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Abstract
We propose a method called Node Replication (NR) to 
implement any concurrent data structure. The method 
takes a single-threaded implementation of a data structure 
and automatically transforms it into a concurrent (thread-
safe) implementation. The result is designed to work well 
with and harness the power of modern servers, which are 
complex Non-Uniform Memory Access (NUMA) machines 
with many processor sockets and subtle performance char-
acteristics. Using NR requires no expertise in concurrent 
data structure design, and the result is free of concurrency 
bugs. NR represents a paradigm shift of how concurrent 
algorithms are developed: rather than designing for a data 
structure, we design for the architecture.

1. INTRODUCTION
Concurrent data structures are everywhere in the software 
stack, from the kernel (e.g., priority queues for scheduling), to 
application libraries (e.g., tries for memory allocation), to appli-
cations (e.g., balanced trees for indexing). These data struc-
tures, when inefficient, can cripple the performance of the 
system.

Due to recent architectural changes, high-performance 
servers today are Non-Uniform Memory Access (NUMA) 
machines. Such machines have multiple processor sockets, 
herein called nodes, each with some local cache and memory. 
Although cores in a node can access the memory in other 
nodes, it is faster to access local memory and to share cache 
lines within a node than across nodes. To fully harness the 
power of NUMA, data structures must take this asymmetry 
into consideration: they must be NUMA-aware to reduce cross-
node communication and minimize accesses to remote 
caches and memory.

Unfortunately, there are few NUMA-aware concurrent 
data structures, and designing new ones is hard. The key 
challenge is how to deal with contention on the data struc-
ture, where simple techniques limit concurrency and scale 
poorly, while efficient techniques are complex, error-prone, 
and rigid (Section 2).

We propose a new technique, called Node Replication 
(NR), to obtain NUMA-aware data structures, by automati-
cally transforming any single-threaded data structure into a 
corresponding concurrent (thread-safe) NUMA-aware struc-
ture. NR is general and black-box: it requires no inner knowl-
edge of the structure and no expertise in NUMA software 
design. The resulting concurrent structure provides strong 
consistency in the form of linearizability.8

Node Replication combines ideas from two disciplines: 
distributed systems and shared-memory algorithms. NR 
maintains per-node replicas of an arbitrary data structure and 

The original version of this paper, titled “Black-box 
Concurrent Data Structures for NUMA Architectures,” 
was published in ASPLOS 2017. For more information, 
please check https://research.vmware.com/projects/
nodereplication.

synchronizes them via a shared log (an idea from distributed 
systems1). The shared log is realized by a hierarchical, 
NUMA-aware design that uses flat combining5 within nodes 
and lock-free appending across nodes (ideas from shared- 
memory algorithms). With this interdisciplinary approach, 
only a handful of threads need to synchronize across nodes, 
so most synchronization occurs efficiently within each node.

Node Replication represents a paradigm shift of how con-
current algorithms are designed. Currently, each new con-
current data structure requires its own design, and our 
community of experts has spent decades writing papers and 
developing algorithms for all kinds of structures (skip lists, 
queues, priority queues, and hash tables, etc). However, com-
puter architectures are now fluid with the introduction of new 
memory features (non-volatility, in-memory processing), 
new memory models (NUMA, non-coherent caches), new 
processing elements (GPU, FPGA, TPU), new processor fea-
tures (transactional memory, SGX), and more. Unfortunately, 
the old algorithms do not work well in the new architectures, 
so the community has to redesign the algorithms for each 
new architecture.

Node Replication shows there is a better way to design 
algorithms, by using a black-box approach that is indepen-
dent of the data structure. Thus, rather than designing for a 
data structure, we design for the architecture. This approach 
significantly reduces the design effort to a few architectures, 
instead of the product of the number of architectures and 
the number of data structures. While we demonstrate the 
black-box approach for NUMA here, we envision its general 
applicability to other new architectures as they emerge.

