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Hazard Pointers: Safe Memory Reclamation for
Lock-Free Objects

Maged M. Michael

Abstract—Lock-free objects offer significant performance and reliability advantages over conventional lock-based objects. However,
the lack of an efficient portable lock-free method for the reclamation of the memory occupied by dynamic nodes removed from such
objects is a major obstacle to their wide use in practice. This paper presents hazard pointers, a memory management methodology
that allows memory reclamation for arbitrary reuse. It is very efficient, as demonstrated by our experimental results. It is suitable for
user-level applications—as well as system programs—uwithout dependence on special kernel or scheduler support. It is wait-free. It
requires only single-word reads and writes for memory access in its core operations. It allows reclaimed memory to be returned to the
operating system. In addition, it offers a lock-free solution for the ABA problem using only practical single-word instructions. Our
experimental results on a multiprocessor system show that the new methodology offers equal and, more often, significantly better
performance than other memory management methods, in addition to its qualitative advantages regarding memory reclamation and
independence of special hardware support. We also show that lock-free implementations of important object types, using hazard
pointers, offer comparable performance to that of efficient lock-based implementations under no contention and no multiprogramming,
and outperform them by significant margins under moderate multiprogramming and/or contention, in addition to guaranteeing
continuous progress and availability, even in the presence of thread failures and arbitrary delays.

Index Terms—Lock-free, synchronization, concurrent programming, memory management, multiprogramming, dynamic data

structures.

1 INTRODUCTION

A shared object is lock-free (also called nonblocking) if it
guarantees that whenever a thread executes some
finite number of steps toward an operation on the object,
some thread (possibly a different one) must have made
progress toward completing an operation on the object,
during the execution of these steps. Thus, unlike conven-
tional lock-based objects, lock-free objects are immune to
deadlock when faced with thread failures, and offer robust
performance, even when faced with arbitrary thread delays.

Many algorithms for lock-free dynamic objects have been
developed, e.g., [11], [9], [23], [21], [4], [5], [16], [7], [25], [18].
However, a major concern regarding these objects is the
reclamation of the memory occupied by removed nodes. In
the case of a lock-based object, when a thread removes a
node from the object, it is easy to guarantee that no other
thread will subsequently access the memory of that node,
before it is reused or reallocated. Consequently, it is usually
safe for the removing thread to reclaim the memory
occupied by the removed node (e.g., using free) for
arbitrary future reuse by the same or other threads (e.g.,
using malloc).

This is not the case for a typical lock-free dynamic object,
when running in programming environments without
support for automatic garbage collection. In order to
guarantee lock-free progress, each thread must have
unrestricted opportunity to operate on the object, at any
time. When a thread removes a node, it is possible that
some other contending thread—in the course of its lock-free
operation—has earlier read a reference to that node, and is
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about to access its contents. If the removing thread were to
reclaim the removed node for arbitrary reuse, the contend-
ing thread might corrupt the object or some other object that
happens to occupy the space of the freed node, return the
wrong result, or suffer an access error by dereferencing an
invalid pointer value. Furthermore, if reclaimed memory is
returned to the operating system (e.g., using munmap),
access to such memory locations can result in fatal access
violation errors. Simply put, the memory reclamation
problem is how to allow the memory of removed nodes
to be freed (i.e., reused arbitrarily or returned to the OS),
while guaranteeing that no thread accesses free memory,
and how to do so in a lock-free manner.

Prior methods for allowing node reuse in dynamic lock-
free objects fall into three main categories. 1) The IBM tag
(update counter) method [11], which hinders memory
reclamation for arbitrary reuse and requires double-width
instructions that are not available on 64-bit processors.
2) Lock-free reference counting methods [29], [3], which are
inefficient and use unavailable strong multiaddress atomic
primitives in order to allow memory reclamation. 3) Methods
that depend on aggregate reference counters or per-thread
timestamps [13], [4], [5]. Without special scheduler support,
these methods are blocking. That is, the failure or delay of
even one thread can prevent an aggregate reference counter
from reaching zero or a timestamp from advancing and,
hence, preventing the reuse of unbounded memory.

This paper presents hazard pointers, a methodology for
memory reclamation for lock-free dynamic objects. It is
efficient; it takes constant expected amortized time per
retired node (i.e., a removed node that is no longer needed
by the removing thread). It offers an upper bound on the
total number of retired nodes that are not yet eligible for
reuse, regardless of thread failures or delays. That is, the
failure or delay of any number of threads can prevent only a
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bounded number of retired nodes from being reused. The
methodology does not require the use of double-width or
strong multiaddress atomic primitives. It uses only single-
word reads and writes for memory access in its core
operations. It is wait-free [8], i.e., progress is guaranteed for
active threads individually, not just collectively; thus, it is
also applicable to wait-free algorithms without weakening
their progress guarantee. It allows reclaimed memory to be
returned to the operating system. It does not require any
special support from the kernel or the scheduler.

The core idea is to associate a number (typically one or
two) of single-writer multireader shared pointers, called
hazard pointers, with each thread that intends to access lock-
free dynamic objects. A hazard pointer either has a null
value or points to a node that may be accessed later by that
thread without further validation that the reference to the
node is still valid. Each hazard pointer can be written only
by its owner thread, but can be read by other threads.

The methodology requires lock-free algorithms to guar-
antee that no thread can access a dynamic node at a time
when it is possibly removed from the object, unless at least
one of the thread’s associated hazard pointers has been
pointing to that node continuously, from a time when the
node was guaranteed to be reachable from the object’s roots.
The methodology prevents the freeing of any retired node
continuously pointed to by one or more hazard pointers of
one or more threads from a point prior to its removal.

Whenever a thread retires a node, it keeps the node in a
private list. After accumulating some number R of retired
nodes, the thread scans the hazard pointers of other threads
for matches for the addresses of the accumulated nodes. If a
retired node is not matched by any of the hazard pointers,
then it is safe for this node to be reclaimed. Otherwise, the
thread keeps the node until its next scan of the hazard
pointers.

By organizing a private list of snapshots of nonnull hazard
pointers in a hash table that can be searched in constant
expected time, and if the value of R is set such that
R = H+Q(H), where H is the total number of hazard
pointers, then the methodology is guaranteed in every scan of
the hazard pointers to identify ©(R) nodes as eligible for
arbitrary reuse, in O(R) expected time. Thus, the expected
amortized time complexity of processing each retired node
until it is eligible for reuse is constant.

Note thata small number of hazard pointers per thread can
be used to support an arbitrary number of objects as long as
that number is sufficient for supporting each object indivi-
dually. For example, in a program where each thread may
operate arbitrarily on hundreds of shared objects that each
requires up to two hazard pointers per thread (e.g., hash
tables [25], FIFO queues [21], LIFO stacks [11], linked lists
[16], work queues [7], and priority queues [9]), only a total of
two hazard pointers are needed per thread.

Experimental results on an IBM RS/6000 multiprocessor
system show that the new methodology, applied to lock-free
implementations of important object types, offers equal and,
more often, significantly better performance than other
memory management methods, in addition to its qualitative
advantages regarding memory reclamation and indepen-
dence of special hardware support. We also show that lock-
free implementations of important object types, using hazard
pointers, offer comparable performance to that of efficient
lock-based implementations under no contention and no
multiprogramming, and outperform them by significant

margins under moderate multiprogramming and/or con-
tention, in addition to guaranteeing continuous progress and
availability even in the presence of thread failures and
arbitrary delays.

The rest of this paper is organized as follows: In Section 2,
we discuss the computational model for our methodology
and memory management issues for lock-free objects. In
Section 3, we present the hazard pointer methodology. In
Section 4, we discuss applying hazard pointers to lock-free
algorithms. In Section 5, we present our experimental
performance results. In Section 6, we discuss related work
and summarize our results.

