COSC441]

Concurrent Programming
Richard A. O'Keefe



Plagiarism

It's trying to claim the credit for other people's work.
It's bad. Don't do it.
The University doesn't tolerate it. Really don't do it.

It's getting easier to detect all the time. Honestly, really
do not do it.

Quoting someone else with a proper citation is
research; it's good; it gets you marks. So get credit for
giving credit.



Class reps

 Every class should have a class rep.

e |It's not hard to be a class rep. You just have to
listen to other students' troubles and tell the
lecturer (me), 400-level coordinator (me), or

HoD there Is a problem that needs to be

addressed. There are a couple of brief

meetings to go to, but don't wait.

e Send paper number, your full nam, your
University e-mail address, and ID to Kaye.



General aims

Understand what concurrent programming 1s

Understand shared memory concurrent programming using
C11 and POSIX threads

Understand threads and stacks.

Understand issues of concurrent memory access including
data races and tearing

Understand critical regions, locks, conditions, monitors,
semaphores, and barriers.

Understand communication including bounded buffers and
flow control.



General aims 2

Understand hardware level locking including
atomic updates, compare-and-swap, and load-
locked/store-conditional.

Be aware of problems with locking, including
contention, convoying, and priority inversion.

Be aware of lock-free data structures and some
reasons for using them.

Be aware of transactional memory and some of
Its benefits and issues.



General aims 3

Understand (shared-nothing) message-passing
as an alternate concurrency model.

Understand how distribution changes things.

Understand some of the issues with timein
concurrent and distributed programming,
Including causality, happens-before, and vector
clocks.

Be aware of some design patterns using
concurrency.



Next week

Next week we shall look at the classic memory
model for programming languages like Fortran,
C, Pascal, especially how procedure calls were
mapped onto a stack

We'll look briefly at the cactus stack model used
by Burroughs Algol, Simula 67, and ML

and the thread model used in POSIX and C11.
We shall also look at the memory hierarchy



Week 3

 We'll look at what goes wrong with the classic
memory model due to compiler optimisations
(that assume single-threading) and concurrency

 We'll introduce the ideas of atomic operations,
critical regions, and locks.

e This will give you enough to write simple
concurrent programs.



What's happening today

Overview.

Distinction between parallel and concurrent.
Getting to know you.

A bit of history.



Parallel

Computer has multiple computing units
They are active at the same time

Vector instructions like SPARC VIS, Power
AltiVec, x86 MMX &c are an example.

forall (1=1, n)

y(1) = dot_product(a(i,*), x)
end forall
we don't care about the order!



Concurrent

The world has many things operating at the same time.

We sometimes have to model this in a computer
program.

The most natural way is one modelled activity : one
concurrent task.

Concurrent activities interact and we have to model and
manage those interactions.

One processor can simulate concurrency.
Programs can be concurrent and parallel.



Distributed

o Adistributed system has multiple computing
devices communicating through a network;

— a cluster in one cabinet
— a LAN In one building
- a WAN across a city, country, or planet.

Distributed systems can simulate shared memory
at heavy cost, because communication Is slow.
Distributed systems can fail in complex ways.



Getting to know you

e | need to know your programming background.
There's no point in me saying "This Is rather like
Emerald except ..." if you don't know Emerald.

e | shall ask you to say what you already know
about concurrency. | need to adjust my
lectures.

e | would like to know what you need/expect from
this paper.



