
DECEMBER 2018 | VOL. 61 | NO. 12 | COMMUNICATIONS OF THE ACM 97

How to Implement Any
Concurrent Data Structure
By Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K. Aguilera

DOI:10.1145/3282506

Abstract
We propose a method called Node Replication (NR) to
implement any concurrent data structure. The method
takes a single-threaded implementation of a data structure
and automatically transforms it into a concurrent (thread-
safe) implementation. The result is designed to work well
with and harness the power of modern servers, which are
complex Non-Uniform Memory Access (NUMA) machines
with many processor sockets and subtle performance char-
acteristics. Using NR requires no expertise in concurrent
data structure design, and the result is free of concurrency
bugs. NR represents a paradigm shift of how concurrent
algorithms are developed: rather than designing for a data
structure, we design for the architecture.

1. INTRODUCTION
Concurrent data structures are everywhere in the software
stack, from the kernel (e.g., priority queues for scheduling), to
application libraries (e.g., tries for memory allocation), to appli-
cations (e.g., balanced trees for indexing). These data struc-
tures, when inefficient, can cripple the performance of the
system.

Due to recent architectural changes, high-performance
servers today are Non-Uniform Memory Access (NUMA)
machines. Such machines have multiple processor sockets,
herein called nodes, each with some local cache and memory.
Although cores in a node can access the memory in other
nodes, it is faster to access local memory and to share cache
lines within a node than across nodes. To fully harness the
power of NUMA, data structures must take this asymmetry
into consideration: they must be NUMA-aware to reduce cross-
node communication and minimize accesses to remote
caches and memory.

Unfortunately, there are few NUMA-aware concurrent
data structures, and designing new ones is hard. The key
challenge is how to deal with contention on the data struc-
ture, where simple techniques limit concurrency and scale
poorly, while efficient techniques are complex, error-prone,
and rigid (Section 2).

We propose a new technique, called Node Replication
(NR), to obtain NUMA-aware data structures, by automati-
cally transforming any single-threaded data structure into a
corresponding concurrent (thread-safe) NUMA-aware struc-
ture. NR is general and black-box: it requires no inner knowl-
edge of the structure and no expertise in NUMA software
design. The resulting concurrent structure provides strong
consistency in the form of linearizability.8

Node Replication combines ideas from two disciplines:
distributed systems and shared-memory algorithms. NR
maintains per-node replicas of an arbitrary data structure and

The original version of this paper, titled “Black-box
Concurrent Data Structures for NUMA Architectures,”
was published in ASPLOS 2017. For more information,
please check https://research.vmware.com/projects/
nodereplication.

synchronizes them via a shared log (an idea from distributed
systems1). The shared log is realized by a hierarchical,
NUMA-aware design that uses flat combining5 within nodes
and lock-free appending across nodes (ideas from shared-
memory algorithms). With this interdisciplinary approach,
only a handful of threads need to synchronize across nodes,
so most synchronization occurs efficiently within each node.

Node Replication represents a paradigm shift of how con-
current algorithms are designed. Currently, each new con-
current data structure requires its own design, and our
community of experts has spent decades writing papers and
developing algorithms for all kinds of structures (skip lists,
queues, priority queues, and hash tables, etc). However, com-
puter architectures are now fluid with the introduction of new
memory features (non-volatility, in-memory processing),
new memory models (NUMA, non-coherent caches), new
processing elements (GPU, FPGA, TPU), new processor fea-
tures (transactional memory, SGX), and more. Unfortunately,
the old algorithms do not work well in the new architectures,
so the community has to redesign the algorithms for each
new architecture.

Node Replication shows there is a better way to design
algorithms, by using a black-box approach that is indepen-
dent of the data structure. Thus, rather than designing for a
data structure, we design for the architecture. This approach
significantly reduces the design effort to a few architectures,
instead of the product of the number of architectures and
the number of data structures. While we demonstrate the
black-box approach for NUMA here, we envision its general
applicability to other new architectures as they emerge.

Node Replication cannot always outperform algorithms
that specialize for a single data structure and architecture.
However, perhaps surprisingly, NR performs well in many
cases, particularly when there is contention, where an oper-
ation often affects the output of other operations. On a con-
tended priority queue and a dictionary, NR can outperform
lock-free algorithms by up to 2.4x and 3.1x with 112 threads;
and NR can outperform a lock-based solution by 8x and 30x
on the same data structures. To demonstrate the benefits to
a real application, we apply NR to the data structures of the
Redis storage server. Many systems have shown how servers
can scale the handling of network requests and minimize
Remote Procedure Calls (RPC) bottlenecks.10 There is less
research on how to scale the servicing of the requests. These

http://dx.doi.org/10.1145/3282506

research highlights

98 COMMUNICATIONS OF THE ACM | DECEMBER 2018 | VOL. 61 | NO. 12

systems either implement a simple service (e.g., get/put)
that can partition requests across cores;10 or they develop
sophisticated concurrent data structures from scratch to
support more complex operations,11 and doing this requires
expertise in concurrent algorithms. This is where our black-
box approach comes handy: NR provides these concurrent
data structures automatically from single-threaded imple-
mentations. For Redis, we were able to convert a single-
threaded sorted set into a concurrent one with just 20 new
lines of wrapper code. The result outperforms data struc-
tures obtained from other methods by up to 14x.