Node Replication cannot always outperform algorithms 
that specialize for a single data structure and architecture. 
However, perhaps surprisingly, NR performs well in many 
cases, particularly when there is contention, where an oper-
ation often affects the output of other operations. On a con-
tended priority queue and a dictionary, NR can outperform 
lock-free algorithms by up to 2.4x and 3.1x with 112 threads; 
and NR can outperform a lock-based solution by 8x and 30x 
on the same data structures. To demonstrate the benefits to 
a real application, we apply NR to the data structures of the 
Redis storage server. Many systems have shown how servers 
can scale the handling of network requests and minimize 
Remote Procedure Calls (RPC) bottlenecks.10 There is less 
research on how to scale the servicing of the requests. These 
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systems either implement a simple service (e.g., get/put) 
that can partition requests across cores;10 or they develop 
sophisticated concurrent data structures from scratch to 
support more complex operations,11 and doing this requires 
expertise in concurrent algorithms. This is where our black-
box approach comes handy: NR provides these concurrent 
data structures automatically from single-threaded imple-
mentations. For Redis, we were able to convert a single-
threaded sorted set into a concurrent one with just 20 new 
lines of wrapper code. The result outperforms data struc-
tures obtained from other methods by up to 14x.

Although NR is powerful, easy to use, and efficient, it 
has three limitations. First, it incurs space overhead due 
to replication: it consumes n times more memory, where 
n is the number of nodes. Thus, NR is best suited for 
smaller structures that occupy just a fraction of the avail-
able memory (e.g., up to hundreds of MB). Second, NR is 
blocking: a thread that stops executing operations can 
block the progress of other threads; in practice, we did 
not find that to be a problem as long as threads keep exe-
cuting operations on the data structure. Finding a non-
blocking variant of NR is an interesting research 
direction. Finally, NR may be outperformed by non-
black-box algorithms crafted for a given data structure—
For example, a lock-free skip list running on 
low-contention workloads, or a NUMA-aware stack.2 
Thus, the generality of black-box methods has some cost. 
However, in some cases NR outperforms even the crafted 
algorithms; we observe this for the same lock-free skip 
list running instead on high-contention workloads.

We plan to make the source code for NR available in our 
project page at https://research.vmware.com/projects/
nodereplication.

2. BACKGROUND
2.1. NUMA architectures
Our work is motivated by recent trends in computer archi-
tecture. To support a large number of cores, data center 
servers have adopted a NUMA architecture with many pro-
cessor sockets or nodes (see Figure 1). Each node has 
many processor cores and a shared cache, while individ-
ual cores have private caches. Sharing a cache line within 

a node is more efficient than across nodes because the 
cache coherence protocol operates more efficiently 
within a node. Each node has some local memory, and a 
core can access local memory faster than memory in a 
remote node. A similar architecture—Non-Uniform 
Cache Access (NUCA)—has a single shared memory but 
nodes have local caches as in NUMA. Our ideas are appli-
cable to NUCA too. NUMA is everywhere now. A high-per-
formance Intel server might have eight processors 
(nodes), each with 28 cores, while a typical server might 
have two processors, each with 8–16 cores. AMD and 
Oracle have similar machines. To best use these cores, we 
need appropriate concurrent data structures.

2.2. Concurrent data structures
Concurrent data structures permit many threads to operate 
on common data using a high-level interface. When a data 
structure is accessed concurrently by many threads, its 
semantics are typically defined by a property called lineariz-
ability,8 which provides strong consistency. Linearizability 
requires that each operation appear to take effect instantly at 
some point between the operation’s invocation and response.

The key challenge in designing concurrent data struc-
tures is dealing with operation contention, which occurs 
when an operation often affects the output of another 
operation. More precisely, given an execution, we say that 
an operation affects another if the removal of the first 
causes the second to return a different result. For exam-
ple, a write of a new value affects a subsequent read. A 
workload has operation contention if a large fraction of 
operations affect a large fraction of operations occurring 
soon after them. Examples include a storage system where 
users read and write a popular object, a priority queue 
where threads often remove the minimum element, a 
stack where threads push and pop data, and a bounded 
queue where threads enqueue and dequeue data. Non-
examples include read-only workloads and write-only 
workloads where writes do not return a result. Operation 
contention is challenging because operations must 
observe each other across cores.

Much work has been devoted to designing and imple-
menting efficient concurrent data structures; we provide a 
broad overview in Calciu, Sen et al.3 Unfortunately, each data 
structure requires its own algorithm with novel techniques, 
which involve considerable work from experts in the field. 
To get a sense, a new concurrent data structure often leads 
to a scientific publication just for its algorithm.

