
COSC441 Concurrent Programming
Higher Order Functions and a Case Study

Richard A. O’Keefe

September 12, 2017

Outline

I Higher Order Functions

I The Chameneos Case Study

Higher Order Functions

I The phrase comes from logic.

I In first-order logic, the arguments of functions
and predicates can be data only.

I In higher-order logic, the arguments of
functions and predicates can also be functions
and predicates.

I A higher-order function has a function as an
argument or a function as a result.

Practical Use of Higher Order Functions 1
I Fortran (1957), Lisp (1958), and Algol (1960)

allowed procedures to have procedures as
arguments.

I This allowed numerical differentiation,
integration, and optimisation of functions and
solution of equations, also general sorting and
searching algorithms.

I Fortran, Algol 60, PL/I (1965), Pascal (1970),
and other languages of that time only allowed
existing procedures to be passed. They could
not be returned or constructed.

I Lisp and Algol 68 (1968) allowed anonymous
functions.

Practical Use .. 2

I It was realised that higher order functions
provide abstraction over control structures.

I Functional languages have a common stock of
“iteration” functions: all, any, for-each, map,
foldl, foldr, filter.

I They are what you use instead of loops.

Example: foreach/2 (A)

Suppose we have a list [X1,. . . ,Xn] and want to call
f (X1), . . . , f (Xn), discarding the results. We can
write

do f([X|Xs]) → f(X), do f(Xs);
do f([]) → ok.

Example: foreach/2 (B)

That just works for f . We don’t want to keep
writing the same code over and over. So take f out
and make it a parameter.

foreach(F, [X|Xs]) → F(X), foreach(F, Xs);
foreach(, []) → ok.

do f(Xs) → foreach(fun f/1, Xs).

The (tail-)recursive control structure is now hidden
inside a re-usable function.

Example: map/2 (A)

Suppose we have a list [X1,. . . ,Xn] and want to
compute the list [X1 + 2,. . . ,Xn + 2]. We can write

add 2([X|Xs]) → [X+2 | add 2(Xs)];
add 2([]) → [].

As before, we want to split this into “how to do
something to every element and collect the results”
and “what to do to each element”.

Example: map/2 (B)

Here the function is x 7→ x + 2.

map(F, [X|Xs]) → [F(X) | map(F, Xs)];
map(, []) → [].

add 2(Xs) → map(fun (X) → X+2 end, Xs).

This is not the only way to compute that result.

Example: map/2 (C)

We can use tail recursion, and then reverse the
result.

map(F, Xs) → map loop(F, Xs, []).

map loop(F, [X|Xs], R) → map loop(F, Xs, [F(X)|R]);
map loop(F, [], R) → lists:reverse(R).

Writing such a loop ourselves, we have to choose
the approach. Using map/2, we don’t know how it
is done and don’t care.

Example: foldl/3 and foldr/3 (A)

Suppose we want to add up a list of numbers. We
can do it from right to list or left to right.

sum rtl([X|Xs]) → X + sum rtl(Xs);
sum rtl([]) → 0.

sum ltr(Xs) → sum ltr loop(Xs, 0).

sum ltr loop([X|Xs], Acc) → sum ltr loop(Xs, Acc+X);
sum ltr loop([], Acc) → Acc.

Example: foldl/3 and foldr/3 (B)

We abstract out 0 and + .

foldr(F, A, [X|Xs]) → F(X, foldr(F, A, Xs));
foldr(, A, []) → A.

foldl(F, A, [X|Xs]) → foldl(F, F(X, A), Xs);
foldl(, A, []) → A.

Example: foldl/3 and foldr/3 (C)

For adding integers, we don’t care which order it is
done. We may care that foldl is tail recursive (uses
a fixed amount of stack) and foldr is body recursive
(stack use is linear in list size).
For adding floats, the two orders give different
results.

Example: filter/2 (A)

Suppose we want to select the elements of a list
that satisfy some predicate p. We can write

pick p([X|Xs]) →
case p(X) of

true → [X | pick p(Xs)];
false → pick p(Xs)

end;
pick p([]) → [].

This too can be done using tail recursion followed
by reverse.

Example: filter/2 (B)

We abstract out p.

filter(P, [X|Xs]) →
case P(X) of

true → [X | filter(P, Xs)];
false → filter(P, Xs)

end;
filter(, []) → [].

pick p(Xs) → filter(fun p/1, Xs).

I These functions are already in the library.

I When we implement abstract data types such
as sets and dictionaries we can (should!)
provide similar functions to hide the
implementation.

I When we need something similar but different
it is not hard to add it.

I “Pure” function languages can use laws like
map(F,map(G,Xs)) = map(F.G, Xs) to do loop
fusion.

Example: foldl2/3 (A)

Let us generalise dot product.

foldl2(F, A, [X|Xs], [Y|Ys]) →
foldl2(F, F(A, X, Y), Xs, Ys);

foldl2(, A, [], []) → A.

dot(Xs, Ys) →
foldl2(fun (A, X, Y) → A+X*Y end, 0, Xs, Ys).

This is not in the lists library.

Example: foldl2/3 (B)

Euclidean distance

math:sqrt(
foldl2(fun (A, X, Y) → A+(X-Y)*(X-Y) end,

Xs, Ys))

Count matching elements

inc if eq(N, X, X) → N+1;
inc if eq(N, ,) → N.
foldl2(fun inc if eq/3, 0, Xs, Ys)

The Case Study

I I want this to be a dialogue.

I Yes I have a solution to the problem.

I But I want us to work towards it together.

Chameneos-redux

I Source: “The Computer Language Benchmarks
Game”, benchmarksgame.alioth.debug.org

I A chameneos is a sapient creature which can
change colours between red, blue, and yellow.
They normally live alone in the forest, but
occasionally go to the mall to play cards with
the first chameneos they meet, then go back to
the forest.

I When two chameneos meet, if they are the
same colour, they stay that colour, otherwise
they both change to the third colour.

I See the web page for details.

Sample sizes

C 448 lines
Ada 435 lines
C++ 288 lines
C# 242 lines
Java 236 lines
Go 178 lines
Smalltalk 95 lines
Erlang 88 lines

More precisely

I The Erlang version is 1 page of application
code

I and half a page of iteration functions.

I The C version is the fastest.

I I tried to get someone else’s Smalltalk version
going first. It was 468 lines and I could not
understand it.

I My Smalltalk version was written by thinking in
Erlang, then hacking a bit to reduce dynamic
allocation.

I The Erlang version was spectacularly easy to
think up by comparison and worked first time.

Questions

I What are the actors (processes)?

I What do they know?

I What do they say to each other?

	Lecture

