

COSC441

Distributed Programming

Martelli Model of Scalability
● 1 core: single thread and single process

● 2-8 cores: multiple threads and multiple processes

● >8 cores: distributed processing

● Alex Martelli (a Pythonista). Claims that as time goes
on, the multi-thread approach loses relevance.

● TILE64, 2007, 64 cores. I have a Parallela 18-core
“card” @ USD99, they have a 66-core machine @
USD750, and have made a 1024-core chip.

● But eventually distributed is the way to go.

Shared-memory concurrency

● Data structures stay put in memory

● Threads communicate through shared data
structures

● and perhaps by signals/events

● Access is controlled by locks

● Locking is expensive, so managing
communication is important

● There is a common notion of time, more or less

Distributed programming

● Computations take place on many machines

● Shared memory either does not exist or is
simulated (OpenSHMEM)

● Processes communicate by exchanging
messages

● Data are copied through messages

● Communication is expensive

● There is no global time

Issues with messages

● Latency, bandwidth, capacity (last week)

● In-order vs out-of-order

● Delivery

● Reliability

● Security

● Network and process failure

● Time

Ordering

● Process A sends message x to process B

● Process A sends message y to process B

● Which message does B see first?

● Why might that happen?

● What can we do about that?

– sequence numbers

– buffering

– retransmission

Delivery

● Process A sends message x to process B

● How many copies of x does B get?

– at most once

– at least once

– exactly once

● How can we deal with these?

● Synchronous vs asynchronous, ACK/NAK.

Reliability

● Messages may be corrupted
● Ethernet packets have a 32-bit CRC check
● IPv4 packets have a 16-bit header checksum

● TCP has the same kind of 16-bit checksum but includes
the payload as well as the header

● IPv6 omits the IP header checksum

● Data may be corrupted at the hardware level (electrical
noise) or the software level (broken code in the network
stack).

●

Security

● Eavesdroppers may capture data

● They may replay data later

● They may intercept and change data

● Not so much an issue within a data centre
(LAN) but definitely an issue at wider scale
(WAN).

Failure

● Communication channels may fail (backhoes
and squirrels)

● Power may be lost (Delta installing new power
poles disconnected power to my house this
morning)

● Any layer of software may be buggy

● Is wire cut? Is machine dead? Did OS crash?
Is user-level process dead? Can be hard to tell.

Byzantine Failure

● Nonresponsiveness is not too hard to deal with

● The Byzantine Generals problem

● Malicious failure: hardware + software look OK
but are acting malevolently.

● Think: links in messages from spammers

Time

● There is no such thing as NOW.

● Distributed programming lives in a relativistic
world.

● Processing elements communicate through
messages which take varying amounts of time
to arrive.

● You never know what is happening elsewhere
NOW.

Happens-before/Lamport clocks

● There is a partial order on events.

● If event X precedes event Y at the same place,
X happens before Y.

● Sending a message happens before receiving
it.

● The partial order is generated by those.

● Any partial order can be completed to a total
order, but it's not metric.

