
COSC441 Concurrent Programming
Atomic Variables and Mutexes

Richard A. O’Keefe

August 1, 2017



Outline

I What does “atomic” mean?

I Atomic operations in C

I Atomic operations in Java

I How atomic variables work

I CAS and LL/SC

I What is a “mutex”?

I Mutexes in C.

I Mutexes in Java.

I Deadlock.

I Semaphores.



What does “atomic” mean?

An operation is atomic if and only if it is either
completed with all its side effects visible in all
threads, or not completed at all with no side effects.
The key point is that an operation can temporarily
break an invariant while updating a data structure
and then restore it, while nothing else will ever see
the object in a state that does not satisfy the
invariant.



How memory used to work

In the days of ferrite core memory,

1. Acquire exclusive access to the memory bus.

2. Fetch the value (which destroys it).

3. Modify the value.

4. Store the value back (essential).

5. Release the memory bus.



Typical old-style instructions

I ADDM register, memory
[memory] := [memory] + register.

I SWAP register, memory
temp := [memory]
[memory] := register
register := temp



On a Load/Store architecture

Semiconductor memory doesn’t destroy when
reading.

I LD register, memory

I operate on register

I ST register, memory

These are separate instructions which can be
interleaved with instructions in other threads.



On an x86 machine

I LOCK;inst executes inst with the LOCK#
signal asserted. (Since P6 locks cache, relies on
cache consistency to achieve global locking.)

I Can only be used with ADD, ADC, AND, BTC,
BTR, BTS, CMPXCHG, CMPXCH8B, DEC,
INC, NEG, NOT, OR, SBB, SUB, XOR,
XADD, XCHG.

I That is add, subtract, and bitwise operations
on 8-, 16-, 32-, or 64-bit integers, also swap
and compare-and-swap.



In C11: Header and types

I Header is 〈stdatomic.h〉.
I Types are atomic T where T is one of bool,

char, schar, uchar, short, ushort, int, uint, long,
ulong, llong, ullong, intmax, uintmax, intptr t,
uintptr t, size t, ptrdiff t, char16 t, char 32 t,
wchar t, {,u}int least,fast8,16,32,64 t.

I Operations are type-generic.



In C11: Operations

I A v = ATOMIC VAR INIT(value);

I void atomic store(volatile A *target, C
newval);

I C atomic load(volatile A *source);

I C atomic exchange(volatile A *target);

I bool atomic compare exchange strong(volatile
A *target, C oldval, C newval);

I C atomic fetch {add,sub,and,or,xor}(volatile
A *target, C delta);



C11 vs x86

I essentially the same range of operations

I no float or double atomic types

I C11 actually has an extra parameter to specify
what kind of memory barriers you get; stick to
the simple ones as they are almost always what
you want.

I stdatomic.h is supported in GCC 4.9 and later

I C11 threads are not in glibc or musl.

I clang on OSX has neither



Other atomic libraries for C

I Solaris: 〈atomic.h〉, offers compare-and-swap
swap, add, inc, and dec for pointers and all
integers and and, or for all integers.

I MacOSX: 〈libkern/OSAtomic.h〉, offers
compare-and-swap, add, inc, dec, and, or, and
xor for 32- and 64-bit integers, with and
without barriers (use the Barrier version), and
single bit test-and-set/clear.

I OpenBSD: 〈sys/atomic.h〉, offers
compare-and-swap, swap on pointers, int, long,
and add, sub, inc, dec on int, long.

I Linux: GCC intrinsic (see GCC manual) or C11.



Atomic operations in Java
I Package is java.util.concurrent.atomic

I AtomicBoolean, AtomicInteger,
AtomicIntegerArray, AtomicLong,
AtomicLongArray, AtomicReference〈V 〉, and
AtomicReferenceArray〈E 〉.

I Each class has a private volatile field.
I Like C and x86 (surprise surprise), no atomic

floats or doubles.
I Array classes like scalars but operations have

an extra index parameter, because Java can’t
express “array of volatile int”.

I No built-in bitwise or max/min update. You
can use accumulate, or do it outside.



Java, core operations

I get(), current value, relies on volatile

I set(x), relies on volatile

I getAndSet(x), returns old value, is swap

I compareAndSet(old, new), returns boolean.

I accumulateAndGet(x, fn), call binary fn, return
new

I getAndAccumulate(x, fn), call binary fn, return
old



How does this work?

bool compare and swap(volatile T*var,T old,T new) {
atomic {

if (*var == old) {
*var = new;
return true;

} else {
return false;

}
}

}



CAS is a fundamental building block

volatile T var;
// to do var = fun(var) atomically.
// Note: fun must not have side effects.
T old, new;
do {

old = var;
new = fun(old);

} while (!compare and swap(&var, old, new);



Load Locked + Store Conditional

I Some machines don’t have CAS.

