers
and processes on other machines
— E.g. pipe(), fork(), wexec()
— Fork() require IPC to notify the process server

e Each machine runs a Unix-derived kernel

— local Unix kernel creates processes, memory, local
scheduling, with three processors.

— Library turns many system calls into IPC

e There is no shared memory among machines
— The paper’s system is an unusual piece of HW

— Today we have multicore/SMP with shared memory
and LAN with message passing
COSC440 Lecture 9: Distributed OS 9

Fault tolerance problem
* The problem faced by the paper

— Not particularly mentioned
— Obviously each machine HW 1s not reliable

— HW 1s designed so that each machine fails
independently (unlike SMP)

— SW faults are not the target
* Hard part of the problem

— Parts of the system can fail (one machine or bus
or disk)

— It 1s much harder to deal with partial failure

than whole failure
COSC440 Lecture 9: Distributed OS 10

The goals of the paper

e Survive any single hardware failure

— HW has at least two of everything
interchangeable

— Two of every process

 Harness CPUs to increase performance as
well as fault tolerance

e Can run ordinary existing Unix applications
e Look like a single large Unix machine

e Fault tolerance and recovery are transparent

to applications
COSC440 Lecture 9: Distributed OS 11

Outline of the design

 Have a second copy of each process
— A “backup” on a different machine

— Record 1nfo about the state of the primary
process for backup to use

— If the primary’s machine crashes, use recorded
primary state to make backup equivalent to
primary. Then run the backup as the primary

— When the primary is fixed and restarts, make it
backup. Maybe it becomes primary later

COSC440 Lecture 9: Distributed OS 12

Challenges

 How to start backup with state equivalent to
the primary’s last state?

 How to avoid inconsistency during
changeover?’

 How to do 1t all efficiently?
 How to keep 1t all invisible to applications?

COSC440 Lecture 9: Distributed OS 13

Techniques
e Checkpointing (“sync™)
— Sync primary process’ memory periodically

e History recording

— Record all primary’s messages after most recent sync

e Backup process does NOT execute along with the
primary
— Just record the primary’s memory and recent messages
— No high workload on backup’s machine
* Why not just “sync”?
— Memory checkpoint does not record all we need

— Kernel state and messages sent will make the primary
different from the backup
COSC440 Lecture 9: Distributed OS 14

Discussion

* Why not just record all messages?

 The primary sends the pages to the page server
when syncing
— Why not just send to the backup?

 What pages does the primary send when syncing?
* (Can the primary execute while syncing?

 What if the primary pages out to the page server
between syncs?

 Can we avoid recording messages after sync?

— E.g. sync all processes and roll them all back on a
failure

— Hard to implement, have to deal with external 1/O
COSC440 Lecture 9: Distributed OS 15

Basic i1dea

e After backup start from the latest memory sync
— Execute the backup from the sync point
— Feed it the recorded IPCs the primary received (after
Sync)
— Ignore the outgoing IPC
* Why does 1t work?

— Assume no source of non-determinism

— 1f backup runs the same program as the primary, has
same starting state, gets the same IPCs 1n the same
order, 1t should remain i1dentical

— It 1s crucial that all inter-process interaction is via IPC
* No shared memory between processes

 Inter-process interaction within a machine should be recorded.
COSC440 Lecture 9: Distributed OS 16

IPC message

* How to record primary’s IPC messages?
— The bus 1s broadcast, so all machines see all messages

— Messages have multiple destinations

e Senders list both primary and backup as destinations
— Atomicity of reception at the primary and backup is
important and guaranteed.
 How to ensure the backup sees the same messages
in the same order as the primary?

— Only one message at a time on the bus
— The bus i1s special, very different from LAN

 LANs do not have total order on messages. Many senders can
send at the same time

e [LANSs do not have atomic broadcast
COSC440 Lecture 9: Distributed OS 17

Non-determinism

* Why is non-determinism a problem?

— The primary and the backup may make different
decisions

— They may eventually result in different states, e.g file
server may have different contents.

e How to avoid non-determinism?
— E.g. time() might return differently
— time() has to be an IPC to the time server
— Backup sees the reply to primary’s IPC request
— Many system calls are IPCs to some servers
— Process 1d 1s global

— signal handling is after a primary sync

COSC440 Lecture 9: Distributed OS 18

Playback

* How can the backup know from which message to
send real messages”?

— A positive counter i1s used to record all sent messages
since last sync
 What if there 1s a crash while primary 1s syncing?

— Will the page server and the backup disagree about
what the last sync 1s?

— A sync message 1s used to confirm to the process’
backup, the page server and its backup.
 What about in-kernel state of process?
— open files, current directory, forked children, etc
— Open files are expressed as channels to file server

— Birth notice is used to inform the backup of fork().
COSC440 Lecture 9: Distributed OS 19

Failure detection

e How does the system know if a machine failed?

— Each machine periodically pings its neighbor in a
virtual ring

— If no response, check if it can talk to anyone else

e If no, I have failed; if yes, broadcast to all that my neighbor has
failed.

* Bus simplifies failure detection
— No partition
— Easy to avoid disagreement on if a machine is alive

— Still 1t 1s possible the machine 1s overloaded and slow
to respond. The machine will have a final say anyway.

* When to get backup to replace the primary?

— After the machine dead message
COSC440 Lecture 9: Distributed OS 20

Recovery

* When a machine dead message gets to the head of
the backup’s incoming message queue

— Fetch the latest sync memory snapshot from page server

— Start executing process

— Feed it recorded messages since last sync until the machine-dead
— Ignore its output messages until the counter 1s O

— then let it execute normally
* Note the process has no i1dea of the above steps
— Application programmer has no extra work

* Process in-kernel state such as open files 1s passed
in the last sync message

e The roll-forward of messages brings the backup to

the latest state of the primary before crash
COSC440 Lecture 9: Distributed OS 21

Discussion

e The old backup 1s the only copy of the process
after recovery

— Cannot tolerate another failure
— Must restart the primary as soon as possible

e [s there a problem with externally visible I/0O

— For example, primary updates bank account, then tells
external client "done”

— What if primary crashes just as it 1s sending the "done"?

COSC440 Lecture 9: Distributed OS 22

Why not the system today?

e HW trends have not favored this approach

— CPU 1s much faster than networks/buses, making the
close coupling unattractive

— Much cheaper to use off-the-shelf hardware, e.g.
ordinary server and LAN

e Semantics are too strict for many applications

— For example, email servers do not need to be i1dentical

— They need to be in different rooms in case of power
failure

— It 1s ok for one server to receive an email and forward
to the other later

— It 1s also ok for both receive emails and reconcile later

— There 1s high cost for keeping the required semantics
COSC440 Lecture 9: Distributed OS 23

Why not the system today? (cont.)

 Transparency 1s not that important

— Programmers don’t care much about it, willing to work
to get fault tolerance

— Being non-transparent results in simplification and
efficiency

— For example, modern database design

e Use back-end storage server
e Use many front-end servers to handle many clients

e Front-end servers only have “soft state”, while real state is in
the back-end server and the front-end servers use transactions
to read and write DB in order to deal with crashing

e If a front-end crash during a transaction, the transaction will
take no effect, and the client just retry at another front-end

e The back-end DB server only needs to replicate data, not

process execution state.
COSC440 Lecture 9: Distributed OS 24

read()

372 SYSCALL_DEFINE3(read, unsigned int, fd, char __user *, buf,
size_t, count)

e 373

e 374 struct file *file;

e 375 ssize t ret = -EBADF;

e 376 int fput_needed;

e 377

e 378 file = fget_light(fd, &fput_needed);

e 379 if (file) {

e 380 loff_t pos = file_pos_read(file);

e 381 ret = vfs_read(file, buf, count, &pos);
e 1382 file_pos_write(file, pos);

e 383 fput_light(file, fput_needed);

e 384 }

e 385

e 386 return ret;

e 387}

COSC440 Lecture 9: Distributed OS 25

vis_read()

2777 ssize_t vis_read(struct file *file, char __ user *buf, size_t count,
loff_t *pos)

e 278

e 279 ssize_t ret;

e 280

e 281 if (!(file->f_mode & FMODE_READ))
e 282 return -EBADF;

e 283 if (Mfile->f_op Il (file->f_op->read && !file->f_op-
>alo_read))

e 284 return -EINVAL;

e 285 if (unlikely(!access_ok(VERIFY_WRITE, buf, count)))
e 286 return -EFAULT;

e 287

e 288 ret = rw_verify_area(READ, file, pos, count);

COSC440 Lecture 9: Distributed OS 26

vis_read()

e 289 if (ret>=0) {

e 290 count = ret;

e 201 if (file->f_op->read)

e 202 ret = file->f_op->read(file, buf, count, pos);
e 203 else

e 204 ret = do_sync_read(file, buf, count, pos);
e 205 if (ret >0) {

e 206 fsnotify_access(file->f_path.dentry);

e 207 add_rchar(current, ret);

e 208 }

e 299 inc_syscr(current);

e 300 }

e 301

e 302 return ret;

e 303}

COSC440 Lecture 9: Distributed OS 27