Although NR is powerful, easy to use, and efficient, it
has three limitations. First, it incurs space overhead due
to replication: it consumes n times more memory, where
n is the number of nodes. Thus, NR is best suited for
smaller structures that occupy just a fraction of the avail-
able memory (e.g., up to hundreds of MB). Second, NR is
blocking: a thread that stops executing operations can
block the progress of other threads; in practice, we did
not find that to be a problem as long as threads keep exe-
cuting operations on the data structure. Finding a non-
blocking variant of NR is an interesting research
direction. Finally, NR may be outperformed by non-
black-box algorithms crafted for a given data structure—
For example, a lock-free skip list running on
low-contention workloads, or a NUMA-aware stack.2
Thus, the generality of black-box methods has some cost.
However, in some cases NR outperforms even the crafted
algorithms; we observe this for the same lock-free skip
list running instead on high-contention workloads.

We plan to make the source code for NR available in our
project page at https://research.vmware.com/projects/
nodereplication.

2. BACKGROUND
2.1. NUMA architectures
Our work is motivated by recent trends in computer archi-
tecture. To support a large number of cores, data center
servers have adopted a NUMA architecture with many pro-
cessor sockets or nodes (see Figure 1). Each node has
many processor cores and a shared cache, while individ-
ual cores have private caches. Sharing a cache line within

a node is more efficient than across nodes because the
cache coherence protocol operates more efficiently
within a node. Each node has some local memory, and a
core can access local memory faster than memory in a
remote node. A similar architecture—Non-Uniform
Cache Access (NUCA)—has a single shared memory but
nodes have local caches as in NUMA. Our ideas are appli-
cable to NUCA too. NUMA is everywhere now. A high-per-
formance Intel server might have eight processors
(nodes), each with 28 cores, while a typical server might
have two processors, each with 8–16 cores. AMD and
Oracle have similar machines. To best use these cores, we
need appropriate concurrent data structures.

2.2. Concurrent data structures
Concurrent data structures permit many threads to operate
on common data using a high-level interface. When a data
structure is accessed concurrently by many threads, its
semantics are typically defined by a property called lineariz-
ability,8 which provides strong consistency. Linearizability
requires that each operation appear to take effect instantly at
some point between the operation’s invocation and response.

The key challenge in designing concurrent data struc-
tures is dealing with operation contention, which occurs
when an operation often affects the output of another
operation. More precisely, given an execution, we say that
an operation affects another if the removal of the first
causes the second to return a different result. For exam-
ple, a write of a new value affects a subsequent read. A
workload has operation contention if a large fraction of
operations affect a large fraction of operations occurring
soon after them. Examples include a storage system where
users read and write a popular object, a priority queue
where threads often remove the minimum element, a
stack where threads push and pop data, and a bounded
queue where threads enqueue and dequeue data. Non-
examples include read-only workloads and write-only
workloads where writes do not return a result. Operation
contention is challenging because operations must
observe each other across cores.

Much work has been devoted to designing and imple-
menting efficient concurrent data structures; we provide a
broad overview in Calciu, Sen et al.3 Unfortunately, each data
structure requires its own algorithm with novel techniques,
which involve considerable work from experts in the field.
To get a sense, a new concurrent data structure often leads
to a scientific publication just for its algorithm.

Unfortunately, most existing concurrent data structures
and techniques are for Uniform Memory Access (UMA),
including some prior black-box methods.5, 6, 16 These algo-
rithms are not sensitive to the asymmetry and limitations of
NUMA, which hinders their performance.9 There are some
recent NUMA-aware algorithms,2, 12, 14 but they cover few data
structures. Moreover, these solutions are not applicable
when applications compose data structures and wish to
modify several of them with a single composed operation
(e.g., remove an item from a hash table and a skip list simul-
taneously). This is the case in the Redis application, which
we describe later in the paper.

Core

Cache

Core

Cache

Core

Cache

Core

Cache
Cache

Core

Cache

Core

Cache

Core

Cache

Core

Cache
Cache

Memory Memory

Node Node

Figure 1. NUMA architecture of a modern server in a data center.
The server has many processor sockets, herein called nodes. Each
node has many processor cores and some local memory. Nodes are
connected by an interconnect, so that cores in one node can access
the remote memory of another node, but these accesses come at a
cost. Typically, cores have local caches, and cores on a node share a
last level cache.

DECEMBER 2018 | VOL. 61 | NO. 12 | COMMUNICATIONS OF THE ACM 99

3.2. Basic idea
Node Replication replicates the data structure on each
NUMA node, so that threads can execute operations on a
replica that is local to their node. Replication brings two
benefits. First, an operation can access the data structure on
memory that is local to the node. Second, operations can
execute concurrently across nodes on different replicas.
Replication, however, raises the question of how threads
coordinate access to the replicas and maintain them in sync.

For efficiency, NR uses different mechanisms to coordi-
nate threads within nodes and across nodes. At the highest
level, NR leverages the fact that coordination within a node
is cheaper than across nodes.