2 PRELIMINARIES

2.1 The Model

The basic computational model for our methodology is the
asynchronous shared memory model. Formal descriptions
of this model appeared in the literature, e.g., [8]. Informally,
in this model, a set of threads communicate through
primitive memory access operations on a set of shared
memory locations. Threads run at arbitrary speeds and are
subject to arbitrary delays. A thread makes no assumptions
about the speed or status of any other thread. That is, it
makes no assumptions about whether another thread is
active, delayed, or crashed, and the time or duration of its
suspension, resumption, or failure. If a thread crashes, it
halts execution instantaneously.

A shared object occupies a set of shared memory
locations. An object is an instance of an implementation of
an abstract object type, that defines the semantics of
allowable operations on the object.

2.2 Atomic Primitives

In addition to atomic reads and writes, primitive operations
on shared memory locations may include stronger atomic
primitives such as compare-and-swap (CAS) and the pair
load-linked /store-conditional (LL/SC). CAS takes three
arguments: the address of a memory location, an expected
value, and a new value. If and only if the memory location
holds the expected value, the new value is written to it,
atomically. A Boolean return value indicates whether the
write occurred. That is, CAS(addr, exp, new) performs the
following atomically:

{if (xaddr#exp) return false; xaddr —new; return true; }.

LL takes one argument: the address of a memory
location, and returns its contents. SC takes two arguments:
the address of a memory location and a new value. Only if
no other thread has written the memory location since the
current thread last read it using LL, the new value is written
to the memory location, atomically. A Boolean return value
indicates whether the write occurred. An associated
instruction, Validate (VL), takes one argument: the address
of a memory location, and returns a Boolean value that
indicates whether any other thread has written the memory
location since the current thread last read it using LL.

For practical architectural reasons, none of the architec-
tures that support LL/SC (Alpha, MIPS, PowerPC) support
VL or the ideal semantics of LL/SC as defined above. None
allow nesting or interleaving of LL/SC pairs, and most
prohibit any memory access between LL and SC. Also, all
such architectures, occasionally—but not infinitely often—al-
low SC to fail spuriously; i.e., return false even when the
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// Hazard pointer record

structure HPRecType

{ HP[K]:*NodeType; Next:*HPRecType; }

// The header of the HPRec list

HeadHPRec : *HPRecType;
// Per-thread private variables

rlist : listType; // initially empty

rcount : integer; // initially O

Fig. 1. Types and structures.

memory location was not written by other threads since it was
last read by the current thread using LL. For all the algorithms
presented in this paper, CAS(addr, exp, new) can be imple-
mented using restricted LL/SC as follows:

{do {if (LL(addr)+#exp) return false;}

until SC(addr, new); return true; }.

Most current mainstream processor architectures sup-
port either CAS or restricted LL/SC on aligned single
words. Support for CAS and LL/SC on aligned double-
words is available on most 32-bit architectures (i.e., support
for 64-bit instructions), but not on 64-bit architecture (i.e., no
support for 128-bit instructions).

2.3 The ABA problem

A different but related problem to memory reclamation is
the ABA problem. It affects almost all lock-free algorithms.
It was first reported in the documentation of CAS on the
IBM System 370 [11]. It occurs when a thread reads a value
A from a shared location, and then other threads change the
location to a different value, say B, and then back to A
again. Later, when the original thread checks the location,
e.g., using read or CAS, the comparison succeeds, and the
thread erroneously proceeds under the assumption that the
location has not changed since the thread read it earlier. As
a result, the thread may corrupt the object or return a wrong
result.

The ABA problem is a fundamental problem that must
be prevented regardless of memory reclamation. Its relation
to memory reclamation is that solutions of the latter
problem, such as automatic garbage collection (GC) and
the new methodology, often prevent the ABA problem as a
side-effect with little or no additional overhead.

This is true for most lock-free dynamic objects. But, it
should be noted that a common misconception is that GC
inherently prevents the ABA problem in all cases. However,
consider a program that moves dynamic nodes back and
forth between two lists (e.g., LIFO stacks [11]). The ABA
problem is possible in such a case, even with perfect GC.

The new methodology is as powerful as GC with respect
to ABA prevention in lock-free algorithms. That is, if a lock-
free algorithm is ABA-safe under GC, then applying hazard
pointers to it makes it ABA-safe without GC. As we discuss
in a recent report [19], lock-free algorithms can always be
made ABA-safe under GC, as well as using hazard pointers
in the absence of GC. In the rest of this paper, when
discussing the use of hazard pointers for ABA prevention in
the absence of support for GC, we assume that lock-free
algorithms are already ABA-safe under GC.

RetireNode(node:*NodeType) {
rlist.push(node);
reount++;
if (rcount > R)
Scan(HeadHPRec);

Fig. 2. The RetireNode routine.

3 THE METHODOLOGY

The new methodology is primarily based on the observation
that, in the vast majority of algorithms for lock-free dynamic
objects, a thread holds only a small number of references that
may later be used without further validation for accessing the
contents of dynamic nodes, or as targets or expected values of
ABA-prone atomic comparison operations.

The core idea of the new methodology is associating a
number of single-writer multireader shared pointers, called
hazard pointers, with each thread that may operate on the
associated objects. The number of hazard pointers per
thread depends on the algorithms for associated objects and
may vary among threads depending on the types of objects
they intend to access. Typically, this number is one or two.
For simplicity of presentation, we assume that each thread
has the same number K of hazard pointers.

The methodology communicates with the associated
algorithms only through hazard pointers and a procedure
RetireNode that is called by threads to pass the addresses of
retired nodes. The methodology consists of two main parts:
the algorithm for processing retired nodes, and the
condition that lock-free algorithms must satisfy in order to
guarantee the safety of memory reclamation and ABA
prevention.

3.1 The Algorithm

Fig. 1 shows the shared and private structures used by the
algorithm. The main shared structure is the list of hazard
pointer (HP) records. The list is initialized to contain one HP
record for each of the N participating threads. The total
number of hazard pointersis H = NK." Each thread uses two
static private variables, rlist (retired list) and rcount (retired
count), to maintain a private list of retired nodes.

Fig. 2 shows the RetireNode routine, where the retired
node is inserted into the thread’s list of retired nodes and
the length of the list is updated. Whenever the size of a
thread’s list of retired nodes reaches a threshold R, the
thread scans the list of hazard pointers using the Scan
routine. R can be chosen arbitrarily. However, in order to
achieve a constant expected amortized processing time per
retired node, R must satisfy R = H + Q(H).

Fig. 3 shows the Scan routine. A scan consists of two
stages. The first stage involves scanning the HP list for
nonnull values. Whenever a nonnull value is encountered,
it is inserted in a local list plist, which can be implemented
as a hash table. The second stage of Scan involves checking
each node in rlist against the pointers in plist. If the lookup
yields no match, the node is identified to be ready for
arbitrary reuse. Otherwise, it is retained in rlist until the

1. As discussed in Section 3.2, the algorithm can be extended such that
the values of N and H do not need to be known in advance, and threads can
join and leave the system dynamically and allocate and deallocate hazard
pointers dynamically.
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Scan(head:*HPRecType) {

plist.init();
hprec < head;
while (hprec # null) {
for (i+ 0to K-1) {
hptr < hprec”HP[i];
if (hptr # null)
plist.insert(hptr);
}

hprec < hprec”.Next;

}

// Stage 1: Scan HP list and insert non-null values in plist

// Stage 2: Search plist
tmplist <— rlist.popAll();
rcount < 0;
node < tmplist.pop();
while (node # null) {
if (plist.lookup(node)) {
rlist.push(node);
reount++;

}else {

PrepareForReuse(node);

}

node < tmplist.pop();

plist.free();

Fig. 3. The Scan routine.

next scan by the current thread. Insertion and lookup in
plist take constant expected time.

