

COSC441

Lecture 8
Introduction to Erlang

Approach

● The reference book is “Learn You Some Erlang
for Great Good!” by Fred Hébert.

● http://learnyousomeerlang.com
lets you read it free on-line.

● What I am going to do is to introduce you to
some of the key ideas; turn to the book for
details.

● https://www.erlang.org/docs reference material

http://learnyousomeerlang.com/
https://www.erlang.org/docs

What goes into a language?

● Common ideas

● Application-specific ideas

● Designer quirks

● Accidents of history

Whence Erlang?

● Erlang was invented by Joe Armstrong, who
was familiar with a wide range of imperative,
OO, and declarative languages, specifically
including Lisp, Prolog, and Strand-88.

● It was invented at the Ericsson Computer
Science Laboratory.

● It was invented for programming soft real-time
distributed telecoms applications, and
secondarily for Internet applications.

Common ideas

● What do we need for a programming language?

● Minimally, a few combinators.

– I x = x

– K x y = x

– S x y z = x z (y z)

– https://en.wikipedia.org/wiki/SKI_combinator_calcul
us

● What about numbers, sequences, &c?
We can model those as functions!

https://en.wikipedia.org/wiki/SKI_combinator_calculus
https://en.wikipedia.org/wiki/SKI_combinator_calculus

Common ideas 2

● We need some built-in data types.

● We need operations for constructing them,
deconstructing them, deriving new ones, and so
on.

● We need a way to give names to values.

● We need a way to define and name functions.

● We need some form of conditional construct.

Built-in data types

● Integer (unbounded)

● Float (IEEE 754 doubles)

● Atoms (uniquely stored strings)

● Lists [] (empty) [Head|Tail] (non-empty)

● Tuples {X1,...,Xn}

● Maps #{Key=>Val, …, Key=>Val}

● Functions as values

Application data types

● Binaries (originally byte sequences, now bit
sequences) for shipping uninterpreted packets
around.

● Process IDs

● References (unforgeable unique “cookies”)

● Ports (I/O connections that look a lot like pids)

Variables

● In the shared memory model, we saw that
shared mutable data can be trouble.

● Let's not have any mutable variables!

● (There are actually several mutable bulk stores:
the file system, the module system, the process
registry, and several kinds of key-value store.)

● X = 1 is not an assignment statement!

Variables 2

● A “don't care” variable or “wild card” is written as
a single underscore _

● Named variables are identifiers beginning with a
capital letter.

● A variable is not a box you can change, but an
alias for a value. A variable can become bound
once and only once.

● See also “Single Assignment C”.

Matching 1

● Variable = Expression

– evaluates Expression to V

– if Variable has no value yet, binds it to V

– if Variable has a value, checks whether that value is
equal to V.

● If it is not, raises an exception.

– The whole form has V as its value, so
(X = 1) + 1 has the value 2.

Static or dynamic typing?

● One purpose of type checking is to ensure that
the whole program is consistent.

● One of the core requirements for Erlang was to
support “hot loading” where a module can be
replaced while the program is running. It is
common for Java to load classes at run time,
but Java does not replace classes dynamically

● Since Erlang doesn't have the whole program, it
was originally designed without a type system.

Recognisers

● If you don't have types, you need recognisers.

● is_integer/1, is_float/1, is_number/1, is_atom/1,
is_list/1, is_tuple/1, is_function/1, is_function/2,
is_reference/1, is_pid/1, is_binary/1.

● We refer to the function called name with arity
arguments in module as module:name/arity or
name/arity for short.

● A recogniser returns the atom true or false.

Common operations

● The usual arithmetic operations

● Comparison. number < atom < reference < fun
< port < pid < tuple < list < binary.

● Two sets of equality operators: =:= and =/=
require type match as well as value match,
while == and /= will equate integers and floats.

● Trap: equal-to-or-less-than is spelled =< .
Erlang got this from Strand-88 which got it from
Prolog which got it from Pop-2 (1967).

Conversions

● Several built-in operations convert a value from a
source type to a target type. The convention is that
such operations are called source_to_target/1.

● “foo” is a string. A string is just a list whose elements
are Unicode code-points.

● <<”foo”>> is a binary. This will be a sequence of 3
bytes.

● list_to_binary(“foo”) => <<”foo”>>

● binary_to_list(<<”foo”>>) => “foo”

Functions

● fun (Arguments) -> Body end
is an anonymous function.

● myfun(Arguments) ->
 Body.
is a named function. Notice the full stop at the
end. Every Erlang top level form must end with
a full stop.

● Arguments are passed by pattern matching.

Creating a new process

● spawn(Function_With_No_Arguments)
creates a new process executing the given
function and returns its process ID.

● To find your own process ID, use self().

● The new process does not know anything about
its parent unless you tell it. There is no
equivalent of getppid().

●

Communication

● Pid ! Message
sends Message to the process named by Pid.

– Pid can be a process id.

– Or an atom referring to a process in the registry.

– Send a message to a dead process and it just
quietly disappears.

– If Pid is not a pid or a registered name, that's an
error.

– Message can be any value, including a function.

Receiving a message

● receive
 Pat [when Guard] -> Body
; Pat [when Guard] -> Body
; …
; after Timeout -> Body
end.