Within each node, NR uses flat combining (a technique
from concurrent computing5). Flat combining batches oper-
ations from multiple threads and then executes the batch
using a single thread, called the combiner. The combiner is
analogous to a leader in distributed systems. In NR, we
batch operations from threads in the same node, using one
combiner per node. The combiner of a node is responsible
for checking if threads within the node have any outstand-
ing update operations, and then it executes all such opera-
tions on behalf of the other threads. Which thread is the
combiner? The choice is made dynamically among threads
within a node that have outstanding operations. The com-
biner changes over time: it abdicates when it finishes exe-
cuting the outstanding updates, up to a maximum number.
Batching can gather many operations, because there are
many threads per node (e.g., 28 in our machine). Batching in
NR is advantageous because it localizes synchronization
within a node.

Across nodes, threads coordinate through a shared log (a
technique from distributed systems1). The combiner of each
node reserves entries in the log, writes the outstanding
update operations to the log, brings the local replica up-to-
date by replaying the log if necessary, and executes the local
outstanding update operations.

Node Replication applies an optimization to read-only
operations (operations that do not change the state of the
data structure). Such operations execute without going
through the log, by reading directly the local replica. To
ensure consistency (linearizability8), the operation must
ensure that the local replica is fresh: the log must be replayed
at least until the last operation that completed before the
read started.

We have considered an additional optimization, which
dedicates a thread to run the combiner for each node; this
thread replays the log proactively. This optimization is sen-
sible for systems that have many threads per node, which is
an ongoing trend in processor architecture. However, we
have not employed this optimization in the results we pres-
ent here.

The techniques above provide a number of benefits:

•	 Reduce Cross-Node Synchronization and Contention: NR
appends to the log without acquiring locks; instead, it
uses the atomic Compare-And-Swap (CAS) instruction
on the log tail to reserve new entries in the log. The CAS
instruction incurs little cross-node synchronization

3. NODE REPLICATION (NR)
Node Replication is a NUMA-aware algorithm for concur-
rent data structures. Unlike traditional algorithms, which
target a specific data structure, NR implements all data
structures at once. Furthermore, NR is designed to work well
under operation contention. Specifically, under update-
heavy contended workloads, some algorithms drop perfor-
mance as we add more cores; in contrast, NR can avoid the
drops, so that the parallelizable parts of the application can
benefit from more cores without being hindered by the data
structures. NR cannot always outperform specialized data
structures with tailored optimizations, but it can be com-
petitive in a broad class of workloads.

While NR can provide any concurrent data structures, it
does not automatically convert entire single-threaded appli-
cations to multiple threads. Applications have a broad inter-
face, unlike data structures, so they are less amenable to
black-box methods.

3.1. API
To work with an arbitrary data structure, NR expects a single-
threaded implementation of the data structure provided as
four generic methods:

Create() → ptr
Execute(ptr, op, args) → result
IsReadOnly(ptr, op) → Boolean
Destroy()

The Create method creates an instance of the data struc-
ture, returning its pointer. The Execute method takes a
data structure pointer, an operation, and its arguments; it
executes the operation on the data structure, returning
the result. The method must produce side effects only on
the data structure and it must not block. Operation results
must be deterministic, but we allow nondeterminism
inside the operation execution and the data structure
(e.g., levels of nodes in a skip list). Similarly, operations
can use randomization internally, but results should not
be random (results can be pseudorandom with a fixed ini-
tial seed). The IsReadOnly method indicates if an opera-
tion is read-only; we use this information for read-only
optimizations in NR. The Destroy method deallocates the
replicas and the log. NR provides a new method
ExecuteConcurrent that can be called concurrently from
different threads.

For example, to implement a hash table, a developer
provides a Create method that creates an empty hash
table; an Execute method that recognizes three op param-
eters (insert, lookup, remove) with the args parameter
being a key-value pair or a key; and a IsReadOnly method
that returns true for op=lookup and false otherwise. The
Execute method implements the three operations of a
hash table in a single-threaded setting (not thread-safe).
NR then provides a concurrent (thread-safe) implemen-
tation of the hash table via a new method
ExecuteConcurrent. For convenience, the developer may
subsequently write three simple wrappers (insert, lookup,
remove) that invoke ExecuteConcurrent with the appropri-
ate op parameter.

research highlights

100 COMMUNICATIONS OF THE ACM | DECEMBER 2018 | VOL. 61 | NO. 12

could be spread across nodes. The log is accessed by at most
one thread per node, and it provides coordination and con-
sistency across nodes.

A variable logTail contains the index of the next available
entry. Each node has a replica of the data structure and a
variable localTail indicating how far in the log the replica
has been updated. A node elects a temporary leader thread
called a combiner to write to the buffer (Section 3.3).

The combiner writes many operations (a batch) to the
log at a time. To do so, it first allocates space by using a CAS
to advance logTail by the batch size. Then, it writes the buf-
fer entries with the operations and arguments. Next, it
updates the local replica by replaying the entries from

because only the combiners execute the CAS, and there
is at most one combiner per node—hence synchroniza-
tion required for the CAS involves only a few threads
(typically 2–8). In addition, the cost of a CAS is amor-
tized over many operations due to batching.