Alternatively, if a lower worst-case—instead of average—
time complexity is desired, plist can be implemented as a
balanced search tree with O(log p) insertion and lookup time
complexities, where p is the number of nonnull hazard
pointers encountered in Stage 1 of Scan. In such a case, the
amortized time complexity per retired node is O(log p).

In practice, for simplicity and speed, we recommend
implementing plist as an array and sorting it at the end of
Stage 1 of Scan, and then using binary search in Stage 2. We
use the latter implementation for our experiments in
Section 5. We omit the algorithms for hash tables, balanced
search trees, sorting, and binary search, as they are well-
known sequential algorithms [2].

The task of the memory reclamation method in the
context of this paper is to determine when a retired node is
eligible for reuse safely while allowing memory reclama-
tion. Thus, the definition of the PrepareFor Reuse routine is
open for several implementation options and is not an
integral part of this methodology. An obvious implementa-
tion of that routine is to reclaim the node immediately for
arbitrary reuse using the standard library call for memory
deallocation, e.g., free. Another possibility—in order to
reduce the overhead of calling malloc and free for every
node allocation and deallocation—is that each thread can
maintain a limited size private list of free nodes. When a
thread runs out of private free nodes, it allocates new nodes,
and when it accumulates too many private free nodes, it
deallocates the excess nodes.

The algorithm is wait-free; it takes O(R) expected
time—or O(Rlogp) worst-case time if a logarithmic search
structure is used—to identify ©(R) retired nodes as eligible
for arbitrary reuse. It only uses single-word reads and
writes. It offers an upper bound NR on the number of
retired nodes that are not yet eligible for reuse, even if some
or all threads are delayed or have crashed.

3.2 Algorithm Extensions
The following are optional extensions to the core algorithm
that enhance the methodology’s flexibility.

If the maximum number N of participating threads is not
known before hand, we can add new HP records to the HP
list using a simple push routine [11]. Note that such a
routine is wait-free, as the maximum number of threads is

finite. This can be useful also, if it is desirable for threads to
be able to allocate additional hazard pointers dynamically.

In some applications, threads are created and retired
dynamically. In such cases, it is desirable to allow HP
records to be reused. Adding a Boolean flag to each HP
record can serve as an indicator if the HP record is in use or
available for reuse. Before retiring, a thread can clear the
flag, and when a new thread is created, it can search the HP
list for an available HP record and acquire it using test-and-
set (TAS). If no HP records are available, a new one can be
added as described above.

Since a thread may have leftover retired nodes not yet
identified as eligible for reuse, two fields can be added to
the HP record structure so that a retiring thread can pass
the values of its rlist and rcount variables to the next thread
that inherits the HP record.

Furthermore, it may be desirable to guarantee that every
node that is eligible for reuse is eventually freed, barring
thread failures. To do so, after executing Scan, a thread
executes a HelpScan, where it checks every HP record. If an
HP record is inactive, the thread locks it using TAS and
pops nodes from its rlist. Whenever, the thread accumu-
lates R nodes, it performs a Scan. Therefore, even if a thread
retires leaving behind an HP record with a nonempty riist
and its HP record happens not to be reused, the nodes in the
rlist will still be processed by other threads performing
HelpScan.

Fig. 4 shows a version of the algorithm that incorporates
the above mentioned extensions. The algorithm is still wait-
free, and only single-word instructions are used.

3.3 The Condition

For a correct algorithm for a dynamic lock-free object to use
the new methodology for memory reclamation and ABA
prevention, it must satisfy a certain condition. When a
thread assigns a reference (i.e., a node’s address) to one of
its hazard pointers, it basically announces to other threads
that it may use that reference in a hazardous manner (e.g.,
access the contents of the node without further validation of
the reference), so that other threads will refrain from
reclaiming or reusing the node until the reference is no
longer hazardous. This announcement (i.e., setting the
hazard pointer) must take place before the node is retired
and the hazard pointer must continue to hold that reference
until the reference is no longer hazardous.
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structure HPRecType { HP[K]:*NodeType; Next:*HPRecType;
Active:Boolean; rlist:listType; rcount:integer; }
// Shared variables
HeadHPRec : *HPRecType; // initially null
H : integer; // initially O
// Per-thread private variable
myhprec : *HPRecType; // initially null

AllocateHPRec() {

// First try to reuse a retired HP record

for (hprec «— HeadHPRec; hprec # null; hprec +— hprec"Next) {
if (hprec”Active) continue;
// TAS(addr) = ~CAS(addr,false, true)
if TAS(&hprec” Active) continue;
// Succeeded in locking an inactive HP record
myhprec < hprec;
return;

// No HP records available for reuse

// Increment H, then allocate a new HP and push it

do { // wait-free - max. num. of threads is finite
oldcount + H;

} until CAS(&H,oldcount,oldcount+K);

// Allocate and push a new HP record

hprec <— NewHPRec();

Initialize the fields of the new HP record.

do { // wait-free - max. num. of threads is finite
oldhead +— HeadHPRec;
hprec’Next < oldhead;

} until CAS(&HeadHPRec,oldhead,hprec);

myhprec + hprec;

RetireHPRec() {
for (i 4+ 0 to K-1) myhprec"HP[i] <— null;
myhprec”Active < false;

}

RetireNode(node: *NodeType) {
myhprec’.rlist.push(node);
myhprec’.rcount++;
head < HeadHPRec;
if (myhprec’rcount > R(H)) { /R(H)=H + Q(H)
Scan(head);
HelpScan();
}
}

// Scan() is the same as in Figure 3 except that rlist and rcount
// are fields of *myhprec instead of being private variables.

HelpScan() {
for (hprec +— HeadHPRec; hprec # null; hprec < hprec”Next) {
if (hprec”Active) continue;
if TAS(&hprec” Active) continue;
while (hprecrcount > 0) {
node < hprec’rlist.pop();
hprec’.rcount--;
myhprec’.rlist.push(node);
myhprec”.rcount++;
head +— HeadHPRec;
if (myhprec”.rcount > R(H))
Scan(head);
}
hprec” Active + false;
}
}

Fig. 4. Algorithm extensions.

For a formal description of the condition, we first define
some terms:

Node: We use the term node to describe a range of
memory locations that at some time may be viewed as a
logical entity either through its actual use in an object that
uses hazard pointers, or from the point of view of a
participating thread. Thus, it is possible for multiple nodes
to overlap physically, but still be viewed as distinct logical
entities.

At any time ¢, each node n is in one of the following
states:

1. Allocated: n is allocated by a participating thread, but
not yet inserted in an associated object.

2. Reachable: n is reachable by following valid pointers
starting from the roots of an associated object.

3. Removed: n is no longer reachable, but may still be in
use by the removing thread.

4. Retired: n is already removed and consumed by the
removing thread, but not yet free.

5. Free: n's memory is available for allocation.

6. Unavailable: all or part of n’'s memory is used by an
unrelated object.

7. Undefined: n’s range of memory locations is not
currently viewed as a node.

Own: A thread j owns a node n at time ¢, iff at ¢, n is

allocated, removed, or retired by j. Each node can have at most

one owner. The owner of an allocated node is the thread that
allocated it (e.g., by calling malloc). The owner of a removed
node is the thread that executed the step that removed it
from the object (i.e., changed its state from reachable to
removed). The owner of a retired node is the same one that
removed it.

Safe: A node n is safe for a thread j at time ¢, iff at time ¢,
either n is reachable, or j owns n.

Possibly unsafe: A node is possibly unsafe at time ¢ from the
point of view of thread j, if it is impossible solely by
examining j’s private variables and the semantics of the
algorithm to determine definitely in the affirmative that at
time ¢ the node is safe for j.

