
COSC441 Concurrent Programming
Stacks and Threads

Richard A. O’Keefe

July 24, 2017

Outline

I Procedure calls use stacks

I Expression evaluation stack

I Environment stack

I Control stack

I The Cactus Stack model

I The Multi-Stack model

I C11 Threads

I Posix Threads

Procedure calls use stacks

I Procedure calls are fundamental,

I especially in OOP.

I Even more basic than variables!
I This uses three stacks:

I Expression evaluation stack
I Environment stack
I Control stack

Expression evaluation stack

I Holds values of subexpressions

I Could be numbers or pointers

I Forth, Postscript, Transputer, Burroughs
B5500 to E-mode

I Still popular in VMs, Lua, Java, AWK, etc.

Expression evaluation stack 2

EJcK = pushConst(c)

EJvK = pushVar(v)

EJe1 θ e2K = EJe1K; EJe2K; doOp(θ)

EJf (e1, . . . , en)K = EJe1K; . . . EJenK; EJf K; call

EJea[ei]K = ; EJeiK; EJeaK; index

EJec ? et : ef K = EJecK; jfalse(L1);

EJetK; jump(L2); L1 : EJef K; L2 :

As always, as if

I Hardware (B6700, Transputer) or software can
keep part of the stack in registers.

I Compilers try to avoid re-evaluating
sub-expressions (as long as you can’t tell).

I Register machines don’t have that many
expressions, so intermediate values are spilled
to memory.

Environment stack

I type Binding = Variable 7→ Value

I type Frame = Map[Variable, Value]

I type Environment = List[Frame

I lookup v [] = error ”unbound variable”

I lookup v (f : fs) =
v ∈ domf ? f (v) : lookup v fs

I This implements lexical scoping.

Independence of Environment Stack

I Blocks in Algol, C, Java, etc push new frames
on entry and pop them on exit.

I That is, the environment stack can change
without a procedure call.

I An Object is basically an environment. A Java
class O may contain a nested class I; an
instance of I holds a pointer to the containing
instance of O so that methods in I can refer
to fields of O.

I In a language with Closures, a frame may
outlive the call that created it.

Nested class environment example

public class O {
private int x = 0;
public class I {

public int inc() {
return x++;

}
}

}
...
O.I foo = new O().new I();
System.out.println(foo.inc());

Closure environment example

datatype Op = Inc | Dec | Get
fun make counter initial =

let val n = ref initial
fun f Get = !n
| f Inc = (n := !n + 1; 1)
| f Dec = (n := !n - 1; ∼1)

in f
end

...
val c = make counter 10; (c Inc; c Inc; c Get);
=⇒ 12

Control stack

I Handles procedure return

I Is a stack of continuations

I A continuation is “what to do next”

I Simplest case: just return addresses.

I jsr L = push(PC); PC ← L
ret = PC ← pop()

In Algol-like languages

I All three stacks folded into one
I A Stack Frame contains

I A return address
I A dynamic link (where is caller’s frame)
I A static link (where is outer environment)
I Bindings
I Expression evaluation intermediate values
I including arguments for next call

Confusions

I The return address is really the continuation
address of the caller’s frame, but it is pushed
by the callee, so people think of it as part of
the callee’s frame.

I The arguments for the next call belong to the
next callee, but this procedure pushes them, so
people think of them as part of this frame.

The Cactus Stack model
Photo credit: Stevemarlett - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=2838664

The Cactus Stack model, 2

I Used in Burroughs Extended Algol

I Used in Simula 67

I Used in some Algol 68 systems

I Used in Concurrent ML

I Hint: All support concurrency well.

I Snag: more complex memory management.

The Linear Stack model

I A stack is a single block of memory, frames are
created on entry and removed on exit.

I Used in Algol 60, Pascal, BCPL, C.

I Classic UNIX memory model was
code static data heap → gap ← stack

I C compiler generates simple stack code.

I Cannot move or grow the stack.

Why can’t C stacks move or grow?