Unfortunately, most existing concurrent data structures 
and techniques are for Uniform Memory Access (UMA), 
including some prior black-box methods.5, 6, 16 These algo-
rithms are not sensitive to the asymmetry and limitations of 
NUMA, which hinders their performance.9 There are some 
recent NUMA-aware algorithms,2, 12, 14 but they cover few data 
structures. Moreover, these solutions are not applicable 
when applications compose data structures and wish to 
modify several of them with a single composed operation 
(e.g., remove an item from a hash table and a skip list simul-
taneously). This is the case in the Redis application, which 
we describe later in the paper.
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Figure 1. NUMA architecture of a modern server in a data center. 
The server has many processor sockets, herein called nodes. Each 
node has many processor cores and some local memory. Nodes are 
connected by an interconnect, so that cores in one node can access 
the remote memory of another node, but these accesses come at a 
cost. Typically, cores have local caches, and cores on a node share a 
last level cache.
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3.2. Basic idea
Node Replication replicates the data structure on each 
NUMA node, so that threads can execute operations on a 
replica that is local to their node. Replication brings two 
benefits. First, an operation can access the data structure on 
memory that is local to the node. Second, operations can 
execute concurrently across nodes on different replicas. 
Replication, however, raises the question of how threads 
coordinate access to the replicas and maintain them in sync.

For efficiency, NR uses different mechanisms to coordi-
nate threads within nodes and across nodes. At the highest 
level, NR leverages the fact that coordination within a node 
is cheaper than across nodes.

Within each node, NR uses flat combining (a technique 
from concurrent computing5). Flat combining batches oper-
ations from multiple threads and then executes the batch 
using a single thread, called the combiner. The combiner is 
analogous to a leader in distributed systems. In NR, we 
batch operations from threads in the same node, using one 
combiner per node. The combiner of a node is responsible 
for checking if threads within the node have any outstand-
ing update operations, and then it executes all such opera-
tions on behalf of the other threads. Which thread is the 
combiner? The choice is made dynamically among threads 
within a node that have outstanding operations. The com-
biner changes over time: it abdicates when it finishes exe-
cuting the outstanding updates, up to a maximum number. 
Batching can gather many operations, because there are 
many threads per node (e.g., 28 in our machine). Batching in 
NR is advantageous because it localizes synchronization 
within a node.

Across nodes, threads coordinate through a shared log (a 
technique from distributed systems1). The combiner of each 
node reserves entries in the log, writes the outstanding 
update operations to the log, brings the local replica up-to-
date by replaying the log if necessary, and executes the local 
outstanding update operations.

Node Replication applies an optimization to read-only 
operations (operations that do not change the state of the 
data structure). Such operations execute without going 
through the log, by reading directly the local replica. To 
ensure consistency (linearizability8), the operation must 
ensure that the local replica is fresh: the log must be replayed 
at least until the last operation that completed before the 
read started.

We have considered an additional optimization, which 
dedicates a thread to run the combiner for each node; this 
thread replays the log proactively. This optimization is sen-
sible for systems that have many threads per node, which is 
an ongoing trend in processor architecture. However, we 
have not employed this optimization in the results we pres-
ent here.

The techniques above provide a number of benefits:

•	 Reduce Cross-Node Synchronization and Contention: NR 
appends to the log without acquiring locks; instead, it 
uses the atomic Compare-And-Swap (CAS) instruction 
on the log tail to reserve new entries in the log. The CAS 
instruction incurs little cross-node synchronization 

3. NODE REPLICATION (NR)
Node Replication is a NUMA-aware algorithm for concur-
rent data structures. Unlike traditional algorithms, which 
target a specific data structure, NR implements all data 
structures at once. Furthermore, NR is designed to work well 
under operation contention. Specifically, under update-
heavy contended workloads, some algorithms drop perfor-
mance as we add more cores; in contrast, NR can avoid the 
drops, so that the parallelizable parts of the application can 
benefit from more cores without being hindered by the data 
structures. NR cannot always outperform specialized data 
structures with tailored optimizations, but it can be com-
petitive in a broad class of workloads.

While NR can provide any concurrent data structures, it 
does not automatically convert entire single-threaded appli-
cations to multiple threads. Applications have a broad inter-
face, unlike data structures, so they are less amenable to 
black-box methods.

3.1. API
To work with an arbitrary data structure, NR expects a single-
threaded implementation of the data structure provided as 
four generic methods:

Create() → ptr
Execute(ptr, op, args) → result
IsReadOnly(ptr, op) → Boolean
Destroy()

The Create method creates an instance of the data struc-
ture, returning its pointer. The Execute method takes a 
data structure pointer, an operation, and its arguments; it 
executes the operation on the data structure, returning 
the result. The method must produce side effects only on 
the data structure and it must not block. Operation results 
must be deterministic, but we allow nondeterminism 
inside the operation execution and the data structure 
(e.g., levels of nodes in a skip list). Similarly, operations 
can use randomization internally, but results should not 
be random (results can be pseudorandom with a fixed ini-
tial seed). The IsReadOnly method indicates if an opera-
tion is read-only; we use this information for read-only 
optimizations in NR. The Destroy method deallocates the 
replicas and the log. NR provides a new method 
ExecuteConcurrent that can be called concurrently from 
different threads.