Access hazard: A step s in thread j’s algorithm is an access
hazard iff it may result in access to a node that is possibly
unsafe for j at the time of its execution.

ABA hazard: A step s in thread j’s algorithm is an ABA
hazard iff it includes an ABA-prone comparison that
involves a dynamic node that is possibly unsafe for j at the
time of the execution of s, such that either 1) the node’s
address—or an arithmetic variation of it—is an expected
value of the ABA-prone comparison, or 2) a memory
location contained in the dynamic node is the target of the
ABA-prone comparison.

Access-hazardous reference: A thread j holds an access-
hazardous reference to a node n at time ¢, iff at time ¢ one or
more of j's private variables holds n’s address or an
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arithmetic variation of it, and j is guaranteed—unless it
crashes—to reach an access hazard s that uses n’s address
hazardously, i.e., accesses n when n is possibly unsafe for j.

ABA-hazardous reference: A thread j holds an ABA-
hazardous reference to a node n at time ¢, iff at time ¢, one or
more of j's private variables holds n’s address or a
mathematical variation of it, and j is guaranteed—unless it
crashes—to reach an ABA hazard s that uses n’s address
hazardously.

Hazardous reference: A reference is hazardous if it is access-
hazardous and/or ABA-hazardous.

Informally, a hazardous reference is an address that
without further validation of safety will be used later in a
hazardous manner, i.e., to access possibly unsafe memory
and/or as a target address or an expected value of an
ABA-prone comparison.

A thread that holds a reference to a node uses hazard
pointers to announce to other threads that it may use the
reference later without further validation in a hazardous
step. However, this announcement is useless if it happens
after the reference is already hazardous, or in other words,
after the node is possibly unsafe, since another thread might
have already removed the node, and then scanned the HP
list and found no match for that node. Therefore, the
condition that an associated algorithm must satisfy is that
whenever a thread is holding a hazardous reference to a
node, it must be the case that at least one of the thread’s
hazard pointers has been continuously holding that
reference from a time when the node was definitely safe
for the thread. Note that this condition implies that no
thread can create a new hazardous reference to a node
while it is retired.

Formally, the condition is as follows, where HP; is the set
of thread j’s hazard pointers:

V times ¢, threads j, and nodes n,
(at ¢, j holds a hazardous reference to n) =
Ghp € HP;,U' <t
(at ', n is safe for j) A
(V times during [t', t], hp = &n)).

3.4 Correctness

The following lemmas and theorem are contingent on
satisfying the condition in Section 3.3.

Lemma 1. V times t, threads j, and nodes n, (Vhp € HP;,
t' <t, (V times during [t',t], n is not safe for j) A (3t" €
[t',t] = at " hp#&n)) = (at t, j does not hold a
hazardous reference to n).

Informally, if a scan of the hazard pointers of a thread j
finds no match for a retired node n, then it must be the case
that j holds no hazardous reference to n at the end of the scan.

Proof sketch: For a proof by contradiction, assume that the
lemma is false, i.e., the antecedent of the implication is
true and the consequent is false. Then, at ¢, j holds a
hazardous reference to n. Then, by the condition in
Section 3.3, there must be some time ¢, when n was safe
for j, but ¢y must be before ¢’ because we already assume
that n is not safe for j during [t, ¢]. Also by the condition
in Section 3.3, there must be at least one of j’s hazard
pointers that is pointing to n continuously during [to, ¢].
But, this contradicts the initial assumption that for each
of j's hazard pointers, there is some time during [t’, ]

(and, hence, during [ty, t]) when the hazard pointer does
not point to n. Therefore, the initial assumption must be
false and the lemma is true. 0

Lemma 2. V times t, threads j, and nodes n, (at t, n is
identified in stage 2 of Scan as eligible for reuse) =
(Vhp € HP;,3t' € [ty,t] == at t',hp # &n), where t, is the
start time of the current execution of Scan.

Informally, a retired node is identified as eligible for
reuse in stage 2 of Scan only after a scan of the hazard
pointers of participating threads finds no match.

Proof sketch: For a proof by contradiction, assume that the
lemma is false. Then, at least one of j's hazard pointers
was continuously pointing to n since ¢;. Then, by the
flow of control (of stage 1), at the end of stage 1, plist
must contain a pointer to n. Then, by the flow of control
(of stage 2), n is not identified as eligible for reuse. A
contradiction to the initial assumption. 0

Theorem 1.V times t, threads j, and nodes n, (at t, n is identified
in stage 2 of Scan as eligible for reuse) = (at t, j does not hold
a hazardous reference to n).

Informally, if Scan identifies a node as eligible for reuse,
then it must be the case that no thread holds a hazardous
reference to it.

Proof sketch: If j is the thread executing Scan, the theorem
is trivially true. Consider the case where j is a different
thread. Assume that at ¢, n is identified in stage 2 of Scan
as eligible for reuse. Then, by the definition of safe, n is
not safe for j since the beginning of Scan, and by Lemma
2, for each hazard pointer, there was a time during the
current execution of Scan when the hazard pointer did
not point to n. Then, by Lemma 1, at ¢, j does not hold a
hazardous reference to n. O

By the definition of access-hazardous reference and Theo-
rem 1, it follows that the hazard pointer methodology (i.e.,
algorithm and condition) guarantees that while a node is
free or unavailable, no thread accesses its contents, i.e., the
hazard pointer methodology guarantees safe memory
reclamation.

By the definition of ABA-hazardous reference and
Theorem 1, it follows that the hazard pointer methodol-
ogy guarantees that, while a node is free or unavailable,
no thread can hold a reference to it without further
validation with the intention to use that reference as a
target or an expected value of an ABA-prone comparison.
This is the same guarantee offered by GC with respect to
the ABA problem.

4 APPLYING HAZARD POINTERS

This section discusses the methodology for adapting
existing lock-free algorithms to the condition in Section 3.3.
The following is an outline:

1. Examine the target algorithm as follows:

a. Identify hazards and the hazardous references they
use.

b. For each distinct hazardous reference, determine
the point where it is created and the last hazard
that uses it. The period between these two



MICHAEL: HAZARD POINTERS: SAFE MEMORY RECLAMATION FOR LOCK-FREE OBJECTS 497

// Shared variables
Head, Tail:*NodeType;
// Initially both Head and Tail point to a dummy node

Enqueue(data:DataType) {

1: node <+ NewNode();

2: node’Data < data;

3: node”Next < null;

while true {
t«+ Tail;
next < t"Next;
if (Tail # t) continue;
if (next # null) { CAS(&Tail,t,next); continue; }
if CAS(&t".Next,null,node) break;

PN A

}
CAS(&Tail t,node);

structure NodeType { Data:DataType; Next:*NodeType; }

Dequeue() : DataType {

while true {
11: h <+ Head;
12: t<— Tail;

13: next < h”.Next;

14:  if (Head 5 h) continue;

15: if (next = null) return EMPTY ;

16:  if (h=1t) { CAS(&Tail,t,next); continue;}
17: data < next"Data;

18: if CAS(&Head,h,next) break;

19: return data;

}

Fig. 5. A memory-management-oblivious lock-free queue algorithm.

points is when a hazard pointer needs to be
dedicated to that reference.

c. Compare the periods determined in the pre-
vious step for all hazardous references, and
determine the maximum number of distinct
references that can be hazardous—for the same
thread—at the same time. This is the maximum
number of hazard pointers needed per thread.

