COSC441

Distributed Programming



Martelli Model of Scalability

1 core: single thread and single process
2-8 cores: multiple threads and multiple processes
>8 cores: distributed processing

Alex Martelli (a Pythonista). Claims that as time goes
on, the multi-thread approach loses relevance.

TILEG4, 2007, 64 cores. | have a Parallela 18-core
“card” @ USD99, they have a 66-core machine @
USD750, and have made a 1024-core chip.

But eventually distributed is the way to go.




Shared-memory concurrency

Data structures stay put in memory

Threads communicate through shared data
structures

and perhaps by signals/events
Access Is controlled by locks

Locking Is expensive, so managing
communication is important

There is a common notion of time, more or less



Distributed programming

Computations take place on many machines

Shared memory either does not exist or Is
simulated (OpenSHMEM)

Processes communicate by exchanging
messages

Data are copied through messages
Communication is expensive
There is no global time



Issues with messages

Latency, bandwidth, capacity (last week)
In-order vs out-of-order

Delivery

Reliability

Security

Network and process failure

Time



Ordering

Process A sends message X to process B
Process A sends message Yy to process B
Which message does B see first?

Why might that happen?

What can we do about that?

- sequence numbers
- buffering
— retransmission



Delivery

Process A sends message X to process B
How many copies of x does B get?

— at most once
— at least once
— exactly once

How can we deal with these?
Synchronous vs asynchronous, ACK/NAK.



Reliability

Messages may be corrupted
Ethernet packets have a 32-bit CRC check
IPv4 packets have a 16-bit header checksum

"CP has the same kind of 16-bit checksum but includes
the payload as well as the header

IPv6 omits the IP header checksum

Data may be corrupted at the hardware level (electrical
noise) or the software level (broken code in the network
stack).



Security

Eavesdroppers may capture data
They may replay data later

hey may intercept and change data

Not so much an issue within a data centre
(LAN) but definitely an issue at wider scale
(WAN).



Failure

Communication channels may fail (backhoes
and squirrels)

Power may be lost (Delta installing new power
poles disconnected power to my house this
morning)

Any layer of software may be buggy

Is wire cut? Is machine dead? Did OS crash?
Is user-level process dead? Can be hard to tell.



Byzantine Fallure

Nonresponsiveness Is not too hard to deal with
The Byzantine Generals problem

Malicious failure: hardware + software look OK
but are acting malevolently.

Think: links In messages from spammers



Time

There Is no such thing as NOW.

Distributed programming lives in a relativistic
world.

Processing elements communicate through
messages which take varying amounts of time
to arrive.

You never know what is happening elsewhere
NOW.



Happens-before/Lamport clocks

There Is a partial order on events.

If event X precedes event Y at the same place,
X happens before Y.

Sending a message happens before receiving
It.
The partial order iIs generated by those.

Any partial order can be completed to a total
order, but Iit's not metric.