For example, to implement a hash table, a developer 
provides a Create method that creates an empty hash 
table; an Execute method that recognizes three op param-
eters (insert, lookup, remove) with the args parameter 
being a key-value pair or a key; and a IsReadOnly method 
that returns true for op=lookup and false otherwise. The 
Execute method implements the three operations of a 
hash table in a single-threaded setting (not thread-safe). 
NR then provides a concurrent (thread-safe) implemen-
tation of the hash table via a new method 
ExecuteConcurrent. For convenience, the developer may 
subsequently write three simple wrappers (insert, lookup, 
remove) that invoke ExecuteConcurrent with the appropri-
ate op parameter.
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could be spread across nodes. The log is accessed by at most 
one thread per node, and it provides coordination and con-
sistency across nodes.

A variable logTail contains the index of the next available 
entry. Each node has a replica of the data structure and a 
variable localTail indicating how far in the log the replica 
has been updated. A node elects a temporary leader thread 
called a combiner to write to the buffer (Section 3.3).

The combiner writes many operations (a batch) to the 
log at a time. To do so, it first allocates space by using a CAS 
to advance logTail by the batch size. Then, it writes the buf-
fer entries with the operations and arguments. Next, it 
updates the local replica by replaying the entries from 

because only the combiners execute the CAS, and there 
is at most one combiner per node—hence synchroniza-
tion required for the CAS involves only a few threads 
(typically 2–8). In addition, the cost of a CAS is amor-
tized over many operations due to batching.

•	 Read and Write to the Log in Parallel: Combiners can 
concurrently read the log to update their local replicas. 
Moreover, combiners can also concurrently write to the 
log: after combiners have reserved new entries using 
CAS, combiners can fill their entries concurrently.

•	 Read Locally in Parallel: Read-only operations in the 
data structure execute against the local replica, and so 
they can proceed in parallel if the replica is fresh. 
Checking for freshness might fetch a cache line across 
nodes, but this fetch populates the local cache and ben-
efits many local readers. Readers execute in parallel 
with combiners on different nodes, and with the local 
combiner when it is filling entries in the log.

•  Use Compact Representation of Shared Data: Operations 
often have a shorter description than the effects they 
produce, and thus communicating the operation via 
the log incurs less communication across cores than 
sharing the modifications to the data structure. For 
example, clearing a dictionary might modify many 
parts of the data structure, but we only communicate 
the operation description across nodes.

A complication that must be addressed is how to recycle 
the log. This must be done without much coordination, for 
performance, but must also ensure that a log entry is recy-
cled only after it has been applied at all the replicas. Roughly 
speaking, NR uses a lightweight lazy mechanism that 
reduces synchronization by delegating responsibility of 
recycling to one of the threads.

In what follows, we describe these ideas in more detail.

3.3. Intra-node coordination: combining
To execute an operation, a thread posts its operation in a 
reserved slota and tries to become the combiner by acquiring 
the combiner lock. The combiner reads the slots of the 
threads in the node and forms a batch B of operations to 
execute. The combiner then proceeds to write the opera-
tions in B to the log, and to update the local replica with the 
entries from the log.

To avoid small inefficient batches, the combiner in NR 
waits if the batch size is smaller than a parameter min_batch. 
Rather than idle waiting, the combiner refreshes the local 
replica from the log, though it might need to refresh it again 
after finally adding the batch to the log. Figure 2 depicts the 
general ideas.