2. For each hazardous reference, insert the following
steps in the target algorithm after the creation of the
reference and before any of the hazards that use it:

a. Write the address of the node that is the target of
the reference to an available hazard pointer.

b. Validate that the node is safe. If the validation
succeeds, follow the normal flow of control of
the target algorithm. Otherwise, skip over the
hazards and follow the path of the target
algorithm when conflict is detected, i.e., try
again, backoff, exit loop, etc. This step is needed,
as the node might have been already removed
before the previous step was executed.

We applied hazard pointers to many algorithms, e.g., [11],
[9], [23], [28], [21], [26], [4], [16], [7], [6], [18], for the purposes
of allowing memory reclamation and ABA prevention. We
use several algorithms for important object types to demon-
strate the application of the steps described above.

Note that, while applying these steps is easy for
algorithm designers, these steps are not readily applicable
automatically (e.g., by a compiler). For example, it is not
clear if a compiler can determine if a node is no longer
reachable. Identifying ABA hazards is even more challenging
for a compiler, as the ABA problem is a subtle problem that
involves the implicit intentions of the algorithm designer.

4.1 FIFO Queues

Fig. 5 shows a version of Michael and Scott’s [21] lock-free
FIFO queue algorithm, stripped of memory management
code. The algorithm demonstrates typical use of hazard
pointers. We use it as the main case study.

Briefly, the algorithm represents the queue as a singly
linked list with a dummy node at its head. If an enqueue
operation finds the Tail pointer pointing to the last node, it

links the new node at the end of the list and then updates
Tail. Otherwise, it updates Tuail first, and then tries to
enqueue the new node. A dequeue operation swings the
Head pointer after reading the data from the second node in
the list, while ensuring that Tail will not lag behind Head. As
it is the case with any lock-free object, if a thread is delayed
at any point while operating on the object and leaves it in an
unstable state, any other thread can take the object to a
stable state and then proceed with its own operation.

First, we examine Fig. 5 to identify hazards and hazardous
references, starting with the enqueue routine:

1. The node accesses in lines 2 and 3 are not hazardous
because, at that time, the node *node is guaranteed to
be allocated—and, hence, owned—by the current
thread.

2. The node access in line 5 is an access hazard because
the node *t may have been removed and reclaimed
by another thread after the current thread executed
line 4.

3. The function of what we call a validation condition in
line 6 is to guarantee that the thread proceeds to
line 7, only if at the time of reading ¢:Next in line 5,
Tail was equal to t. Without this guarantee, the
queue may be corrupted. It is ABA-prone and,
hence, it is an ABA hazard.

4. The CAS in line 7 is an ABA hazard.

5. The CASin line 8 is both an access hazard and an ABA
hazard.

6. The CAS in line 9 is an ABA hazard.

Therefore, the reference to t is hazardous between lines 4
and 9. Only one hazard pointer is sufficient since there is
only one hazardous reference at any time in this routine.

Fig. 6 shows the enqueue routine augmented with ahazard
pointer and code guaranteeing safe memory reclamation and
ABA prevention. The technique in lines 4a and 4b is the
fundamental mechanism for applying hazard pointers to
target algorithm, as shown in the rest of this section.

After creating a reference (line 4) that is identified as
hazardous in the memory-management-oblivious algo-
rithm, the thread takes the following steps: 1) It assigns
the address of the referenced node to a hazard pointer
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//hp0 and hp1 are private ptrs to 2 of the thread’s hazard ptrs

Enqueue(data:DataType) {
1: node +— NewNode();
: node”Data < data;
: node”Next < null;
while true {
t< Tail;
4a:  *hp0<«t;

W

&

4b:  if (Tail #t) continue;
5:  next< t"Next;
6:  if (Tail # t) continue;
7:  if (next# null) { CAS(&Tail,t,next); continue;}
8.  if CAS(&t"Next,null,node) break;

}
9: CAS(&Tail,t,node);

Fig. 6. Enqueue routine with hazard pointers.

(line 4a). 2) Then, it validates that that node is safe (line 4b).
If not, it skips over the hazards and tries again.

The second step is needed, since it is possible that after
line 4 and before line 4a, some other thread had removed the
node *t and checked *hp0 and concluded that the current
thread does not hold hazardous references to *. Line 4b
serves to guarantee that at that point, which is before any
hazards, *hp0 already points to *t, and that *t is safe.

It is possible that the node *# was removed and then
reinserted by other threads between the current thread’s
execution of lines 4 and 4b. However, this is acceptable, as it
does not violate the condition in Section 3.3. After executing
line 4 and before line 4b, the reference t is not hazardous as
the thread is not guaranteed to reach a hazard (lines 5, 6, 7,
8, or 9). It starts to be hazardous only upon the success of
the validation condition in line 4b. But, at that point, *hp0
already covers t and continues to do so until ¢ ceases to be
hazardous (after line 9).

Next, we examine the dequeue routine in Fig. 5:

1. The node access in lines 13 is an access hazard using
the reference h.

2. The validation condition in line 14 is an ABA hazard
using h.

3. The CAS in line 16 is an ABA hazard using t.
However, since t is guaranteed to be equal to & at
that point, then it is covered if h is covered.

4. Thenodeaccessinline 17 is an access hazard using next.

5. The CAS in line 18 is an ABA hazard using h.

Therefore, h is hazardous between lines 11 and 18, and
next is hazardous between lines 13 and 17. Since the two
periods overlap, two hazard pointers are needed.

Fig. 7 shows the dequeue routine augmented with
hazard pointers. For the reference h, lines 1la and 11b
employ the same technique as lines 4a and 4b in Fig. 6. For
the reference next, no extra validation is needed. The
validation condition in line 14 (from the original algorithm)
guarantees that *hp1 equals next from a point when *next
was safe. The semantics of the algorithm guarantee that the
node *next cannot be removed at line 14 unless its
predecessor *h has been removed first and then reinserted
after line 13 and before line 14. But, this is impossible since
*hp0 covers h from before line 11b until after line 18.

Dequeue() : DataType {
while true {

11:  h< Head;

11a:  *hpO< h;

11b:  if (Head # h) continue;
12:  t< Tail;
13:  next< h"Next;

13a:  *hpl < next;

14:  if (Head # h) continue;

15:  if (next= null) return EMPTY;

16:  if (h=1t) { CAS(&Tail,t,next); continue; }
17:  data<— next’Data;

18:  if CAS(&Head,h,next) break;

19: RetireNode(h); return data;

Fig. 7. Dequeue routine with hazard pointers.

Note that hazard pointers allow some optimizations to
the original algorithm [21] that are not safe when only the
IBM tag method [11] is used for ABA prevention. Line 6 can
be removed from the enqueue routine and line 17 can be
moved out of the main loop in the dequeue routine.

If only safe memory reclamation is desired—and the
ABA problem is not a concern, e.g., assuming support for
ideal LL/SC/VL—then only one hazard pointer is sufficient
for protecting both *h and *next in the Dequeue routine. We
leave this as an exercise for the reader.

4.2 LIFO Stacks

Fig. 8 shows a lock-free stack based on the IBM freelist
algorithm [11] augmented with hazard pointers. In the push
routine, the node accesses in lines 2 and 4 are not hazardous
(as *node is owned by the thread at the time), and the CAS in
line 5 is not ABA-prone (as the change of Top between lines 3
and 5 can never lead to corrupting the stack or any other
object). Thus, no hazard pointers are needed for the push
routine.

In the pop routine, the node access in line 10 is
hazardous and the CAS in line 11 is ABA-prone. All
hazards use the reference t. The technique employed in
transforming the pop routine is the same as that used in the
enqueue routine of Fig. 6.

4.3 List-Based Sets and Hash Tables

Fig. 9 shows an improved version of the lock-free list-based
set implementation in [16], using hazard pointers. The
algorithm in [16] improves on that of Harris [5] by allowing
efficient memory management. It can be used as a building
block for implementing lock-free chaining hash tables.

