COSC441

Lecture 8
Introduction to Erlang



Approach

The reference book is “Learn You Some Erlang
for Great Good!” by Fred Heébert.

http://learnyousomeerlang.com
lets you read it free on-line.

What | am going to do Is to introduce you to
some of the key ideas; turn to the book for
detalls.

https://www.erlang.org/docs reference material


http://learnyousomeerlang.com/
https://www.erlang.org/docs

What goes into a language?

Common ideas
Application-specific ideas
Designer quirks
Accidents of history



Whence Erlang?

 Erlang was invented by Joe Armstrong, who
was familiar with a wide range of imperative,
OO, and declarative languages, specifically
Including Lisp, Prolog, and Strand-88.

e |t was invented at the Ericsson Computer
Science Laboratory.

e |t was invented for programming soft real-time
distributed telecoms applications, and

secondarily for Internet applications.



Common ideas

e What do we need for a programming language?
 Minimally, a few combinators.

- I X=X
- KXy=X
- SXyz=xz(y 2z
- https://en.wikipedia.org/wiki/SKI_combinator_calcul
us
 What about numbers, sequences, &c?
We can model those as functions!


https://en.wikipedia.org/wiki/SKI_combinator_calculus
https://en.wikipedia.org/wiki/SKI_combinator_calculus

Common ideas 2

We need some built-in data types.

We need operations for constructing them,
deconstructing them, deriving new ones, and so

on.
We neec
We neecg

We neec

a way to give names to values.
a way to define and name functions.
some form of conditional construct.



Built-in data types

Integer (unbounded)

Float (IEEE 754 doubles)

Atoms (uniquely stored strings)

Lists [] (empty) [Head|Talil] (non-empty)
Tuples {X1,...,Xn}

Maps #{Key=>Val, ..., Key=>Val}
Functions as values



Application data types

Binaries (originally byte sequences, now bit
sequences) for shipping uninterpreted packets
around.

Process IDs
References (unforgeable unique “cookies”)

Ports (I1/0 connections that look a lot like pids)



Variables

In the shared memory model, we saw that
shared mutable data can be trouble.

Let's not have any mutable variables!

(There are actually several mutable bulk stores:
the file system, the module system, the process
registry, and several kinds of key-value store.)

X =1 Is not an assignment statement!



Variables 2

A “don't care” variable or “wild card” is written as
a single underscore

Named variables are identifiers beginning with a
capital letter.

A variable is not a box you can change, but an
alias for a value. A variable can become bound
once and only once.

See also “Single Assignment C”.



Matching 1

e Variable = Expression

— evaluates Expression to V
— If Variable has no value yet, binds it to V

— If Variable has a value, checks whether that value Is
equal to V.

e If it iIs not, raises an exception.

— The whole form has V as its value, so
(X=1) + 1 has the value 2.



Static or dynamic typing?

e One purpose of type checking is to ensure that
the whole program is consistent.

 One of the core requirements for Erlang was to
support “hot loading” where a module can be
replaced while the program is running. Itis
common for Java to load classes at run time,
but Java does not replace classes dynamically

e Since Erlang doesn't have the whole program, it
was originally designed without a type system.



Recognisers

If you don't have types, you need recognisers.

IS_Integer/1, is_float/1l, iIs_number/1l, iIs_atom/1,
Is_list/1, i1s_tuple/l, is_function/1, is_function/2,
Is_reference/l, is_pid/1, is_binary/1.

We refer to the function called name with arity
arguments in module as module:name/arity or
name/arity for short.

A recogniser returns the atom true or false.



Common operations

The usual arithmetic operations

Comparison. number < atom < reference < fun
< port < pid < tuple < list < binary.

Two sets of equality operators: =:= and =/=
require type match as well as value match,
while == and /= will equate integers and floats.

Trap: equal-to-or-less-than is spelled =<
Erlang got this from Strand-88 which got it from
Prolog which got it from Pop-2 (1967).



Conversions

Several built-in operations convert a value from a
source type to a target type. The convention is that
such operations are called source to target/1.

“fo0” Is a string. A string Is just a list whose elements
are Unicode code-points.

<<"fo0">> Is a binary. This will be a sequence of 3
pytes.

Ist_to_binary(“foo”) => <<"fo0">>

pinary _to_list(<<"fo0”">>) => “foo”



Functions

e fun (Arguments) -> Body end
IS an anonymous function.

* myfun(Arguments) ->
Body.
IS a named function. Notice the full stop at the

end. Every Erlang top level form must end with
a full stop.

e Arguments are passed by pattern matching.



Creating a new process

spawn(Function_With_No_Arguments)
creates a new process executing the given
function and returns its process ID.

To find your own process ID, use self().

"he new process does not know anything about

Its parent unless you tell it. There is no
equivalent of getppid().



Communication

e Pid ! Message
sends Message to the process named by Pid.

Pid can be a process Iid.
Or an atom referring to a process in the registry.

Send a message to a dead process and it just
quietly disappears.

If Pid i1s not a pid or a registered name, that's an
error.

Message can be any value, including a function.



Recelving a message

e receive
Pat [when Guard] -> Body
, Pat [when Guard] -> Body

after Timeout -> Body
end.