3.4. Inter-node coordination: circular buffer
Node Replication replicates the data structure across nodes 
using a log realized as a shared circular buffer that stores 
update operations on the data structure. This buffer can be 
allocated from the memory of one of the NUMA nodes, or it 

Figure 2. NR replicates the data structure across nodes. A shared 
log stores updates that are later applied to each replica. Here, there 
are two nodes and hence two replicas of a tree. The replicas are not 
in sync, because the right replica has incorporated more updates 
from the shared log. Threads in the same node share the replica in 
that node; they coordinate access to the replica using a lock and 
a technique called flat combining (Section 3.3). Flat combining is 
particularly efficient in UMA systems. Effectively, NR treats each 
node as a separate UMA system.
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Figure 3. The shared log in NR is realized as a circular buffer, shown 
here as an array for simplicity. There is a global log-Tail variable 
that indicates the first unreserved entry in the log. Each node has a 
localTail variable that indicates the next operation in the log to be 
executed on each local replica. The figure shows only one thread for 
each node—the thread that is currently chosen as the combiner for 
that node—but there are other threads. Thread 1’s replica executed 
5 operations from the log. Thread 2’s replica executed 3 more 
operations and found an “empty” reserved entry that is not yet filled. 
A combiner must wait for all empty entries preceding its batch in the 
log. Readers can return when they find an empty entry (Section 3.6).
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a  We call slots the locations where threads post operations for the combiners; 
we call entries the locations in the shared log.
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3.8. Better readers-writer lock
Vyukov’s distributed readers-writer lock uses a per-reader 
lock to reduce reader overhead; the writer must acquire the 
locks from all readers. We modify this algorithm to reduce 
writer overhead as well, by adding an additional writer lock. 
To enter the critical section, the writer must acquire the 
writer lock and wait for all the readers locks to be released, 
without acquiring them; to exit, it releases its lock. A reader 
waits if the writer lock is taken, then acquires its local lock, 
and checks the writer lock again; if this lock is taken, the 
reader releases its local lock and restarts; otherwise, it enters 
the critical section; to exit, it releases the local lock. With 
this scheme, the writer and readers incur just one atomic 
write each on distinct cache lines to enter the critical sec-
tion. Readers may starve if writers keep coming, but this is 
unlikely with NR, as often only one thread wishes to be a 
writer at a time (the combiner) and that thread has signifi-
cant work outside the critical section.

3.9. Practical considerations
We now discuss some important practical considerations 
that arised when we implemented NR.

Software and hardware threads. So far, we have assumed 
that software threads correspond one-to-one with hardware 
threads, and we have used the term thread indistinguish-
ably to refer to either of them. However, in practice applica-
tions may have many more software threads than available 
hardware threads. To handle this situation, we can have 
more combiner slots than hardware threads, and then 
assign each software thread to a combiner slot. Beyond a 
certain number of software threads, they can share com-
biner slots using CAS to insert requests. When a software 
thread waits for the local combiner, it yields instead of 
spinning, so that the underlying hardware thread can run 
other software threads to generate larger combiner batches 
and increase efficiency.

Log length. NR uses a circular array for its log; if the array 
gets full, threads pause until older entries are consumed. 
This is undesirable, so one should use a large log, but how 
large? The solution is to dynamically resize the log if it gets 
full. This is done by writing a special log entry that indicates 
that the log has grown so that all replicas agree on the new 
size after consuming the special entry. This scheme gradu-
ally adjusts the log size until it is large enough.

Memory allocation. Memory allocation can become a 
performance bottleneck. We need an allocator that (1) 
avoids too much coordination across threads, and (2) allo-
cates memory local to each node. We use a simple allocator 
in which threads get buffers from local pools. The allocator 
incurs coordination only if a buffer is allocated in one thread 
and freed in another; this requires returning the buffer to 
the allocating thread’s pool. This is done in batches to 
reduce coordination.

Inactive replica. If threads in a node execute no opera-
tion on the data structure, the replica of that node stops 
replaying entries from the log, causing the log to fill up. 
This problem is solved by periodically running a thread per 
node that refreshes the local replica if the node has no oper-
ations to execute.

localTail to right before the entries it allocated. In doing so 
the combiner may find empty entries allocated by other 
threads; in that case, it waits until the entry is filled (identi-
fied by a bit in the entry). Figure 3 shows two combiners 
accessing the log to update their local replicas, which they 
do in parallel.

3.5. Recycling log entries
Each log entry has a bit that alternates when the log wraps 
around to indicate empty entries. An index logMin stores the 
last known safe location to write; for efficiency, this index is 
updated only when a thread reaches a low mark in the log, 
which is max_batch entries before logMin. The thread that 
reserves the low mark entry updates logMin to the smallest 
localTail of all nodes; meanwhile, other threads wait for log-
Min to change. This scheme is efficient: it incurs no synchro-
nization and reads localTail rarely if the log is large. A 
drawback is that a slow node becomes a bottleneck if no 
thread on that node updates the localTail. This problem is 
avoided using a larger log size.