Node insertion is straightforward. Deletion of a node
involves first marking the low bit of its Next pointer and
then removing it from the list, to prevent other threads from
linking newly inserted nodes to removed nodes [23], [5].
Whenever a traversing thread encounters a node marked
for deletion, it removes the node before proceeding, to
avoid creating references to nodes after their removal.

The traversal of the list requires the protection of at most
two nodes at any time: a current node *cur, if any, and its
predecessor, if any. Two hazard pointers, *hp0 and *hp1,
are used for protecting these two nodes, respectively. The
traversing thread starts the main loop (lines 12-25) with
*prev already protected. In the first iteration, *prev is the root
and, hence, it is safe. The hazard pointer *hp0 is set by
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// Shared variables
Top:*NodeType; // Initially null

Push(data:DataType) {
1: node <+ NewNode();
2: node”Data < data;
while true {

3: t< Top;
4: node” Next < t;
5: it CAS(&Top,t,node) return;
}
}

structure NodeType { Data:DataType; Next:*NodeType; }

//'hp is a private ptr to one of the thread’s hazard ptrs.

Pop() : DataType {
while true {
t< Top;
if (t= null) return EMPTY;
*hp < t;
if (Top #t) continue;
next < t"Next;
if CAS(&Top,t,next) break;
12: (}13ta < t"Data;
13: RetireNode(t); return data;

R0 D

—

Fig. 8. Lock-free stack using hazard pointers.

assigning it the hazardous reference cur (line 13) and then
validating that the node *cur is in the list at a point
subsequent to the setting of the hazard pointer. The
validation is done by validating that the pointer *prev still
has the value cur. This validation suffices as the semantics
of the algorithm guarantee that the value of *prev must
change, if either the node that includes *prev or its
successor, the node *cur, is removed. The protection of
*prev itself is guaranteed, either by being the root (in the first
iteration), or by guaranteeing (as described below) that the
node that contains it is covered by *hpl.

For protecting the pointer *prev in subsequent iterations,
as prev takes an arithmetic variation of the value of cur
(line 23), the algorithm exchanges the private labels of *hp0
and *hp1 (line 24). There are no windows of vulnerability
since the steps after line 21 to the end of the loop do not

contain any hazards. Also, since *hp0 already protects the
reference cur at line 11a, then there is no need for further
validation that the node formerly pointed to by cur and now
contains *prev is in the list.

Therefore, all the hazards (lines 4, 6, 7, 15, 17, 20, and 21)
are covered by hazard pointers according to the condition
in Section 3.3.

This algorithm demonstrates an interesting case where
hazard pointers are used to protect nodes that are not
adjacent to the roots of the object, unlike the cases of the
queue and stack algorithms.

4.4 Single-Writer Multireader Dynamic Structures

Tang et al. [27] used lock-free single-writer multireader
doubly-linked lists for implementing point-to-point send and
receive queues, to improve the performance of threaded MPI

structure NodeType { Key:KeyType; Next:*NodeType;};

// Per-thread private variables

prev: **NodeType; cur,next: *NodeType;

//hp0 and hp1 are private ptrs to 2 of the thread’s hazard ptrs.
// Integer arithmetic in lines 6, 17, and 19.

Insert(head: **NodeType,node: *NodeType):Boolean {
1: key < node”Key;
while true {
2:  if Find(head, key) return false;
3:  node”Next < cur;
4:  if CAS(prev,cur,node) return true;

}
}

Delete(head:**NodeType,key:KeyType):Boolean {
while true {
5. if =Find(head key) return false;
6:  if "CAS(&cur”Next,next,next+1) continue;
7. if CAS(prev,cur,next) RetireNode(cur); clse Find(head,key);
8:  return true;
}
}

Search(head:**NodeType,key:KeyType):Boolean {
9: return Find(head, key);

}

Find(head:**NodeType;key:KeyType) : Boolean {
try_again:

10:  prev < head;

11:  cur<¢— *prev;

12: while (cur# null) {

13: *hp0 < cur;

14: if (*prev # cur) goto try_again;

15: next<— cur.Next;
16: if (next & 1) { // bitwise AND
17: it "CAS(prev,cur,next-1) goto try_again;
18: RetireNode(cur);
19: cur < next-1;

} else {
20: ckey < cur’Key;
21: if (*prev # cur) goto try_again;
22; if (ckey>key) return (ckey = key);
23: prev <— &cur”Next;
24: tmp < hp0; hpO0 < hpl; hpl < tmp; // all private
25: cur < next;

}

}

26: return false;
}

Fig. 9. Lock-free list-based set with hazard pointers.
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structure NodeType { Key:KeyType; Data:DataType;
Prev:**NodeType; Next:*NodeType; };
//hp0 and hp1 are private ptrs to 2 of the thread’s hazard ptrs.

SingleWriterInsertAfter(prev:**NodeType,node: *NodeType) {

1:  next< *prev;
2:  node”Prev < prev;
3:  node”Next +— next;
4:  if (next # null) next"Prev < &node”Next;
5:  *prev<— node; // Inserted
}

SingleWriterDelete(node: *NodeType) {

6:  prev<— node"Prev;

7:  next<— node’Next;

8:  if (next# null) nextPrev < prev;

9:  “*prev < next; // Deleted
10:  node”Next < null; // To alert readers not to proceed
11:  RetireNode(node);

}

ReaderSearch(head:**NodeType;key:KeyType) : DataType {
try_again:

12:  prev < head;

13: cur< *prev;

14:  while (cur # null) {

15: *hp0 < cur;
16: if (*prev # cur) goto try_again;
17: next < cur”Next;
18: ckey < cur’Key;
19: if (cur"Key = key) {
20: data < cur’.Data;
21: if (*prev # cur) goto try_again;
22: return data;
23: if (*prev # cur) goto try_again;
24: prev <— &cur”.Next;
25; tmp <— hp0; hp0 <+ hpl; hpl < tmp;
26: cur < next;
}
27:  return NOTFOUND;
}

Fig. 10. Lock-free single-writer multiple-reader doubly-linked list with hazard pointers.

on multiprogrammed shared memory systems. The main
challenge for that implementation was memory manage-
ment. That is, how does the owner (i.e., the single writer)
guarantee that no readers still hold references to a removed
node before reusing or freeing it? In order to avoid inefficient
per-node reference counting, they use instead aggregate (per-
list) reference counting. However, the delay or failure of a
reader thread can prevent the owner indefinitely from
reusing an unbounded number of removed nodes. As
discussed in Section 6.1, this type of aggregate methods is
not lock-free as it is sensitive to thread delays and failures.
Furthermore, even without any thread delays, in that
implementation, if readers keep accessing the list, the
aggregate reference counter may never reach zero, and the
owner remains indefinitely unable to reuse removed nodes.
Also, the manipulation of the reference counters requires
atomic operations such as CAS or atomic add.

We use hazard pointers to provide an efficient single-
writer multireader doubly-linked list implementation that
allows lock-free memory reclamation. Fig. 10 shows the
code for the readers’ search routine, and the owner’s
insertion and deletion routines. Unlike using locks or
reference counting, reader threads do not write to any
shared variables other than their own hazard pointers,
which are rarely accessed by the writer thread, thus
decreasing cache coherence traffic. Also, instead of a
quadratic number of per-list locks or reference counters,
only two hazard pointers are needed per reader thread for
supporting an arbitrary number of lists.

The algorithm uses only single-word reads and writes
for memory access. Thus, it demonstrates the importance of
the feasibility of the hazard pointer methodology on
systems with hardware support for memory access limited
to these instructions.