I In order to move a chunk of memory, you have
to adjust all the pointers (in)to it.

I The static and dynamic links are easy to find
by “walking the stack” and could be expressed
as offsets anyway.

I Languages like Lisp, Smalltalk, and Python
store tagged pointers on the stack.

I Compilers for languages like ML and Java leave
behind stack maps to find pointers.

I C and C++ do neither, and contain internal
pointers (like &x).

I So moving C stacks breaks things.

What about scattered stacks?

I It is possible to have a linear stack broken into
several segments.

I Doesn’t move but does grow.

I That requires extra procedure entry/exit work.

I People wanted to add concurrency to C & Unix
by adding a library and not changing the
compiler.

Consequences of the linear stack

I The effect of a stack overflow in C[++] is not
defined.

I It is not an exception you can catch.

I A stack must be pre-allocated big enough.

I If it isn’t, that’s your fault.

I You cannot find out how big it should be.

Creating a Thread in Erlang

spawn(fun () →
body of new thread

end)

Easy because there are nested functions, tagged
pointers, and growable stacks.

Creating a Thread in C11

#include 〈threads.h〉
// C11 standard, section 7.26, not in El Capitan
thrd t mythread;
void myfunc(void *ctxt) {

code to run in new thread
thrd exit(result);

}
int e = thrd create(&mythread, myfunc, &mydata);
// ⇒ thrd success or thrd nomem or thrd error
e = thrd join(mythread, &result);

C11 Thread Creation 2

I This is FORK-JOIN parallelism, just like fork()
and wait() in classic UNIX.

I If you want the new thread to continue
independently, you must do

e = thrd detach(mythread);

I thrd current returns id of calling thread.

I thrd equal compares two thrd t-s.

Problems

I The machines I have access to don’t support
C11 yet.

I The C library picks a new stack size.

I Nothing you do affects that size.

I If the stack size is too small you are euchred.

I Parameters and locals are private to the
thread, globals are available, anything else has
to be accessed through a global or the void*
argument.

Thread-local variables

I What if you want multiple functions to access
a variable, but each thread should have its own
copy?

I Declare such variables thread local.

I Problem: each thread gets a copy whether it
needs one or not.

I In Ada, a task is a kind of procedure. Variables
declared in that are automatically thread local,
and only relevant ones exist.

I C stinks as a concurrent language.

Creating threads in POSIX

#include 〈pthread.h〉
pthread t mythread;
pthread attr t mythreadattrs;
void myfunc(void *ctxt) {

code to run in new thread
pthread exit(&myresult);

}
int e = pthread create(&mythread, &myattr,

myfunc, &mydata);
void *result;
e = pthread join(mythread, &myresult);

POSIX thread creation 2

I This is FORK-JOIN parallelism.

I If you want the new thread to continue
independently, you can do

e = pthread detach(mythread);

I or use PTHREAD CREATE DETACHED in
myattrs.

I pthread self returns id of calling thread.

I pthread equal compares two thrd t-s.

Problems

I OSX supports less of POSIX than Linux and
Solaris.

I There is a default stack size which can be
wrong.

I But you can set a stack size, even allocate it
yourself, using attributes.

I If the stack size is too small you are euchred.

I Parameters and locals are private to the
thread, globals are available, anything else has
to be accessed through a global or the void*
argument.

Thread-local variables

I GCC supports thread as a storage class.

I Some other C compilers support it too.

I It doesn’t work in OSX.

I The portable way is to create such variables
dynamically, which hurts type checking.

I C stinks as a concurrent language.

A common mistake

I In Ada, a task will not exit until its child tasks
have finished. (Yay!)

I In C, the program will exit as soon as main()
returns or exit() is called, even if other threads
are still running. (Boo!)

I If it is important that a thread should finish it
is up to you to ensure this.

Next week

I Synchronisation between threads.

I Atomic variables in C and Java.

I How atomic variables work.

I The CAS and LL/SC instructions.

I Mutual exclusion locks (mutexes).

I Semaphores.

	Lecture