3.6. Read-only operations
Threads performing read-only operations (readers) do not 
reserve space in the log, because their operations do not 
affect the other replicas. Moreover, a reader that is updating 
from the log can return and proceed with the read if it 
encounters an empty entry. Unlike flat combining, NR opti-
mizes read-only operations by executing them directly on 
the local replica using a readers-writer lock for each node. 
The combiner acquires the lock in write mode when it 
wishes to modify the local replica, while reader threads 
acquire the lock in read mode. To avoid stale reads that vio-
late linearizability, a reader must ensure the local replica is 
fresh. However, the replica need not reflect all operations up 
to logTail, only to the last operation that had completed 
before the reader started. To do this, we keep a completed-
Tail variable, which is an index ≤ logTail that points to a log 
entry after which there are no completed operations. After a 
combiner refreshes its local replica, it updates completed-
Tail using a CAS to its last batch entry if it is smaller. A reader 
reads completedTail when it starts, storing it in a local vari-
able readTail. If the reader sees that a combiner exists, it just 
waits until localTail ≥ readTail; otherwise, the reader 
acquires the readers-writer lock in writer mode and refreshes 
the replica itself.

3.7. Readers-combiner parallelism
Node Replication’s algorithm is designed for readers to exe-
cute in parallel with combiners in the same node. In early 
versions of the algorithm, the combiner lock also protected 
the local replica against readers, but this prevented the 
desired parallelism. By separating the combiner lock and 
the readers-writer lock (Section 3.6), readers can access the 
replica while a combiner is reading the slots or writing the 
log, before it refreshes the replica. Furthermore, to enable 
parallelism, readers must wait for completedTail as 
described, not logTail because otherwise readers block on 
the hole created by the local combiner, despite the readers 
lock being available.
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support that. LF requires a mechanism to garbage collect 
memory, such as hazard pointers13 or epoch reclamation;4 
these mechanisms can reduce performance by 5x. We do not 
use these mechanisms, so the reported numbers for LF are 
better than in reality.

Summary of results. On the real data structures (Section 
4.1), we find that NR outperforms other methods at many 
threads under high operation contention, with the excep-
tion of NUMA-aware algorithms tailored to the data struc-
ture. The other methods, including lock-free algorithms, 
tend to lose significant performance beyond a NUMA node. 
We also find that NR consumes more memory than other 
methods. On a real application’s data structures (Section 
4.2), NR outperforms alternatives by 2.6x–14x on workloads 
with 10% updates, or by 1.1x–4.4x on 100% updates.

Testbed. We use a Dell server with 512GB RAM and 56 
cores on four Intel Xeon E7-4850v3 processors at 2.2GHz. 
Each processor is a NUMA node with 14 cores, a 35MB 
shared L3 cache, and a private L2/L1 cache of size 
256KB/64KB per core. Each core has 2 hyper-threads for a 
total of 112 hyper-threads. Cache lines have 64B.

4.1. Real data structures
These experiments use two real data structures: a skip list 
priority queue and a skip list dictionary. (Additional results 
using two other data structures are given in Calciu, Sen 
et al.,3 but these results are qualitatively similar to the ones 
we present here.) A priority queue provides two update opera-
tions and one read-only operation: insert(i) inserts element i, 
deleteMin() removes and returns the smallest element, and 
findMin() returns the smallest element without removing it. 
We implement these operations using a skip list to order the 
elements and keep the minimum at the beginning of the 
list. A dictionary provides operations to insert, lookup, and 
remove elements, and we use a skip list to provide the dic-
tionary. NR, FC, and FC+ internally use the same single-
threaded implementation of a skip list;15 FC uses the flat 
combining implementation from Hendler et al.5 For the LF, 
we use the skip-list-based priority queue and skip list dic-
tionary from Herlihy and Shavit.7

We use the benchmark from the flat combining paper,5 
which runs a mix of generic add, remove, and read opera-
tions. We map these operations to each data structure as 
shown here.

generic	 priority queue	 dictionary
add	 insert(rnd, v)	 insert(rnd, v)
remove	 deleteMin()	 delete(rnd)
read	 findMin()	 lookup(rnd)

Here, rnd indicates a key chosen at random and v is an arbi-
trary value. We use the same ratio of add and remove to 
keep the data structure size approximately constant over 
time, and the results aggregate these two operations as 
“update operations.” We consider two ratios of update-to- 
read operations: 10%, 100% updates (90%, 0% reads). For 
the priority queue, we choose random keys from a uniform 
distribution. For the dictionary, we vary the operation con-
tention by drawing the keys from two distributions: uni-
form (low contention) and zipf with parameter 1.5 (high 
contention).