The algorithm is mostly straightforward. However, it is
worth noting that changing node’Next in line 10 in the
SingleWriterDelete routine is necessary if *node is not the last
node in the list. Otherwise, it is possible that the validation
condition in line 23 of a concurrent execution of the
ReaderSearch routine by a reader thread may succeed even

after the owner has retired the node containing *prev. If so,
and if the owner also removes the following node, the
reader might continue to set a hazard pointer for the
following node, but too late after it has already been
removed and reused.

5 EXPERIMENTAL PERFORMANCE RESULTS

This section presents experimental performance results
comparing the performance of the new methodology to
that of other lock-free memory management methods. We
implemented lock-free algorithms for FIFO queues [21],
LIFO stacks [11], and chaining hash tables [16], using
hazard pointers, ABA-prevention tags [11], and lock-free
reference counting [29]. Details of the latter memory
management methods are discussed in Section 6.1.

Also, we included in the experiments efficient com-
monly-used lock-based implementations of these object
types. For FIFO queues and LIFO stacks, we used the
ubiquitous test-and-test-and-set [24] lock with bounded
exponential backoff. For the hash tables, we used imple-
mentations with 100 separate locks protecting 100 disjoint
groups of buckets, thus allowing complete concurrency
between operations on different bucket groups. For these
locks, we used Mellor-Crummey and Scott’s [15] simple fair
reader-writer lock to allow intrabucket group concurrency
among read-only operations.

Experiments were performed on an IBM RS/6000 multi-
processor with four 375 MHz POWER3-II processors. We ran
the experiments when no other users used the system. Data
structures of all implementations were aligned to cache line
boundaries and padded where appropriate to eliminate false
sharing. In all experiments, all needed memory fit in physical
memory. Fence instructions were inserted in the code of all
implementations wherever memory ordering is required.
Locks and single-word and double-word CAS were imple-
mented using the single-word and double-word LL/SC
instructions supported on the POWERS3 architecture in 32-bit
mode. All implementations were compiled at the highest
optimization level.
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Fig. 11. Performance of FIFO queues.

We ran each experiment five times and reported the
average of the median three. Variance was negligible in all
experiments. Reported times exclude initialization. For each
implementation, we varied the number of processors used
from one to four, and the number of threads per processor
from one to four. At initialization, each thread was bound to
a specific processor. All needed nodes were allocated at
initialization. During time measurement, removed nodes
were made ready for reuse, but were not deallocated. The
pseudorandom sequences for generating keys and opera-
tions for different threads were nonoverlapping in each
experiment, but were repeatable in every experiment for
fairness in comparing different implementations.

For the hazard pointer implementations, we set the
number of threads N conservatively to 64, although smaller
numbers of threads were used. For implementations with
reference counting, we carefully took into account the
semantics of the target algorithms to minimize the number
of updates to reference counters.

Figs. 11 and 12 show the average execution time per
operation on shared FIFO queue and LIFO stack imple-
mentations, respectively. In each experiment, each thread
executed 1,000,000 operations, i.e., enqueue and dequeue
operations for queues and push and pop operations for
stacks. The abbreviated label “haz ptrs” refers to hazard
pointers, “tags” refers to ABA-prevention tags, and “ref
count” refers to lock-free reference counting.

Figs. 13 and 14 show the average CPU time (product of
execution time and the number of processors used) per
operation on shared chaining hash tables with 100 buckets
and load factors of 1 and 5, respectively. The load factor of a
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Fig. 12. Performance of LIFO stacks.
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Fig. 13. Performance of hash tables with load factor 1.

hash table is the average number of items per bucket. In
each experiment, each thread executed 2,000,000 operations
(Insert, Delete, and Search).

A common observation in all the graphs is that lock-free
implementations with hazard pointers perform as well as and
often significantly better than the other implementations in
virtually all cases. Being lock-free, the performance of lock-
free objects is unaffected by preemption, while locks perform
poorly under preemption. For example, the lock-free hash
table with hazard pointers achieves throughput that is
251 percent, 496 percent, 792 percent, and 905 percent that of
the lock-based implementation, with 4, 8, 12, and 16 threads,
respectively, running on four processors (Fig. 13).

In all experiments, the performance of hazard pointers is
comparable to that of ABA-prevention tags. However,
unlike hazard pointers, tags require double-width instruc-
tions and hinder rather than assist memory reclamation.

Lock-free objects with hazard pointers handle contention
(Figs. 11 and 12) significantly better than locks even in the
absence of preemption. For example, under contention by
four processors, and even without preemption, they achieve
throughputs that are 178 percent that of locks when
operating on queues. Note that experiments using locks
without backoff (not shown) resulted in more than doubling
the execution time for locks under contention by four
processors. Using backoff in the lock-free implementations
with hazard pointers resulted in moderate improvements in
performance under contention by four processors (25 per-
cent on queues and 44 percent on stacks). However, we
conservatively report the results without backoff.
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Fig. 14. Performance of hash tables with load factor 5.
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Lock-free implementations with hazard pointers also
outperform lock-based implementations as well as those
with reference counting in the case of no or negligible
contention, but under sharing, as is the case with hash
tables (Figs. 13 and 14). This is because they do not write to
any shared locations other than hazard pointers, during
read-only Search operation as well as traversal, thus
minimizing cache coherence traffic.> On the other hand,
lock acquisition and release, even for read-only transac-
tions, result in writes to lock variables. As for reference
counting, the situation is even worse, the reference counter
of each traversed node needs to be incremented and then
decremented, even during read-only transactions. The effect
is most evident in the case of hash tables with a load factor
of 5 (Fig. 14). The throughput of the implementation using
hazard pointers is 573 percent that of the one using
reference counting, on four processors.

For hash tables, we ran experiments (not shown) using a
single lock for the whole hash table. As expected, the
performance of these implementations was extremely poor
(more than 10 fold increase in execution time on four
processors over the highly concurrent implementations
with 100 disjoint locks). We also ran experiments using
100 test-and-test-and-set mutual exclusion locks instead of
100 reader-writer locks. The performance of the former (not
shown) is slightly worse than the latter (shown), as they do
not allow intrabucket concurrency of read-only operations.
Hence, we believe that we have chosen very efficient lock-
based implementations as the baseline for evaluating lock-
free implementations and their use of hazard pointers.

Also, we conservatively opted to focus on low levels of
contention and multiprogramming, that tend to limit the
performance advantages of lock-free synchronization. A
common criticism of unconventional synchronization tech-
niques is that they achieve their advantages only under
uncommonly high levels of contention, and that they often
perform very poorly in comparison to simple mutual
exclusion in the common case of low contention. Our
experimental results show that lock-free objects, with
hazard pointers, offer comparable performance to that of
the simplest and most efficient lock-based implementations,
under no contention and no preemption, in addition to their
substantial performance advantages under higher levels of
contention and preemption.

The superior performance of lock-free implementations
using hazard pointers to that of lock-based implementations
is attributed to several factors. Unlike locks,

1. they operate directly on the shared objects without
the need for managing additional lock variables,

2. read-only operations do not result in any writes to
shared variables (other than the mostly private
hazard pointers),

3. there is no useless spinning, as each attempt has a
chance of success when it starts, which makes them
more tolerant to contention, and

4. progress is guaranteed under preemption.

Note that the effects of the first two factors are applicable
even under no contention and no preemption.

2. Typically, a write by a processor to a location that is cached in its cache
with a read-only permission results in invalidating all cached copies of the
location in other processors’ caches, and results in additional traffic if the
other processors later need to access the same cache line. However, a read to
a cached copy with read-only permission does not result in any coherence
traffic.

It is worth noting that, while scalable queue-based locks
[14], [15] outperform the simple locks we used in this study
under high levels of contention, they underperform them in
the common case of no or low contention. Furthermore,
these locks are extremely sensitive to even low levels of
preemption, as the preemption of any thread waiting in the
lock queue—not just the lock holder—can result in
blocking.

Overcoming the effects of preemption on locks may be
partially achieved, but only by using more complicated and
expensive techniques such as handshaking, timeout, and
communication with the kernel [1], [12], [22], [30] that further
degrade the performance of the common case. On the other
hand, as shown in the graphs, lock-free implementations with
hazard pointers are inherently immune to thread delays, at
virtually no loss of performance in the case of no contention
and no preemption, and outperform lock-based implementa-
tions under preemption and contention.

6 DiIscUSSION
6.1 Related Work

6.1.1 IBM ABA-Prevention Tags

The earliest and simplest lock-free method for node reuse is
the tag (update counter) method introduced with the
documentation of CAS on the IBM System 370 [11]. It
requires associating a tag with each location that is the
target of ABA-prone comparison operations. By increment-
ing the tag when the value of the associated location is
written, comparison operations (e.g., CAS) can determine if
the location was written since it was last accessed by the
same thread, thus preventing the ABA problem. The
method requires that the tag contains enough bits to make
full wraparound impossible during the execution of any
single lock-free attempt. This method is very efficient and
allows the immediate reuse of retired nodes.

On the downside, when applied to arbitrary pointers as
it is the case with dynamic sized objects, it requires double-
width instructions to allow the atomic manipulation of the
pointer along with its associated tag. These instructions are
not supported on 64-bit architectures. Also, in most cases,
the semantics of the tag field must be preserved indefi-
nitely. Thus, if the tag is part of a dynamic node structure,
these nodes can never be reclaimed. Their memory cannot
be divided or coalesced, as this may lead to changing the
semantics of the tag fields. That is, once a range of memory
locations are used for a certain node type, they cannot be
reused for other node types that do not preserve the
semantics of the tag fields.

6.1.2 Lock-Free Reference Counting

Valois [29] presented a lock-free reference counting method
that requires the inclusion of a reference counter in each
dynamic node, reflecting the maximum number of refer-
ences to that node in the object and the local variables of
threads operating on the object. Every time a new reference
to a dynamic node is created/destroyed, the reference
counter is incremented/decremented, using fetch-and-add
and CAS. Only after its reference counter goes to zero, can a
node be reused. However, due to the use of single-address
CAS to manipulate pointers and independently located
reference counters nonatomically, the resulting timing
windows dictate the permanent retention of nodes of their
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type and reference counter field semantics, thus hindering
memory reclamation.

Detlefs et al. [3] presented a lock-free reference counting
method that uses the mostly unsupported DCAS primitive
(i.e., CAS on two independent locations) to operate on both
pointers and reference counters atomically to guarantee that
a reference counter is never less than the actual number of
references. When the reference counter of a node reaches
zero, it becomes safe to reclaim for reuse. However, free
memory cannot be returned to the operating system.

The most important disadvantage of per-node reference
counting is the prohibitive performance cost due to
the—otherwise, unnecessary—updates of the reference
counters of referenced nodes, even for read-only access, thus
causing significant increase in cache coherence traffic.

6.1.3 Scheduler-Dependent and Blocking Methods

Methods in this category are either sensitive to thread
failures and delays, ie., the delay of a single thread
can—and most likely will—prevent the reuse of unbounded
memory indefinitely; or dependent on special kernel or
scheduler support for recovery from such delays and
failures.

McKenney and Slingwine [13] presented read-copy
update, a framework where a retired node can be reclaimed
only after ascertaining that each of the other threads has
reached a quiescence point after the node was removed. The
definition of quiescence points, varies depending on the
programming environment. Typically, implementations of
read-copy update use timestamps or collective reference
counters. Not all environments are suitable for the concept
of quiescence points, and without special scheduler support
the method is blocking, as the delay of even one thread
prevents the reuse of unbounded memory.

Greenwald [4] presented brief outlines of type stable
memory implementations that depend on special support
from the kernel for accessing the private variables of
threads and detecting thread delays and failures. The core
idea is that threads set timestamps whenever they reach safe
points such as the kernel’s top level loop, where processes
are guaranteed not to be holding stale references. The
earliest timestamp represents a high water mark where all
nodes retired before that time can be reclaimed safely.

Harris [5] presented a brief outline of a deferred freeing
method that requires each thread to record a timestamp of
the latest time it held no references to dynamic nodes, and it
maintains two to-be-freed lists of retired nodes: an old list
and a new list. Retired nodes are placed on the new list and
when the time of the latest insertion in the old list precedes
the earliest per-thread timestamp, the nodes of the old list
are freed and the old and new lists exchange labels. The
method is blocking, as the failure of a thread to update its
timestamp causes the indefinite prevention of an un-
bounded number of retired nodes from being reused. This
can happen even without thread delays. If a thread simply
does not operate on the target object, then the thread’s
timestamp will remain unupdated.

One crucial difference between hazard pointers and
these methods [13], [4], [5] is that the former does not use
reference counters or timestamps. The use of aggregate
reference counters for unbounded numbers of nodes and/
or the reliance on per-thread timestamps makes a memory
management method inherently vulnerable to the failure or
delay of even one thread.

6.1.4 Recent Work

A preliminary version of this work [17] was published in
January 2002. Independently, Herlihy et al. [10] developed a
memory reclamation methodology. The basic idea of their
methodology is the same as that of ours. The difference is in
the Liberate routine that corresponds to our Scan routine.
Liberate is more complex than Scan and uses double-word
CAS. Our methodology retains important advantages over
theirs, regarding performance as demonstrated experimen-
tally and regarding independence of special hardware
support. Our methodology—even with the algorithm
extensions in Section 3.2—uses only single-word instruc-
tions, while theirs requires double-word CAS—which is not
supported on 64-bit processor architecture—in its core
operations. Also, our methodology uses only reads and
writes in its core operations, while theirs uses CAS in its
core operations. This prevents their methodology from
supporting algorithms that require only reads and writes
(e.g., Fig. 10)—which are otherwise feasible—on systems
without hardware support for CAS or LL/SC.

6.2 Conclusions

The problem of memory reclamation for dynamic lock-free
objects has long discouraged the wide use of lock-free
objects, despite their inherent performance and reliability
advantages over conventional lock-based synchronization.

In this paper, we presented the hazard pointer methodol-
0gy, a practical and efficient solution for memory reclama-
tion for dynamic lock-free objects. It allows unrestricted
memory reclamation, it takes only constant expected
amortized time per retired node, it does not require special
hardware support, it uses only single-word instructions, it
does not require special kernel support, it guarantees an
upper bound on the number of retired nodes not yet ready
for reuse at any time, it is wait-free, it offers a lock-free
solution for the ABA problem, and it does not require any
extra shared space per pointer, per node, or per object.

Our experimental results demonstrate the overall ex-
cellent performance of hazard pointers. They show that the
hazard pointer methodology offers equal and more often
significantly better performance than other memory man-
agement methods, in addition to its qualitative advantages
regarding memory reclamation and independence of
special hardware support.

Our results also show that lock-free implementations of
important object types, using hazard pointers, offer com-
parable performance to that of efficient lock-based imple-
mentations under no contention and no multiprogramming,
and outperform them by significant margins under moder-
ate multiprogramming and/or contention, in addition to
guaranteeing continuous progress and availability even in
the presence of thread failures and arbitrary delays.

A growing number of efficient algorithms for lock-free
dynamic objects are available. The hazard pointer metho-
dology enhances their practicality by enabling memory
reclamation, and at the same time allowing them to achieve
excellent robust performance. In combination with a recent
completely lock-free algorithm for dynamic memory alloca-
tion [20], the hazard pointer methodology enables these
objects at last to be completely dynamic and at the same
time completely lock-free, regardless of support for auto-
matic garbage collection.
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