•	 Read and Write to the Log in Parallel: Combiners can
concurrently read the log to update their local replicas.
Moreover, combiners can also concurrently write to the
log: after combiners have reserved new entries using
CAS, combiners can fill their entries concurrently.

•	 Read Locally in Parallel: Read-only operations in the
data structure execute against the local replica, and so
they can proceed in parallel if the replica is fresh.
Checking for freshness might fetch a cache line across
nodes, but this fetch populates the local cache and ben-
efits many local readers. Readers execute in parallel
with combiners on different nodes, and with the local
combiner when it is filling entries in the log.

•  Use Compact Representation of Shared Data: Operations
often have a shorter description than the effects they
produce, and thus communicating the operation via
the log incurs less communication across cores than
sharing the modifications to the data structure. For
example, clearing a dictionary might modify many
parts of the data structure, but we only communicate
the operation description across nodes.

A complication that must be addressed is how to recycle
the log. This must be done without much coordination, for
performance, but must also ensure that a log entry is recy-
cled only after it has been applied at all the replicas. Roughly
speaking, NR uses a lightweight lazy mechanism that
reduces synchronization by delegating responsibility of
recycling to one of the threads.

In what follows, we describe these ideas in more detail.

3.3. Intra-node coordination: combining
To execute an operation, a thread posts its operation in a
reserved slota and tries to become the combiner by acquiring
the combiner lock. The combiner reads the slots of the
threads in the node and forms a batch B of operations to
execute. The combiner then proceeds to write the opera-
tions in B to the log, and to update the local replica with the
entries from the log.

To avoid small inefficient batches, the combiner in NR
waits if the batch size is smaller than a parameter min_batch.
Rather than idle waiting, the combiner refreshes the local
replica from the log, though it might need to refresh it again
after finally adding the batch to the log. Figure 2 depicts the
general ideas.

3.4. Inter-node coordination: circular buffer
Node Replication replicates the data structure across nodes
using a log realized as a shared circular buffer that stores
update operations on the data structure. This buffer can be
allocated from the memory of one of the NUMA nodes, or it

Figure 2. NR replicates the data structure across nodes. A shared
log stores updates that are later applied to each replica. Here, there
are two nodes and hence two replicas of a tree. The replicas are not
in sync, because the right replica has incorporated more updates
from the shared log. Threads in the same node share the replica in
that node; they coordinate access to the replica using a lock and
a technique called flat combining (Section 3.3). Flat combining is
particularly efficient in UMA systems. Effectively, NR treats each
node as a separate UMA system.

NUMA node 1

Local tail

NUMA node 2

Local
replica

Local
replica

Local tail

S
ha

re
d

lo
g

Thread 1 Thread 2
Thread 1 Thread 2

Figure 3. The shared log in NR is realized as a circular buffer, shown
here as an array for simplicity. There is a global log-Tail variable
that indicates the first unreserved entry in the log. Each node has a
localTail variable that indicates the next operation in the log to be
executed on each local replica. The figure shows only one thread for
each node—the thread that is currently chosen as the combiner for
that node—but there are other threads. Thread 1’s replica executed
5 operations from the log. Thread 2’s replica executed 3 more
operations and found an “empty” reserved entry that is not yet filled.
A combiner must wait for all empty entries preceding its batch in the
log. Readers can return when they find an empty entry (Section 3.6).

Thread 1

Local
replica

Local tail Local tail

Thread 2

Local
replica

Shared log

LogTailLog grows
down

Updates must wait
Reads can return

Full (1)
Full (1)
Full (1)
Full (1)
Full (1)
Full (1)
Full (1)
Full (1)

Empty (0)

Empty (0)
Empty (0)
Empty (0)
Empty (0)

Full (1)

a  We call slots the locations where threads post operations for the combiners;
we call entries the locations in the shared log.

DECEMBER 2018 | VOL. 61 | NO. 12 | COMMUNICATIONS OF THE ACM 101

3.8. Better readers-writer lock
Vyukov’s distributed readers-writer lock uses a per-reader
lock to reduce reader overhead; the writer must acquire the
locks from all readers. We modify this algorithm to reduce
writer overhead as well, by adding an additional writer lock.
To enter the critical section, the writer must acquire the
writer lock and wait for all the readers locks to be released,
without acquiring them; to exit, it releases its lock. A reader
waits if the writer lock is taken, then acquires its local lock,
and checks the writer lock again; if this lock is taken, the
reader releases its local lock and restarts; otherwise, it enters
the critical section; to exit, it releases the local lock. With
this scheme, the writer and readers incur just one atomic
write each on distinct cache lines to enter the critical sec-
tion. Readers may starve if writers keep coming, but this is
unlikely with NR, as often only one thread wishes to be a
writer at a time (the combiner) and that thread has signifi-
cant work outside the critical section.

3.9. Practical considerations
We now discuss some important practical considerations
that arised when we implemented NR.

Software and hardware threads. So far, we have assumed
that software threads correspond one-to-one with hardware
threads, and we have used the term thread indistinguish-
ably to refer to either of them. However, in practice applica-
tions may have many more software threads than available
hardware threads. To handle this situation, we can have
more combiner slots than hardware threads, and then
assign each software thread to a combiner slot. Beyond a
certain number of software threads, they can share com-
biner slots using CAS to insert requests. When a software
thread waits for the local combiner, it yields instead of
spinning, so that the underlying hardware thread can run
other software threads to generate larger combiner batches
and increase efficiency.