Coupled data structures. In some applications, data 
structures are read or updated together. For example, Redis 
implements sorted sets using a hash table and a skip list, 
which are updated atomically by each request. NR can pro-
vide these atomic updates, by treating the data structures as 
a single larger data structure with combined operations.

Fake update operations. Some update operations become 
readonly during execution (e.g., remove of a nonexistent 
key). Black-box methods must know about read-only opera-
tions at invocation time. If updates become read-only often, 
one can first attempt to execute them as read-only and, if not 
possible, then execute them as updates (e.g., remove(key) 
first tries to look up the key). This requires a simple wrapper 
around remove(). We did not implement this.

4. EVALUATION
We have evaluated NR to answer five broad questions: How 
does NR scale with the number of cores for different data 
structures and workloads? How does NR compare with other 
concurrent data structures? What is the benefit of NR to real 
applications? How does NR behave on different NUMA 
architectures? What are the benefits of NR’s techniques? 
What are the costs of NR? Here, we highlight the most repre-
sentative results and focus on the first three questions; the 
complete set of results are available in Calciu, Sen et al.3 We 
report on two classes of experiments:

•	 Real Data Structures (Section 4.1): We run micro-
benchmarks on real data structures: a skip list priority 
queue and a skip list dictionary.

•  Real Application (Section 4.2): We run macro-benchmarks 
on the data structures of a real application: the Redis 
storage server modified to use many threads.

We compare NR against other methods (baselines) shown 
in Figure 4. Single Lock (SL) and Readers-Writer Lock (RWL) 
are methods often used in practice; they work by protecting 
the data structure with a SL or a single RWL. For RWL we use 
the same readers-writer lock as NR (Section 3.8). FC consists 
of flat combining used to implement the entire data struc-
ture. FC can be used as a black-box method, but it can also 
use data-structure-specific optimizations to combine opera-
tions for faster execution (hence its name); we use these 
optimizations whenever possible. FC+ is an improvement of 
FC by using a readers-writer lock to execute read-only opera-
tions more efficiently. Lock-Free Baseline (LF) is a lock-free 
algorithm specialized for a specific data structure; this base-
line is available only for some data structures. In the real 
application (Redis), threads must atomically update multi-
ple data structures but existing lock-free algorithms do not 

Figure 4. Other methods for comparison (baselines).

Baseline Description
SL                 One big lock (spinlock)
RWL             One big readers-writer lock
FC                 Flat combining
FC+              Flat combining with readers-writer lock
LF                 Lock-free algorithm
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(a)  For 10% updates, all methods drop in performance at 
the NUMA node boundaries due to the cross-node 
overheads; but NR drops little, making it the best 
after one NUMA node. At max threads, NR is better 
than LF, FC+, FC, RWL, SL by 1.7x, 6x, 7x, 27x, 41x. 
Checking the CPU performance counters, NR had the 
fewest L3 cache misses and L3 cache misses served 
from remote caches, indicating lower cross-node 
traffic.

(b)  For 100% updates, LF loses its advantage due to 
higher operation contention: even within a NUMA 
node, NR is close to LF. After one node, NR is best as 
before. At max threads, NR is better than LF, FC+, FC, 
SL, RWL by 2.4x, 2.5x, 3.3x, 8x, 9.4x.

(c)  In some methods, one thread outperforms many 
threads, but not when there is work outside the data 
structure, as in many real applications. In such appli-
cations, we need more threads to scale the applica-
tion and we want the shared data structure to not 
become a bottleneck.

(d)  Node Replication remains the best method even as 
we vary the amount of external work e and cache pol-
lution. With e=512, NR is better than FC+, LF, FC, SL, 
RWL by 1.7x, 1.8x, 2.8x, 12.6x, 16.9x.

(e)  The cost of NR is that it consumes more memory, 
namely, 148MB of memory at 112 threads (4.4x the 
other methods): 12MB for the log and 34MB for each 
of the four replicas. Technically, NR has another cost: 
it executes an operation many times, one per replica. 
However, this cost is relatively small as NR makes up 
for it with better overall performance.

Results for dictionary. For the dictionary, we see the fol-
lowing results (see Figure 6). When there are updates, per-
formance depends on the level of contention. With low 
contention (uniform keys), LF outperforms other methods 
(it is off the charts): at maximum threads, it is 7x and 14x bet-
ter than NR for 10% and 100% updates, respectively. This is 
due to the parallelism of the skip list unhindered by conten-
tion. Excluding LF, NR outperforms the other methods (with 
100% updates, it does so after threads grow beyond a node).

However, with high contention (zipf keys), LF loses its 
benefit, becoming the worst method for 100% updates. 
There is a high probability of collisions in the vicinity of the 
hot keys and the skip list starts to suffer from many failed 
CASs: with uniform keys, the skip list has ≈300K failed CASs, 
but with the zipf keys this number increases to >7M. NR is 
the best method after 8 threads. Contention in the data 
structure does not disrupt the NR log. On the contrary, data 
structure contention improves cache locality with NR. With 
maximum threads and 10% updates, NR is better than LF, 
FC+, FC, RWL, SL by 3.1x, 4.0x, 6.8x, 16x, 30x. With 100% 
updates, NR is better by 2.8x, 1.8x, 2.4x, 5.7x, 4.3x.

4.2. Redis
We now consider the data structures of the Redis server, made 
concurrent using various black-box methods, including NR.

We evaluate the sorted set data structure in Redis, which 
sorts items based on a score. In Redis, sorted sets are 

Between operations the benchmark optionally does work 
by writing e random locations external to the data structure. 
This work causes cache pollution and reduces the arrival 
rate of operations. We first populate the data structure with 
200,000 items, and then measure the performance of the 
methods for various workload mixes. In each experiment, 
we fix a method, a ratio of update-to-read operations, an 
external work amount e, and a number of threads.

Results for priority queue. For the priority queue, we see 
the following results (see Figure 5).

Figure 5. Performance of priority queue made concurrent using 
different methods. Vertical lines show the boundaries between 
NUMA nodes.
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distribution to generate client load. We modified the bench-
mark to support hybrid read/write workloads using the 
update-read mix of the YCSB benchmark (0%, 10% updates) 
in addition to 100% updates.

To overcome the significant overheads of the Redis RPC 
and approximate a high-performance RPC,10 we invoke 
Redis’s operations directly at the server after the RPC layer, 
instead of generating requests from remote clients.

In each experiment, we create a single sorted set with 
10,000 items. We launch multiple threads that repeatedly 
read or update a uniformly distributed random item using 
ZRANK or ZINCRBY, respectively. In each experiment, we fix 
an update ratio, a method, and a number of cores, and we 
measure the aggregate throughput.

Results. We see the following results (see Figure 7). For 
10% updates, we see that all methods except NR drop after 
threads grow beyond a single node, making NR the best 
method for maximum threads. NR is better than FC+, RWL, 
FC, SL by 2.6x, 3.9x, 4.9x, 14x, respectively. For 100% 
updates, NR is better by 1.1x, 3.7x, 1.1x, 4.4x, respectively. 
For 0% updates, RWL, NR and FC+ scale well and have 
almost identical performance, while FC and SL do not scale 
(the graph is omitted).

While its scalability is not perfect, NR is the best method 
here. As discussed, the goal is to reduce data structure bot-
tlenecks so that the rest of the application benefits from 
adding cores.

5. CONCLUSION
Node Replication is a general black-box method to trans-
form single-threaded data structures into NUMA-aware con-
current data structures. Lock-free data structures are 
considered state-of-the-art, but they were designed for UMA. 
Creating new lock-free algorithms for NUMA is a herculean 
effort, as each data structure requires highly specialized new 
techniques. NR also required comparable effort, but once 

Figure 7. Performance of Redis application.
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Figure 6. Performance of skip list dictionary.

implemented by a composed data structure that combines a 
hash table (for fast lookup) and a skip list (for fast rank/
range queries). Every element in the sorted set is kept in 
both hash table and skip list. These underlying data struc-
tures must be updated atomically without the possibility 
that a user observes an update reflected in the hash table 
without it being reflected in the skip list, and vice versa.

For read operations, we use the ZRANK command, which 
returns the rank of an item in the sorted order. ZRANK finds 
the item in the hash table; if present, it finds its rank in the 
skip list. For update operations we use ZINCRBY, which 
increases the score of an item by a chosen value. ZINCRBY 
finds the item in the hash table; if present, it updates its 
score, and deletes and reinserts it into the skip list.

We used the redis-benchmark utility provided in the 
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realized, it can be used to provide all data structures with no 
extra work. With such a black-box method, we design for the 
architecture (in this case, NUMA) rather than for a data 
structure. We believe the community should investigate this 
black-box approach for future new architectures.�


