

C
O

S
C

441

C
oncurrent P

rogram
m

ing
R

ichard A
. O

'K
eefe

P
lagiarism

●
It's trying to claim

 the credit for other people's w
ork.

●
It's bad. D

on't do it.
●

The U
niversity doesn't tolerate it. R

eally don't do it.
●

It's getting easier to detect all the tim
e. H

onestly, really
do not do it.

●
Q

uoting som
eone else w

ith a proper citation is
research; it's good; it gets you m

arks. S
o get credit for

giving credit.

C
lass reps

●
E

very class should have a class rep.
●

It's not hard to be a class rep. You just have to
listen to other students' troubles and tell the
lecturer (m

e), 400-level coordinator (m
e), or

H
oD

 there is a problem
 that needs to be

addressed. T
here are a couple of brief

m
eetings to go to, but don't w

ait.
●

S
end paper num

ber, your full nam
, your

U
niversity e-m

ail address, and ID
 to K

aye.

G
eneral aim

s
●

U
nderstand w

hat concurrent program
m

ing is
●

U
nderstand shared m

em
ory concurrent program

m
ing using

C
11 and P

O
S

IX
 threads

●
U

nderstand threads and stacks.
●

U
nderstand issues of concurrent m

em
ory access including

data races and tearing
●

U
nderstand critical regions, locks, conditions, m

onitors,
sem

aphores, and barriers.
●

U
nderstand com

m
unication including bounded buffers and

flow
 control.

G
eneral aim

s 2

●
U

nderstand hardw
are level locking including

atom
ic updates, com

pare-and-sw
ap, and load-

locked/store-conditional.
●

B
e aw

are of problem
s w

ith locking, including
contention, convoying, and priority inversion.

●
B

e aw
are of lock-free data structures and som

e
reasons for using them

.
●

B
e aw

are of transactional m
em

ory and som
e of

its benefits and issues.

G
eneral aim

s 3

●
U

nderstand (shared-nothing) m
essage-passing

as an alternate concurrency m
odel.

●
U

nderstand how
 distribution changes things.

●
U

nderstand som
e of the issues w

ith tim
e in

concurrent and distributed program
m

ing,
including causality, happens-before, and vector
clocks.

●
B

e aw
are of som

e design patterns using
concurrency.

N
ext w

eek

●
N

ext w
eek w

e shall look at the classic m
em

ory
m

odel for program
m

ing languages like F
ortran,

C
, P

ascal, especially how
 procedure calls w

ere
m

apped onto a stack
●

W
e'll look briefly at the cactus stack m

odel used
by B

urroughs A
lgol, S

im
ula 67, and M

L
●

and the thread m
odel used in P

O
S

IX
 and C

11.
●

W
e shall also look at the m

em
ory hierarchy

W
eek 3

●
W

e'll look at w
hat goes w

rong w
ith the classic

m
em

ory m
odel due to com

piler optim
isations

(that assum
e single-threading) and concurrency

●
W

e'll introduce the ideas of atom
ic operations,

critical regions, and locks.
●

T
his w

ill give you enough to w
rite sim

ple
concurrent program

s.

W
hat's happening today

●
O

verview
.

●
D

istinction betw
een parallel and concurrent.

●
G

etting to know
 you.

●
A

 bit of history.

P
arallel

●
C

om
puter has m

ultiple com
puting units

●
T

hey are active at the sam
e tim

e
●

V
ector instructions like S

P
A

R
C

 V
IS

, P
ow

er
A

ltiV
ec, x86 M

M
X

 &
c are an exam

ple.
●

forall (i =
 1, n)

 y(i) =
 dot_product(a(i,*), x)

end forall
w

e don't care about the order!

C
oncurrent

●
The w

orld has m
any things operating at the sam

e tim
e.

●
W

e som
etim

es have to m
odel this in a com

puter
program

.
●

The m
ost natural w

ay is one m
odelled activity : one

concurrent task.
●

C
oncurrent activities interact and w

e have to m
odel and

m
anage those interactions.

●
O

ne processor can sim
ulate concurrency.

●
P

rogram
s can be concurrent and parallel.

D
istributed

●
A

 distributed system
 has m

ultiple com
puting

devices com
m

unicating through a netw
ork;

–
a cluster in one cabinet

–
a LA

N
 in one building

–
a W

A
N

 across a city, country, or planet.

D
istributed system

s can sim
ulate shared m

em
ory

at heavy cost, because com
m

unication is slow
.

D
istributed system

s can fail in com
plex w

ays.

G
etting to know

 you

●
I need to know

 your program
m

ing background.
T

here's no point in m
e saying "T

his is rather like
E

m
erald except ..." if you don't know

 E
m

erald.
●

I shall ask you to say w
hat you already know

about concurrency. I need to adjust m

y
lectures.

●
I w

ould like to know
 w

hat you need/expect from

this paper.