I Notably ARM.

I They have LL and SC.

I CAS is vulnerable to the A-B-A problem.

I LL+SC is not.

I LL+SC has its own problems. . .



What they do

I LL register, address
protected := address;
register := [memory];

I ST register, address
[address] := register;
if address == protected, clear protected.

I SC register, address
if address == protected, [address] := register
otherwise indicate failure.



The A-B-A problem

I “has the old value” is not the same as “has not
been changed”.

I Thread 1 loads variable, gets A.

I Thread 2 stores B into variable.

I Thread 3 stores A into variable.

I Thread 1 looks again, sees A.

I Thinks “no change” but it changed twice.

I Use CAS when this is OK.



Problems of LL+SC

I Spurious failure if interrupt, context switch,
etc. between LL and SC.

I Processor may limit number of instructions
between LL and SC.

I Processor has only one “protected” register so
two LL+SC blocks at same time will hurt.

I But at least not fooled by A-B-A.



Atomic limitations

I Atomic variables/operations let you update one
number.

I The MC680[234]0 had a double
compare-and-swap instruction (see Wikipedia)
but current machines don’t.

I If we need to update more than one state
variable, or we want to protect some resource
other than a memory variable, we need
something else.

I That something is a mutex.



What is a “mutex”?

I An instance of an abstract data type used for
mutual exclusion.

I Five basic operations:
I pthread mutex init (create)
I pthread mutex lock (lock)
I pthread mutex trylock (try to lock, return boolean)
I pthread mutex unlock (lock)
I pthread mutex destroy (destroy)



Typical use

pthread mutex lock(&mymutex);
for (i = 0; i < n; i++) {

a[i] = b[i]+c[i];
}
pthread mutex unlock(&mymutex)



Four kinds of mutex in POSIX

I Plain: error to lock a mutex you already hold.
(Deadlocks.)

I Checked: error to lock a mutex you already
hold. (Returns error code.)

I Recursive: can lock mutex many times, must
unlock it that many times.

I Robust: if thread crashes while holding it, goes
into special state where next locker is told



Plain mutexes

I Contains (available?, queue of waiting threads)

I lock(&mutex) = atomic:
if available then set available false otherwise
join the queue of waiting threads.

I unlock(&mutex) = atomic:
if available report error, otherwise if queue
empty, set available true, otherwise remove and
wake one waiting thread.

I lock(&m); lock(&m) deadlocks.



Recursive mutexes
I Contains (owner, counter, queue of waiting

threads)
I lock(&mutex) = atomic:

if counter = 0 set counter to 1 and owner to
this thread, otherwise if owner is this thread,
increment counter, otherwise join the queue of
waiting threads.

I unlock(&mutex) = atomic:
if owner is not this thread, report error,
otherwise decrement the counter, and if it is
now 0, clear the owner, and if the queue is not
empty, remove and wake one waiting thread.

I lock(&m); lock(&m) just works.



Mutexes in Java

I Package java.util.concurrent.locks

I Lock interface

I ReentrantLock class.

I .lock(), .trylock(), and .unlock()

I .lockInterruptibly()



Mutexes vs synchronized

I Every object is a lock.

I synchronized combines lock and unlock.

I There is no try-synchronized.

I There is no synchronized-with-timeout.

I Locks allow Conditions (next week).

I synchronized is faster but more limited.



Deadlock

I at least two threads, at least two resources.

I Thread 1 claims A.

I Thread 2 claims B.

I Thread 1 claims B and waits.

I Thread 2 claims A and waits. . .

I Avoidance: place a total order on locks,
acquire earlier before later.

I We’ll revisit this.



Semaphores

I First general purpose synchronisation method.

I Invented by E. W. Dijkstra.

I Inspired by railway semaphores.

I (non-negative counter, queue of waiting
threads)

I P(sem) = if counter positive, decrement it,
otherwise join queue of waiting threads.

I V(sem) = if counter zero and threads waiting,
remove and wake one thread, otherwise
increment counter.



Semaphores 2

I See “The Little Book of Semaphores”.

I Let you keep track of discrete but
indistinguishable “resources”.

I One thread can wait for an event and another
thread can signal it. Mutexes do not allow this.



Next week

I Deadlock, livelock, and starvation.

I Monitors and conditions

I Some concurrent data structures


	Lecture

