
COSC441 Concurrent Programming
Memory is weird

Richard A. O’Keefe

July 18, 2017



Outline

I The Mutual Exclusion Problem

I Dekker’s Algorithm

I What it assumes

I How the compiler wrecks it

I How modern hardware wrecks it

I Lazy initialisation

I Double-checked locking in Java

I The Memory Hierarchy



The Mutual Exclusion Problem

I There is some resource (variable, file, etc.)

I It can only be used by one thread at a time.

I Thread must do something to avoid
interference.

I But what?



Java Example

public class ConcurrentCounter {
private long count = 0;
public void increment() {

synchronized (this) { count++; }
}
public long value() {

synchronized (this) { return count; }
}

}



But how does that work?

I synchronized is how Java does it.

I That has to be implemented at a lower level.

I How do you do that?

I Without special hardware support?



Dekker’s Algorithm

I First correct mutual exclusion algorithm.

I Didn’t need special hardware support.

I Only supports two threads.



Dekker data

bool wants to enter[2] = {false, false};
int turn = 0; // or 1

wants to enter[i ] is true if thread i wants to enter
its critical section.
turn alternates to indicate which thread gets priority
if both want to enter their critical region.



Dekker code

process p(int me, int other) {
wants to enter[me] = true;
while (wants to enter[other]) {

if (turn 6= me) {
wants to enter[me] = false;
while (turn 6= me) /* busy wait */;
wants to enter[me] = true;

}
}
/* critical section here */
turn = other;
wants to enter[me] = false;

}



Questions

I How does it work? — Look it up.

I Does it work? — It did, but not now.

I What must we assume for it to work?



Assumptions

I Instructions may be arbitrarily interleaved, but
instructions reading or writing the same
location act as if serialised.

I Assignment is atomic.
Fails two ways: assignment of small values may
involve an instruction sequence, and
assignment of large values may involve multiple
stores, which leads to tearing.

I The change made by an assignment is
immediately visible to all other threads.

I Variable references always go to memory.



How the compiler wrecks it

move wants to enter[other] to R1;
go to L3 if R1;

L1: move turn to R1;
go to L3 if R1 6= me;
move wants to enter[me] to R1;

L2: go to L2;
L3: /* critical section */

move other to turn;
move 0 to wants to enter[me];



Compiler optimisations

I Dead code is eliminated.

I Unchanged tests aren’t retested.

I It takes less time to use data in registers than
data in memory.

I Compilers go to a lot of trouble to move data
into registers and keep it there as long as it is
useful.

I Compilers are explicitly allowed to optimise
code as if there was only one thread.

I This means that an assignment may update a
local copy of a variable, not the shared memory.

I This has been true since the 1960s. . .



Defeating the compiler

I DECLARE X BINARY FIXED ABNORMAL;

I “The ABNORMAL attribute specifies that the
value of the variable can change between
statements or within a statement. An abnormal
variable is fetched from or stored in storage
each time it is needed or each time it is
changed. All optimisation is inhibited for an
abnormal variable.” (From 1965.)

I C picked this up in 1989 and called it volatile.

I C++ got it from C and Java got it from C++.

I volatile bool wants to enter[2] = . . . ;

I volatile int turn = . . . ;



How hardware wrecks it

I Can we save Dekker’s algorithm by declaring
the key variables volatile?

I No: hardware is also allowed to “optimise” as if
there is only one thread.

I A common feature is a “store buffer”; an
assignment is queued up and written to
memory when convenient. Reads look in the
queue.

I An assignment may have been queued, the
processor that did it will see the change, others
may not.



Defeating the hardware

I Needs special hardware support!

I Called a memory fence.

I Waits for all writes to complete.

I Library implementations of locking include
appropriate memory fences.

I Assume that even volatile assignments are not
visible to other threads until a fence or locking
operation is done.



Lazy initialisation

I An OO idiom.

I An instance of X has a reference to Y.

I It is expensive to make a Y.

I The Y might not be needed.

I Don’t create it until you know you need it.



Java example

public class X {
private Y myY = null;
public void foo() {

if (myY == null) myY = new myY();
/* use myY */

}
}



Locked version

The code above is not thread-safe.

synchronized (this) {
if (myY == null) myY = new myY();

}



Locking is expensive so. . .

if (myY == null) {
synchronized (this) {

if (myY == null) myY = new myY();
}

}

What could go wrong?



It doesn’t work

I Adding volatile helps.

I But not enough. You need a memory fence too.

I The only way to get it is to use locking.



Memory Hierarchy

Read Ulrich Drepper’s 2007 report “What Every
Programmer Should Know About Memory” at
https://people.freebsd.org/∼lstewart/articles/
cpumemory.pdf


	Lecture