Log length. NR uses a circular array for its log; if the array
gets full, threads pause until older entries are consumed.
This is undesirable, so one should use a large log, but how
large? The solution is to dynamically resize the log if it gets
full. This is done by writing a special log entry that indicates
that the log has grown so that all replicas agree on the new
size after consuming the special entry. This scheme gradu-
ally adjusts the log size until it is large enough.

Memory allocation. Memory allocation can become a
performance bottleneck. We need an allocator that (1)
avoids too much coordination across threads, and (2) allo-
cates memory local to each node. We use a simple allocator
in which threads get buffers from local pools. The allocator
incurs coordination only if a buffer is allocated in one thread
and freed in another; this requires returning the buffer to
the allocating thread’s pool. This is done in batches to
reduce coordination.

Inactive replica. If threads in a node execute no opera-
tion on the data structure, the replica of that node stops
replaying entries from the log, causing the log to fill up.
This problem is solved by periodically running a thread per
node that refreshes the local replica if the node has no oper-
ations to execute.

localTail to right before the entries it allocated. In doing so
the combiner may find empty entries allocated by other
threads; in that case, it waits until the entry is filled (identi-
fied by a bit in the entry). Figure 3 shows two combiners
accessing the log to update their local replicas, which they
do in parallel.

3.5. Recycling log entries
Each log entry has a bit that alternates when the log wraps
around to indicate empty entries. An index logMin stores the
last known safe location to write; for efficiency, this index is
updated only when a thread reaches a low mark in the log,
which is max_batch entries before logMin. The thread that
reserves the low mark entry updates logMin to the smallest
localTail of all nodes; meanwhile, other threads wait for log-
Min to change. This scheme is efficient: it incurs no synchro-
nization and reads localTail rarely if the log is large. A
drawback is that a slow node becomes a bottleneck if no
thread on that node updates the localTail. This problem is
avoided using a larger log size.

3.6. Read-only operations
Threads performing read-only operations (readers) do not
reserve space in the log, because their operations do not
affect the other replicas. Moreover, a reader that is updating
from the log can return and proceed with the read if it
encounters an empty entry. Unlike flat combining, NR opti-
mizes read-only operations by executing them directly on
the local replica using a readers-writer lock for each node.
The combiner acquires the lock in write mode when it
wishes to modify the local replica, while reader threads
acquire the lock in read mode. To avoid stale reads that vio-
late linearizability, a reader must ensure the local replica is
fresh. However, the replica need not reflect all operations up
to logTail, only to the last operation that had completed
before the reader started. To do this, we keep a completed-
Tail variable, which is an index ≤ logTail that points to a log
entry after which there are no completed operations. After a
combiner refreshes its local replica, it updates completed-
Tail using a CAS to its last batch entry if it is smaller. A reader
reads completedTail when it starts, storing it in a local vari-
able readTail. If the reader sees that a combiner exists, it just
waits until localTail ≥ readTail; otherwise, the reader
acquires the readers-writer lock in writer mode and refreshes
the replica itself.

3.7. Readers-combiner parallelism
Node Replication’s algorithm is designed for readers to exe-
cute in parallel with combiners in the same node. In early
versions of the algorithm, the combiner lock also protected
the local replica against readers, but this prevented the
desired parallelism. By separating the combiner lock and
the readers-writer lock (Section 3.6), readers can access the
replica while a combiner is reading the slots or writing the
log, before it refreshes the replica. Furthermore, to enable
parallelism, readers must wait for completedTail as
described, not logTail because otherwise readers block on
the hole created by the local combiner, despite the readers
lock being available.

research highlights

102 COMMUNICATIONS OF THE ACM | DECEMBER 2018 | VOL. 61 | NO. 12

support that. LF requires a mechanism to garbage collect
memory, such as hazard pointers13 or epoch reclamation;4
these mechanisms can reduce performance by 5x. We do not
use these mechanisms, so the reported numbers for LF are
better than in reality.

Summary of results. On the real data structures (Section
4.1), we find that NR outperforms other methods at many
threads under high operation contention, with the excep-
tion of NUMA-aware algorithms tailored to the data struc-
ture. The other methods, including lock-free algorithms,
tend to lose significant performance beyond a NUMA node.
We also find that NR consumes more memory than other
methods. On a real application’s data structures (Section
4.2), NR outperforms alternatives by 2.6x–14x on workloads
with 10% updates, or by 1.1x–4.4x on 100% updates.

Testbed. We use a Dell server with 512GB RAM and 56
cores on four Intel Xeon E7-4850v3 processors at 2.2GHz.
Each processor is a NUMA node with 14 cores, a 35MB
shared L3 cache, and a private L2/L1 cache of size
256KB/64KB per core. Each core has 2 hyper-threads for a
total of 112 hyper-threads. Cache lines have 64B.

4.1. Real data structures
These experiments use two real data structures: a skip list
priority queue and a skip list dictionary. (Additional results
using two other data structures are given in Calciu, Sen
et al.,3 but these results are qualitatively similar to the ones
we present here.) A priority queue provides two update opera-
tions and one read-only operation: insert(i) inserts element i,
deleteMin() removes and returns the smallest element, and
findMin() returns the smallest element without removing it.
We implement these operations using a skip list to order the
elements and keep the minimum at the beginning of the
list. A dictionary provides operations to insert, lookup, and
remove elements, and we use a skip list to provide the dic-
tionary. NR, FC, and FC+ internally use the same single-
threaded implementation of a skip list;15 FC uses the flat
combining implementation from Hendler et al.5 For the LF,
we use the skip-list-based priority queue and skip list dic-
tionary from Herlihy and Shavit.7

We use the benchmark from the flat combining paper,5
which runs a mix of generic add, remove, and read opera-
tions. We map these operations to each data structure as
shown here.

generic	 priority queue	 dictionary
add	 insert(rnd, v)	 insert(rnd, v)
remove	 deleteMin()	 delete(rnd)
read	 findMin()	 lookup(rnd)

Here, rnd indicates a key chosen at random and v is an arbi-
trary value. We use the same ratio of add and remove to
keep the data structure size approximately constant over
time, and the results aggregate these two operations as
“update operations.” We consider two ratios of update-to-
read operations: 10%, 100% updates (90%, 0% reads). For
the priority queue, we choose random keys from a uniform
distribution. For the dictionary, we vary the operation con-
tention by drawing the keys from two distributions: uni-
form (low contention) and zipf with parameter 1.5 (high
contention).

Coupled data structures. In some applications, data
structures are read or updated together. For example, Redis
implements sorted sets using a hash table and a skip list,
which are updated atomically by each request. NR can pro-
vide these atomic updates, by treating the data structures as
a single larger data structure with combined operations.

Fake update operations. Some update operations become
readonly during execution (e.g., remove of a nonexistent
key). Black-box methods must know about read-only opera-
tions at invocation time. If updates become read-only often,
one can first attempt to execute them as read-only and, if not
possible, then execute them as updates (e.g., remove(key)
first tries to look up the key). This requires a simple wrapper
around remove(). We did not implement this.

4. EVALUATION
We have evaluated NR to answer five broad questions: How
does NR scale with the number of cores for different data
structures and workloads? How does NR compare with other
concurrent data structures? What is the benefit of NR to real
applications? How does NR behave on different NUMA
architectures? What are the benefits of NR’s techniques?
What are the costs of NR? Here, we highlight the most repre-
sentative results and focus on the first three questions; the
complete set of results are available in Calciu, Sen et al.3 We
report on two classes of experiments:

•	 Real Data Structures (Section 4.1): We run micro-
benchmarks on real data structures: a skip list priority
queue and a skip list dictionary.

•  Real Application (Section 4.2): We run macro-benchmarks
on the data structures of a real application: the Redis
storage server modified to use many threads.

We compare NR against other methods (baselines) shown
in Figure 4. Single Lock (SL) and Readers-Writer Lock (RWL)
are methods often used in practice; they work by protecting
the data structure with a SL or a single RWL. For RWL we use
the same readers-writer lock as NR (Section 3.8). FC consists
of flat combining used to implement the entire data struc-
ture. FC can be used as a black-box method, but it can also
use data-structure-specific optimizations to combine opera-
tions for faster execution (hence its name); we use these
optimizations whenever possible. FC+ is an improvement of
FC by using a readers-writer lock to execute read-only opera-
tions more efficiently. Lock-Free Baseline (LF) is a lock-free
algorithm specialized for a specific data structure; this base-
line is available only for some data structures. In the real
application (Redis), threads must atomically update multi-
ple data structures but existing lock-free algorithms do not

Figure 4. Other methods for comparison (baselines).

Baseline Description
SL One big lock (spinlock)
RWL One big readers-writer lock
FC Flat combining
FC+ Flat combining with readers-writer lock
LF Lock-free algorithm

DECEMBER 2018 | VOL. 61 | NO. 12 | COMMUNICATIONS OF THE ACM 103

(a)  For 10% updates, all methods drop in performance at
the NUMA node boundaries due to the cross-node
overheads; but NR drops little, making it the best
after one NUMA node. At max threads, NR is better
than LF, FC+, FC, RWL, SL by 1.7x, 6x, 7x, 27x, 41x.
Checking the CPU performance counters, NR had the
fewest L3 cache misses and L3 cache misses served
from remote caches, indicating lower cross-node
traffic.

(b)  For 100% updates, LF loses its advantage due to
higher operation contention: even within a NUMA
node, NR is close to LF. After one node, NR is best as
before. At max threads, NR is better than LF, FC+, FC,
SL, RWL by 2.4x, 2.5x, 3.3x, 8x, 9.4x.

(c)  In some methods, one thread outperforms many
threads, but not when there is work outside the data
structure, as in many real applications. In such appli-
cations, we need more threads to scale the applica-
tion and we want the shared data structure to not
become a bottleneck.

(d)  Node Replication remains the best method even as
we vary the amount of external work e and cache pol-
lution. With e=512, NR is better than FC+, LF, FC, SL,
RWL by 1.7x, 1.8x, 2.8x, 12.6x, 16.9x.

