
COSC440 Lecture 9: Distributed OS 1

Overview
• This Lecture

– Distributed FS and Distributed OS
– Source: Fault tolerance under Unix

COSC440 Lecture 9: Distributed OS 2

GFS (Google FS)

COSC440 Lecture 9: Distributed OS 3

Hadoop DFS

COSC440 Lecture 9: Distributed OS 4

MapReduce

COSC440 Lecture 9: Distributed OS 5

Background
• Fault tolerance with multiple machines in a

distributed environment
• Uses IPC and virtual memory to help achieve fault

tolerance
• Intended applications

– Large multi-user applications such as airline reservation
and bank transactions

– Lots of interactive processes using FS
– Need more power from multiple machines
– Need more fault tolerance to against HW crashes

• In 1980s, it was unheard of for computers to stay up for years

COSC440 Lecture 9: Distributed OS 6

Vector time
• Used in distributed systems for causal

ordering
• Use a vector to represent the local time of

each node in a distributed system.
• Comparing the vector time allows us to

know which events are ordered and which
events are concurrent.

COSC440 Lecture 9: Distributed OS 7

Vector Time

COSC440 Lecture 9: Distributed OS 8

General approach
• Up to 16 machines

– Each with CPU, memory, some with disk

• A broadcast bus connects all machines
– Maybe very fast and uses dedicated HW

• FS resides on a “root” machine (pair)
• There are multiple server processes

– Process server where global state such as a list of
processes is kept, residing on the “root”

– File server for all file accesses, residing on “root”
– Page server manages virtual memory backing store
– TTY server, raw server

COSC440 Lecture 9: Distributed OS 9

General approach (cont.)
• IPC over bus is used to communicate with servers

and processes on other machines
– E.g. pipe(), fork(), wexec()
– Fork() require IPC to notify the process server

• Each machine runs a Unix-derived kernel
– local Unix kernel creates processes, memory, local

scheduling, with three processors.
– Library turns many system calls into IPC

• There is no shared memory among machines
– The paper’s system is an unusual piece of HW
– Today we have multicore/SMP with shared memory

and LAN with message passing

COSC440 Lecture 9: Distributed OS 10

Fault tolerance problem
• The problem faced by the paper

– Not particularly mentioned
– Obviously each machine HW is not reliable
– HW is designed so that each machine fails

independently (unlike SMP)
– SW faults are not the target

• Hard part of the problem
– Parts of the system can fail (one machine or bus

or disk)
– It is much harder to deal with partial failure

than whole failure

COSC440 Lecture 9: Distributed OS 11

The goals of the paper
• Survive any single hardware failure

– HW has at least two of everything
interchangeable

– Two of every process

• Harness CPUs to increase performance as
well as fault tolerance

• Can run ordinary existing Unix applications
• Look like a single large Unix machine
• Fault tolerance and recovery are transparent

to applications

COSC440 Lecture 9: Distributed OS 12

Outline of the design
• Have a second copy of each process

– A “backup” on a different machine
– Record info about the state of the primary

process for backup to use
– If the primary’s machine crashes, use recorded

primary state to make backup equivalent to
primary. Then run the backup as the primary

– When the primary is fixed and restarts, make it
backup. Maybe it becomes primary later

COSC440 Lecture 9: Distributed OS 13

Challenges
• How to start backup with state equivalent to

the primary’s last state?
• How to avoid inconsistency during

changeover?
• How to do it all efficiently?
• How to keep it all invisible to applications?

COSC440 Lecture 9: Distributed OS 14

Techniques
• Checkpointing (“sync”)

– Sync primary process’ memory periodically

• History recording
– Record all primary’s messages after most recent sync

• Backup process does NOT execute along with the
primary
– Just record the primary’s memory and recent messages
– No high workload on backup’s machine

• Why not just “sync”?
– Memory checkpoint does not record all we need
– Kernel state and messages sent will make the primary

different from the backup

COSC440 Lecture 9: Distributed OS 15

Discussion
• Why not just record all messages?
• The primary sends the pages to the page server

when syncing
– Why not just send to the backup?

• What pages does the primary send when syncing?
• Can the primary execute while syncing?
• What if the primary pages out to the page server

between syncs?
• Can we avoid recording messages after sync?

– E.g. sync all processes and roll them all back on a
failure

– Hard to implement, have to deal with external I/O

COSC440 Lecture 9: Distributed OS 16

Basic idea
• After backup start from the latest memory sync

– Execute the backup from the sync point
– Feed it the recorded IPCs the primary received (after

sync)
– Ignore the outgoing IPC

• Why does it work?
– Assume no source of non-determinism
– if backup runs the same program as the primary, has

same starting state, gets the same IPCs in the same
order, it should remain identical

– It is crucial that all inter-process interaction is via IPC
• No shared memory between processes
• Inter-process interaction within a machine should be recorded.

COSC440 Lecture 9: Distributed OS 17

IPC message
• How to record primary’s IPC messages?

– The bus is broadcast, so all machines see all messages
– Messages have multiple destinations

• Senders list both primary and backup as destinations

– Atomicity of reception at the primary and backup is
important and guaranteed.

• How to ensure the backup sees the same messages
in the same order as the primary?
– Only one message at a time on the bus
– The bus is special, very different from LAN

• LANs do not have total order on messages. Many senders can
send at the same time

• LANs do not have atomic broadcast

COSC440 Lecture 9: Distributed OS 18

Non-determinism
• Why is non-determinism a problem?

– The primary and the backup may make different
decisions

– They may eventually result in different states, e.g file
server may have different contents.

• How to avoid non-determinism?
– E.g. time() might return differently
– time() has to be an IPC to the time server
– Backup sees the reply to primary’s IPC request
– Many system calls are IPCs to some servers
– Process id is global
– signal handling is after a primary sync

COSC440 Lecture 9: Distributed OS 19

Playback
• How can the backup know from which message to

send real messages?
– A positive counter is used to record all sent messages

since last sync

• What if there is a crash while primary is syncing?
– Will the page server and the backup disagree about

what the last sync is?
– A sync message is used to confirm to the process’

backup, the page server and its backup.
• What about in-kernel state of process?

– open files, current directory, forked children, etc
– Open files are expressed as channels to file server
– Birth notice is used to inform the backup of fork().

COSC440 Lecture 9: Distributed OS 20

Failure detection
• How does the system know if a machine failed?

– Each machine periodically pings its neighbor in a
virtual ring

– If no response, check if it can talk to anyone else
• If no, I have failed; if yes, broadcast to all that my neighbor has

failed.

• Bus simplifies failure detection
– No partition
– Easy to avoid disagreement on if a machine is alive
– Still it is possible the machine is overloaded and slow

to respond. The machine will have a final say anyway.

• When to get backup to replace the primary?
– After the machine dead message

COSC440 Lecture 9: Distributed OS 21

Recovery
• When a machine dead message gets to the head of

the backup’s incoming message queue
– Fetch the latest sync memory snapshot from page server
– Start executing process
– Feed it recorded messages since last sync until the machine-dead
– Ignore its output messages until the counter is 0
– then let it execute normally

• Note the process has no idea of the above steps
– Application programmer has no extra work

• Process in-kernel state such as open files is passed
in the last sync message

• The roll-forward of messages brings the backup to
the latest state of the primary before crash

COSC440 Lecture 9: Distributed OS 22

Discussion
• The old backup is the only copy of the process

after recovery
– Cannot tolerate another failure
– Must restart the primary as soon as possible

• Is there a problem with externally visible I/O
– For example, primary updates bank account, then tells

external client "done”
– What if primary crashes just as it is sending the "done"?

COSC440 Lecture 9: Distributed OS 23

Why not the system today?
• HW trends have not favored this approach

– CPU is much faster than networks/buses, making the
close coupling unattractive

– Much cheaper to use off-the-shelf hardware, e.g.
ordinary server and LAN

• Semantics are too strict for many applications
– For example, email servers do not need to be identical
– They need to be in different rooms in case of power

failure
– It is ok for one server to receive an email and forward

to the other later
– It is also ok for both receive emails and reconcile later
– There is high cost for keeping the required semantics

COSC440 Lecture 9: Distributed OS 24

Why not the system today? (cont.)
• Transparency is not that important

– Programmers don’t care much about it, willing to work
to get fault tolerance

– Being non-transparent results in simplification and
efficiency

– For example, modern database design
• Use back-end storage server
• Use many front-end servers to handle many clients
• Front-end servers only have “soft state”, while real state is in

the back-end server and the front-end servers use transactions
to read and write DB in order to deal with crashing

• If a front-end crash during a transaction, the transaction will
take no effect, and the client just retry at another front-end

• The back-end DB server only needs to replicate data, not
process execution state.

COSC440 Lecture 9: Distributed OS 25

read()
• 372 SYSCALL_DEFINE3(read, unsigned int, fd, char __user *, buf,

size_t, count)
• 373{
• 374 struct file *file;
• 375 ssize_t ret = -EBADF;
• 376 int fput_needed;
• 377
• 378 file = fget_light(fd, &fput_needed);
• 379 if (file) {
• 380 loff_t pos = file_pos_read(file);
• 381 ret = vfs_read(file, buf, count, &pos);
• 382 file_pos_write(file, pos);
• 383 fput_light(file, fput_needed);
• 384 }
• 385
• 386 return ret;
• 387}

COSC440 Lecture 9: Distributed OS 26

vfs_read()
• 277 ssize_t vfs_read(struct file *file, char __user *buf, size_t count,

loff_t *pos)
• 278{
• 279 ssize_t ret;
• 280
• 281 if (!(file->f_mode & FMODE_READ))
• 282 return -EBADF;
• 283 if (!file->f_op || (!file->f_op->read && !file->f_op-

>aio_read))
• 284 return -EINVAL;
• 285 if (unlikely(!access_ok(VERIFY_WRITE, buf, count)))
• 286 return -EFAULT;
• 287
• 288 ret = rw_verify_area(READ, file, pos, count);
•

COSC440 Lecture 9: Distributed OS 27

vfs_read()
• 289 if (ret >= 0) {
• 290 count = ret;
• 291 if (file->f_op->read)
• 292 ret = file->f_op->read(file, buf, count, pos);
• 293 else
• 294 ret = do_sync_read(file, buf, count, pos);
• 295 if (ret > 0) {
• 296 fsnotify_access(file->f_path.dentry);
• 297 add_rchar(current, ret);
• 298 }
• 299 inc_syscr(current);
• 300 }
• 301
• 302 return ret;
• 303}