(e)  The cost of NR is that it consumes more memory,
namely, 148MB of memory at 112 threads (4.4x the
other methods): 12MB for the log and 34MB for each
of the four replicas. Technically, NR has another cost:
it executes an operation many times, one per replica.
However, this cost is relatively small as NR makes up
for it with better overall performance.

Results for dictionary. For the dictionary, we see the fol-
lowing results (see Figure 6). When there are updates, per-
formance depends on the level of contention. With low
contention (uniform keys), LF outperforms other methods
(it is off the charts): at maximum threads, it is 7x and 14x bet-
ter than NR for 10% and 100% updates, respectively. This is
due to the parallelism of the skip list unhindered by conten-
tion. Excluding LF, NR outperforms the other methods (with
100% updates, it does so after threads grow beyond a node).

However, with high contention (zipf keys), LF loses its
benefit, becoming the worst method for 100% updates.
There is a high probability of collisions in the vicinity of the
hot keys and the skip list starts to suffer from many failed
CASs: with uniform keys, the skip list has ≈300K failed CASs,
but with the zipf keys this number increases to >7M. NR is
the best method after 8 threads. Contention in the data
structure does not disrupt the NR log. On the contrary, data
structure contention improves cache locality with NR. With
maximum threads and 10% updates, NR is better than LF,
FC+, FC, RWL, SL by 3.1x, 4.0x, 6.8x, 16x, 30x. With 100%
updates, NR is better by 2.8x, 1.8x, 2.4x, 5.7x, 4.3x.

4.2. Redis
We now consider the data structures of the Redis server, made
concurrent using various black-box methods, including NR.

We evaluate the sorted set data structure in Redis, which
sorts items based on a score. In Redis, sorted sets are

Between operations the benchmark optionally does work
by writing e random locations external to the data structure.
This work causes cache pollution and reduces the arrival
rate of operations. We first populate the data structure with
200,000 items, and then measure the performance of the
methods for various workload mixes. In each experiment,
we fix a method, a ratio of update-to-read operations, an
external work amount e, and a number of threads.

Results for priority queue. For the priority queue, we see
the following results (see Figure 5).

Figure 5. Performance of priority queue made concurrent using
different methods. Vertical lines show the boundaries between
NUMA nodes.

0
10
20
30
40
50
60

0 10 20 30 40 50 60 70 80 90 100 110

op
s/

us

threads

NR
LF

FC+

FC
RWL

SL

(a) 10% update rate, e=0

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100 110

op
s/

us

threads

NR
LF

FC+

FC
RWL

SL

(b) 100% update rate, e=0

0
1
2
3
4
5
6
7

0 10 20 30 40 50 60 70 80 90 100 110

op
s/

us

threads

NR
FC+

LF

FC
RWL

SL

(c) 100% update rate, e=512

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

1 2 4 8 16 32 64 128 256 512

op
s/

us

Work

NR
FC+

LF
FC

RWL
SL

(d) 100% update rate, max threads

(e)
NR others

memory at max threads (MB) 148 34

research highlights

104 COMMUNICATIONS OF THE ACM | DECEMBER 2018 | VOL. 61 | NO. 12

distribution to generate client load. We modified the bench-
mark to support hybrid read/write workloads using the
update-read mix of the YCSB benchmark (0%, 10% updates)
in addition to 100% updates.

To overcome the significant overheads of the Redis RPC
and approximate a high-performance RPC,10 we invoke
Redis’s operations directly at the server after the RPC layer,
instead of generating requests from remote clients.

In each experiment, we create a single sorted set with
10,000 items. We launch multiple threads that repeatedly
read or update a uniformly distributed random item using
ZRANK or ZINCRBY, respectively. In each experiment, we fix
an update ratio, a method, and a number of cores, and we
measure the aggregate throughput.

Results. We see the following results (see Figure 7). For
10% updates, we see that all methods except NR drop after
threads grow beyond a single node, making NR the best
method for maximum threads. NR is better than FC+, RWL,
FC, SL by 2.6x, 3.9x, 4.9x, 14x, respectively. For 100%
updates, NR is better by 1.1x, 3.7x, 1.1x, 4.4x, respectively.
For 0% updates, RWL, NR and FC+ scale well and have
almost identical performance, while FC and SL do not scale
(the graph is omitted).

While its scalability is not perfect, NR is the best method
here. As discussed, the goal is to reduce data structure bot-
tlenecks so that the rest of the application benefits from
adding cores.

5. CONCLUSION
Node Replication is a general black-box method to trans-
form single-threaded data structures into NUMA-aware con-
current data structures. Lock-free data structures are
considered state-of-the-art, but they were designed for UMA.
Creating new lock-free algorithms for NUMA is a herculean
effort, as each data structure requires highly specialized new
techniques. NR also required comparable effort, but once

Figure 7. Performance of Redis application.

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110

op
s/

us

threads

NR
FC+

RWL

FC
SL

(a) 10% update rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 10 20 30 40 50 60 70 80 90 100 110

op
s/

us

threads

NR
FC+

FC

RWL
SL

(b) 100% update rate

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100 110

op
s/

us

threads

LF
NR

FC+
RWL

FC
SL

(a) uniform keys, 10% update rate

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0 10 20 30 40 50 60 70 80 90 100 110

op
s/

us

threads

LF
NR

FC+
FC

SL
RWL

(b) uniform keys, 100% update rate

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

0 10 20 30 40 50 60 70 80 90 100 110

op
s/

us

threads

NR
LF

FC+

FC
RWL

SL

(c) zipf keys, 10% update rate

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

0 10 20 30 40 50 60 70 80 90 100 110

op
s/

us

threads

NR
FC+

FC

SL
RWL

LF

(d) zipf keys, 100% update rate

(e)
NR others

memory at max threads (MB) 148 34

Figure 6. Performance of skip list dictionary.

implemented by a composed data structure that combines a
hash table (for fast lookup) and a skip list (for fast rank/
range queries). Every element in the sorted set is kept in
both hash table and skip list. These underlying data struc-
tures must be updated atomically without the possibility
that a user observes an update reflected in the hash table
without it being reflected in the skip list, and vice versa.

For read operations, we use the ZRANK command, which
returns the rank of an item in the sorted order. ZRANK finds
the item in the hash table; if present, it finds its rank in the
skip list. For update operations we use ZINCRBY, which
increases the score of an item by a chosen value. ZINCRBY
finds the item in the hash table; if present, it updates its
score, and deletes and reinserts it into the skip list.

We used the redis-benchmark utility provided in the

DECEMBER 2018 | VOL. 61 | NO. 12 | COMMUNICATIONS OF THE ACM 105

References
	 1.	 Balakrishnan, M., Malkhi, D.,

Davis, J. P., Prabhakaran, V.,
Wei, M., Wobber, T. CORFU: a
distributed shared log. ACM Trans.
Comp. Syst. 31, 4 (Dec. 2013).

	 2.	 Calciu, I., Gottschlich, J.E., Herlihy,
M. Using delegation and elimination
to implement a scalable
NUMA-friendly stack. In USENIX
Workshop on Hot Topics in
Parallelism (June 2013).

	 3.	 Calciu, I., Sen, S., Balakrishnan, M.,
Aguilera, M.K. Black-box concurrent
data structures for NUMA
architectures. In International
Conference on Architectural
Support for Programming
Languages and Operating Systems
(Apr. 2017), 207–221.

	 4.	 Fraser, K. Practical lock-freedom.
Technical Report UCAM-CL-
TR-579, University of Cambridge,
Computer Laboratory

(Feb. 2004).
	 5.	 Hendler, D., Incze, I., Shavit, N.,

Tzafrir, M. Flat combining and the
synchronization-parallelism
tradeoff. In ACM Symposium on
Parallelism in Algorithms and
Architectures (June 2010),
355–364.

	 6.	 Herlihy, M. Wait-free
synchronization. ACM Trans.
Program. Lang. Syst. 11, 1 (Jan.
1991), 124–149.

	 7.	 Herlihy, M., Shavit, N. The Art of
Multiprocessor Programming.
Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA,
2008.

	 8.	 Herlihy, M.P., Wing, J.M.
Linearizability: a correctness
condition for concurrent objects.
ACM Trans. Program. Lang. Syst.
12, 3 (July 1990), 463–492.

	 9.	 Lameter, C. NUMA (non-uniform
memory access): an overview. ACM

Copyright held by authors/owners.
Publication rights licensed to ACM. $15.00.

Queue 11, 7 (July 2013).
	10.	 Lim, H., Han, D., Andersen, D.G.,

Kaminsky, M. MICA: a holistic
approach to fast in-memory
key-value storage. In Symposium on
Networked Systems Design and
Implementation (Apr. 2014),
429–444.

	11.	 Mao, Y., Kohler, E., Morris, R.T. Cache
craftiness for fast multicore key-value
storage. In European Conference on
Computer Systems (Apr. 2012),
183–196.

	12.	 Metreveli, Z., Zeldovich, N., Kaashoek,
M.F. CPHash: a cache-partitioned
hash table. In ACM Symposium on
Principles and Practice of Parallel
Programming (Feb. 2012), 319–320.

	13.	 Michael, M.M. Hazard pointers: safe
memory reclamation for lock-free
objects. IEEE Trans. Parallel Distrib.
Syst. 15, 6 (June 2004), 491–504.

	14.	 Porobic, D., Liarou, E., Tözün, P.,
Ailamaki, A. ATraPos: adaptive
transaction processing on hardware
islands. In International Conference
on Data Engineering (Mar. 2014),
688–699.

	15.	 Pugh, W. Skip lists: a probabilistic
alternative to balanced trees.
Commun. ACM 33, 6 (June 1990),
668–676.

	16.	 Shalev, O., Shavit, N. Predictive
log-synchronization. In European
Conference on Computer
Systems (Apr. 2006), 305–316.

Irina Calciu and Marcos K. Aguilera,
VMware Research Group, Palo Alto, CA,
USA.

Siddhartha Sen, Microsoft Research, New
York, NY, USA.

Mahesh Balakrishnan, Yale University ,
New Haven, CT, USA.

realized, it can be used to provide all data structures with no
extra work. With such a black-box method, we design for the
architecture (in this case, NUMA) rather than for a data
structure. We believe the community should investigate this
black-box approach for future new architectures.�

