McErlang — a Model Checker for Erlang Programs

Lars-Ake Fredlund, Clara Benac Earle
Universidad Poligcnica de Madrid

ddddddddddddddddddddddddddd

Test

property based testing

McErlang basics

McErlang is useful for checkingoncurrent softwarg
not for checking sequential software

The Erlang runtime system for processes&communication is
replaced with a new runtime system written in Erlang
(erlang:send |, spawn, ...have been reimplemented)

A concurrent program is checked una@dirpossible
schedulings

McErlang is open source, available under a BSD license

Test

property based testing

The McErlang model checker: Design Goals

Reduce the gap between program and verifiable model
(the programs the model)

Write correctness properties in Erlang

Implement verification methods that permit partial model
checking when state spaces are too big
(Holzmann'’s bitspace algorithms)

Implement the model checker in a parametric fashion
(easy to plug-in new algorithms, new abstractions, ...)

Test

property based testing

McErlang In Practise: A Really Small Example

Two processes are spawned, the first starts an “echo” séafer t
echoes received messages, and the second invokes the aaro se

-module(example).
-export([start/0]).

start() ->

spawn(fun() -> register(echo,self()), echo() end),
spawn(fun() ->

echo!{msg,self(),’hello world’},

receive
{echo,Msg} -> Msg
end
end).
echo() ->
receive

{msg,Client,Msg} ->
Clientl{echo,Msg}, echo()
end.

Test

property based testing

Example under normal Erlang

Let’s run the example under the standard Erlang runtime=ny.st

> erlc example.erl
> erl
Erlang R13B02 (erts-5.7.3) ...

1> example:start().
<0.34.0>
2>

That worked fine. Let’s try it under McErlang instead.

Test

property based testing

Example under McErlang

First have to recompile the module using the McErlang coanpil

> mcerl_compiler -sources example.erl

Test

property based testing

Example under McErlang

First have to recompile the module using the McErlang coenpll
> mcerl_compiler -sources example.erl

Then we run it;

> erl
Erlang R13B02 (erts-5.7.3) ...

1> example:start().
* exception error: undefined function mcerlang:spawn/1
In function example:start/O

Hmm... we better include the McErlang libraries and starE@ng

Test

property based testing

Example under McErlang

Lets run it with McErlang libraries and from within McErlang

> mcerl
Erlang R13B02 (erts-5.7.3) ...

1> mce:apply(example,start,[]).
Starting McErlang model checker environment version 1.0 ..

+* User code generated error
exception error due to reason badarg
Stack trace:
mcerlang:resolvePid/2
mcerlang:mce_send/2
-example:start/0-anonymous-1-/0

Test

property based testing

Investigating the Error

An error! Let’s find out more using the McErlang debugger:

2> mce_erl_debugger:start(mce:result()).
Starting debugger with a stack trace; execution terminated
user program raised an uncaught exception.

stack(@2)> showExecution().

0: process <node,1>:

run function example:start([])
spawn({#Fun<example.1.118053186>,[]},[]) --> <node,2>
spawn({#Fun<example.2.76847815> []},[]) --> <node,3>
process <node,1> was terminated

process <node,1> died due to reason normal

1. process <node,3>:
run #Fun<example.2.76847815>([])
process <node,3> died due to reason badarg

Test

property based testing

Error Cause

m Apparently in one program run the second process spawned
(the one calling the echo server) was run before the echo
server itself:
run #Fun<example.2.76847815>([])

m Then upon trying to send a message

echol{msg,self(),’hello world’}

theecho name was obviously not registered, so the program
crashed

Test

property based testing

Presentation Outline

m What is model checking & a brief comparison with testing
m McErlang basics
m McErlang in practise: installing and usage

m Working with a larger example: a lift control system

Test

property based testing

What is Model Checking

m Run the program in a controlled manner so that all program
states are visited (visualised as a finite state transitiaptp:

m A node represents@rogram state which records the state of
all Erlang processes, all nodes, messages in transit. . .

s Graph edgesrepresent computation steps from one program
state to another

m Correctness Propertiesare automata that run in lock-step
with the program; they inspect each program state to
determine whether the state is ok or not

Test

property based testing

ing

th Random Test

ISON Wi

Compar

A0iy

{[e]*'bai}jiaxo0]|

{[e]‘bai}iraxo0]|

The State Space of a small program

ERCEIENENRL

2SB3[81{19%20

{[e]'bai}itaxo0|

Ly

ojy‘auopig

leseajalitaxoo|

A0if

BN

{[e]'bai}jsaxo0|

auopig

{[e]'bai}i1axo0|

EECEIEYHENEL

x
ea

{[e]'bai}jiaxo0]

{panreiso}it)

{paueisiolig

o
©

9sB9[91{19%20

{[e]'bai}isaxo0|

joig'auopiy

{[e]'bai}isaxo0

A0is

144

{[e]'bai}i

{[e]‘bai}iiaxo0]

A0ig,

{[e]*

{

§se8(91i19%90|

bai}jiaxo0|

[e]'bai}iiaxo0|

A0iy

95©3]91{19320|

A0ig!

A0y

{[e]'bai}itaxo0|

{[e]'bai}jsaxo0]|

Test

property based testing

Testing, run 1

A0iy

{[e]*'bai}jiaxo0]|

{[e]‘bai}iraxo0]|

Random testing explores one path through the program

ERCEIENEN R

{[e]'bai}isaxo0|

CHEICTITEREL]

A0ig,

2SB3[81{19%20

{[e]'bai}itaxo0| {[e]'bai}isaxo0

A0ig!

leseajalilaxoo|

©

§se8(81i19%90|

A0is J0ig A0iy

{[e]*bai}j1ano0| {[e]'bai}iiaxo0|

{[e]'bai}jsaxo0|

auopig

{[e]*'bai}iiaxo0| auopiy({[e]'bai}isexd0] {[e]'bai}jsaxo0]|

{[e]'bai}i1axo0| {[e]'bai}isaxo0|

EECEIEVIEREL 124 95©3]91{19320|

30ig {[e]'bai}iiaxo0| doiy
{[e]'bas}izanoo\{[e]'bai}itaxo0|

{pavrers’o}it

{paueis'yo}ig

Test

property based testing

Testing, run 2

With repeated tests the coverage improves

{[e]'bas}isox

A0iy

ERCEIENENRL

ojy‘auopig

auopig

{[e]*'bai}jiaxo0]|

EECEIEYHENEL

{[e]‘bai}j1ax00]

auopiq {[e]'bai}itaxo0]|

leseajalitaxoo|

95©9]21j19)90]

{[e]'bai}i1axo0|

{[e]'bai}isaxo0|

{[e]'bai}itaxo0|

20|

joig'auopiy

9sB9[91{19%20

2SB3[81{19%20

{[e]‘bas}isaxo0|

A0if

A0ig

{[e]'bai}jsaxo0|

{[e]'bai}itaxo0|

{[e]*bai}iiaxo0|

J0ig {[e]'bai}i

{[e]'bas}jzanoo\{[e]'bai}itaxo0|

{panreiso}it)

{paueisiolig

{[e]'bai}isaxo0

A0is

144

30i

{[e]*

{

S

gsea|a1i19x20)|

bai}jiaxo0|

[e]'bai}iiaxo0|

A0iy

A0ig!

A0y

{[e]'bai}itaxo0|

{[e]'bai}jsaxo0]|

95©3]91{19320|

Test

property based testing

Testing, run n

But even after a lot of testing some program states may n& hav

ISited

been v

auopiq {[e]'bai}iiaxo0| {[e]'bai}itaxo0|

Aoig'auopipy

30in

ERCEIENFENRL]

asea|aljlaxoo

{[e]'bai}itaxo0| {[e]'bai}iiaxo0|

Oip'auopig

asea|ali1axo0] 30it

™~

1T

%0iy| 9se8|a1i18%20] 9589]21{19320]

/

_ 6€
A0iG A0ig
{[e]'bai}isaxo0|
auopis
{[e]'bai}j1ax20] {[e]'bai}i1ax20]| {[e]'bai}i1axo0| N0it]
Sv {[e]'bai}itaoo)
95B3(21{19%90)| 2
{[e]'bai}itaxo0|

10ig| {[e]'bas}itaxoo]

0T

{[e]'bai}jsax20]|

{[e]'bai}i1axo0|

{parie1stio}i

{panie1s*y0}ig

{[e]'bai}iiax20|

A0iG,

S©9|21i19390]

4

52

{[e]'bai}iiaxo0|

{[e]'bai}isax00]|

d0iy

A0ig

)

A0iy

€€ ©

{[e]'bai}i1ax20]|

9€

d0iy

Test

property based testing

: 100% coverage

Model checking

Model checking can guarantee that all states are visitadpwi

revisiting states

yoig

{[e]*bai}j1ex00

{[e]‘bai}iiaxo0

ESEIEITEREL]

auopiq {[e]'bai}isaxoo\ {[e]'bai}j1ax)o0]|

auopit\{[e]'bai}iiexno0|

%0ig‘auopiy

asea|alilaxoo|

CELEEIENTENEIY

{[e]'bai}itano0|

ojy‘auopig

A0ip

9Se3[91i19390] 95e3[21i19390]

{[e]'bai}itaxo0|

30ig

A0ig
{[e]'bai}izaxo0|
{[e]'bai}jsoxo0|
auopig
{[el'bas}isoxool\ {[e]'bai}itaroo; A0iy
{[e]'bai}jtaxo0]
ERCEIENTENEIY
Noigq {[e]'bai}jsaxo0

{[e]'bai}j1exo0]

{[e]'bai}jiaxo0]

{paueis*yo}iT

{paueisyo}i

{[e]'bai}izaxo0|

A0ig

4s©901i19390|

d0iy

{[e]*'bai}jraxo0|

{[e]'bai}jsoxo0]

auopiy({[e]'bai}itaxo0|

{[e]*'bai}iiaxo0|

{[e]'bai}isaxo0|

95©9]21j19%90|

{[e]‘bai}iiaxo0

Test

property based testing

What is the trick? How can we achieve 100% coverage

s Needed: the capability to takesaapshotof the Erlang
system

[0 A program stateis: the contents of all process
mailboxes, the state of all running processes, messages in
transit (the ether), all nodes, monitors, ...

Node C

Node B

Test

property based testing

What is the trick? How can we achieve 100% coverage

s Needed: the capability to takesaapshotof the Erlang
system

[0 A program stateis: the contents of all process
mailboxes, the state of all running processes, messages in
transit (the ether), all nodes, monitors, ...

Node C

Node B

m Save the snapshot to memory and forget about it for a while

m Later continue the execution from the snapshot

Test

property based testing

Fundamental Difficulties of Model Checking

m Too many states (not enough memory to save all snapshots)
m Checking all states takes too much time

m We have to a snapshot of things outside of Erlang
(hard drives due to disk writes and reads,...)

Test

property based testing

The McErlang approach to model checking

m The lazy solution: just execute the Erlang program to vanfy
the normal Erlang interpreter

m And extract the system state (processes, queues, function
contexts) from the Erlang runtime system

Test

property based testing

The McErlang approach to model checking

m The lazy solution: just execute the Erlang program to venfy
the normal Erlang interpreter

m And extract the system state (processes, queues, function
contexts) from the Erlang runtime system

s Too messy! We have developeaew runtime systemfor
the process part, and still use the old runtime system to
execute code with no side effects

Erlang Runtime System McErlang Runtime System
Process coodination and communication McErlang Process coodination and communication !
erfiiiiiZiiiiffiiiiiZZZZi771Ziiffiiiiiffiiiiffiiiii — erfiiiiiZiiiiffiiiiiZZZZi77122277122217712227712224
Data computation Data computation

Test

property based testing

Adapting code for the new runtime environment

Erlang code must be “compiled” by the McErlang “compiler’ttm
under the new runtime system:

m APl changes: calincerlang:spawn instead of
erlang:spawn

Test

property based testing

Adapting code for the new runtime environment

Erlang code must be “compiled” by the McErlang “compiler’ttm
under the new runtime system:

m APl changes: calincerlang:spawn instead of
erlang:spawn

m Instead of executing (which would block)

receive
{request, Clientid} -> ...
end

an adapted function returns a special Erlang value desgribi
the receive request:

{ recv ’, {Fun, VarList}}

m McErlang translator works on HIPE Core Erlang code
Test

property based testing

Full Erlang Supported?

m Virtually the full core language supported:

[0 Processes, nodes, links, all data types
0 Higher-order functions

Many libraries at least partly supported:

[0 supervisor, gerserver, gerfsm, ets
0 Not supported: gentcp, ...

Test

property based testing

Full Erlang supported?

No real-time model checking implementation yet

receive
after 20 -> ...
end

behaves the same as

receive
after 20000 -> ...
end

Test

property based testing

Extensions to Erlang in McErlang

m Non-determinacy:

mce_erl:.choice
([fun () -> Pid'hi end,
fun () -> Pid'hola end)).

sends eithehi orhola toPid but not both

Test

property based testing

Extensions to Erlang in McErlang

m Non-determinacy:

mce_erl:.choice
([fun () -> Pid'hi end,
fun () -> Pid'hola end]).

sends eithehi orhola toPid but not both

m Convenience:

mcerlang:spawn
(new_node,
fun () -> Pid!'hello_world end)

The nodenew_node is created if it does not exist

Test

property based testing

Compiling/preparing code for running under McErlang

All source code modules of a project must be provided to the
McErlang compiler

SomeOTP behaviours/libraries are automatically included at
compile time

Example:mcerl_compile -sources *.erl

The translation is controlled by thHeninfo.txt file
(can be customised)

The result of the translation is a setl@fam files
(and Core Erlang code for the translated modules)

Test

property based testing

Controlling Translation

m The filefuninfo.txt controls the remapping of functions
and describes side effects:

[

{ gen_server, [{translated to,mce_erl gen_server 11},
{ supervisor, [{translated to,mce_erl _supervisor 11},
{gen_fsm, [{translated to,mce erl gen fsm 1},
{erlang, [{rcv,(false }]},
{{erlang, spawn,4},
[rev,
{ translated_to, { mcerlang, spawn}}]},
{{erlang,send,2 }, [{translated to, { mcerlang,send }}]}
]
m A verification project can use its ownninfo.txt
Test

property based testing

Choice of Libraries

m McErlang has tailored versions of some libraries:
supervisor , gen_server ,gen _fsm,gen event ,lists
ets , ...which are automatically included

m |t may be possible to use the standard OTP libraries instead

Test

property based testing

Running programs under McErlang

m Starting McErlang:

mce:start
(#mce_opts{program={Module,Fun,Args},
algorithm={Module, InitArgs},
monitor={Module,InitArgs})

m Example: starting th&cho program

mce:start
(#mce_opts{program={example,start,[]},
algorithm={mce_alg_safety,void},
monitor={mce_mon_test,void})

m The result of a model checking run can be retrieved using
mce:result()
(a program trace leading to the bug)

Test

property based testing

McErlang runtime options

More#mce _opts{} record options:

m sim_external world = true() | false()
McErlang does I/O with external world? (false)

m shortest = true() | false()
Compute the shortest path to failure? (false)

m fail on_exit = true() | false()
Stop a model checking run if a process terminates abnormally
due to an uncaught exception (true)

m time_limit = seconds
Halts verification after reaching a time limit

= And many more ...

Test

property based testing

Algorithms

An algorithm determines the particular state space expdora
strategy used by McErlang:

m mce_alg_simulation
Implements a basic simulation algorithm —
following a single execution path

m mce_alg_safety
Checks the specified monitor @il program states

m mce_alg_combine
Combines simulation and model checking to reduce state
space

Test

property based testing

What to check: Correctness Properties

Ok, we can run programs under the McErlang runtime system.
Next we need a language for expressing correctness pregerti

Test

property based testing

What to check: Correctness Properties

Ok, we can run programs under the McErlang runtime system.
Next we need a language for expressing correctness pregerti

m We pick Erlang of course!
A safety monitors an user function with three arguments:

stateChange(State, MonitorState, Action) ->

{ok, NewMonitorState}.

Test

property based testing

What to check: Correctness Properties

Ok, we can run programs under the McErlang runtime system.
Next we need a language for expressing correctness pregerti

m We pick Erlang of course!
A safety monitors an user function with three arguments:

stateChange(State, MonitorState, Action) ->

{ok, NewMonitorState}.

m A program is checked by running it in lock-step with a
monitor

m The monitor can inspect the current state, and the sideteffec
(actions) in the last computation step

m [he monitor either returns a new monitor state
{ok,NewMonitorState} , Or signals an error

Test

property based testing

Safety Monitors

m Safety Monitors check thatothing bad ever happens

= They must be checked gl the states of the program:

= z
& < x
< =
= g
@ =
B 5
5 g
H B
°
<
s o
H 2
= s
e = 2
e g - 5
H ¥ = = =
o s = =
= g 2 = = s
g > =
& g s =
3 = e ©
g = = =
= o = =
T =) [}
- = o = =
3 $ 3
B B g g
2 3 s ° 8
©] 7 -
2 @ o~ = =
< = G : <
g S < g =
= = o = @
o =] o = =
= 5 =
= 2 B
5 g g
2 g 3
3 2 3
S 2

locker!{req [al}

locker!{req,(a]} \ locker!{req,(a]} J4!done

s
S
2
<
3
2

Test

property based testing

A monitor example

s \We want to implement a monitor to check that a program
alternates between sendiregjuest andrelease

= As an automaton:

Releasing

\ Irelease

Requesting

_Irequest

Test

property based testing

A monitor example implemented in Erlang

-module(req_rel_alternate).
-export([init/1,stateChange/3,monitorType/0]).
-behaviour(mce_behav_monitor).

monitorType() -> safety.
init(_) -> {ok,request}.

stateChange(ProgramState,request,Action) ->
case get action(Action) of
{ok,request} -> {ok,release},
{ok,release} -> not_alternating
_ -> {ok,request}
end; ...

get_action(Action) ->
case mce_erl_actions:is_send(Action) of
true -> {ok,mce_erl_actions:get_send_msg(Action)};
false -> no_action
end.

Test

property based testing

What can monitors observe®?

Programactionssuch as sending or receiving a message

Programstatesuch as the contents of process mailboxes,
names of registered processes

The values of some program variables
(can be tricky)

Programs can be instrumented with speprabe actionghat
are easy to detect in monitors
(e.qg. callingmce_erl:probe(requesting))

Programs can be instrumented with speprabe states
which arepersisten{actions are transient)
(e.g. callingmce_erl:probe_state(have_requested))

Test

property based testing

Some Predefined Monitors

m mce_mon_deadlock
Checks that there is at least one non-deadlocked process

B Mce_mon_gueue
Checks that all gueues contain at miisixQueueSize
elements.

Test

property based testing

Checking Liveness Properties

For expressing thaomething good eventually happens

Linear Temporal Logic (always, eventually, until, next,). s
used to express liveness properties

State predicates are Erlang functions

Example:

always(fun liftprop:go_to_floor/3 =>
eventually fun liftprop:stopped_at floor/3)

State predicate:

go_to_floor(_ProgramState,Action, PrivateData) ->
case interpret_action(Action) of
{f button,Floor} -> {true,Floor};
{e button, ,Floor} -> {true,Floor};
B -> false
end.

Test

property based testing

The McErlang Debugger

m There is a rudimentary debugger for examining counter
examples

m After a failed model checking run, start the debugger on the
counterexample using:

mce_erl_debugger:start(mce:result()).

Test

property based testing

Things that can go wrong

= McErlang runs out of memory — too many states

m McErlang takes too long

m Why? Program uses timers, counters, random values, ... or is
simply too complex

Test

property based testing

What can be done

Partial verification — explore part of the state space

»
rolest
property based testing

What can be done

Partial verification — explore part of the state space

m Use a (lossy) bounded size state table:

#mce_opts

{...,table= { mce_table_bitHash,Size }, oL

m Use a bounded stack

#mce_opts

{...,stack= { mce_stack bounded,Size }, ...

m Put a bound on the verification time

m Check smaller examples (a set of test cases)

Test

property based testing

Recent Developments: QuickCheck/McErlang integrated

m Write state machine specifications in QuickCheck

m Check them usinggc_statem:commands or
eqc_statem:parallel_commands

Test

property based testing

Recent Developments: QuickCheck/McErlang integrated

m Write state machine specifications in QuickCheck

m Check them usinggc_statem:commands or
eqc_statem:parallel_commands

m Use normal Erlang scheduler to check programs under the
normalErlang scheduler

Test

property based testing

Recent Developments: QuickCheck/McErlang integrated

Write state machine specifications in QuickCheck

Check them usinggc_statem:commands or
eqc_statem:parallel_commands

Use normal Erlang scheduler to check programs under the
normalErlang scheduler

Use Pulse to check program under a more random scheduler

Test

property based testing

Recent Developments: QuickCheck/McErlang integrated

Write state machine specifications in QuickCheck

Check them usinggc_statem:commands or
eqc_statem:parallel_commands

Use normal Erlang scheduler to check programs under the
normalErlang scheduler

Use Pulse to check program under a more random scheduler

Use McErlang to check program under all schedulings

Test

property based testing

Recent Developments: QuickCheck/McErlang integrated

Write state machine specifications in QuickCheck

Check them usinggc_statem:commands or
eqc_statem:parallel_commands

Use normal Erlang scheduler to check programs under the
normalErlang scheduler

Use Pulse to check program under a more random scheduler
Use McErlang to check program under all schedulings

McErlang interface will likely be distributed with the next
QuickCheck release

Test

property based testing

McErlang in Practise: downloading

m https://babel.ls.fi.upm.es/trac/McErlang/

m Use subversion to check out the McErlang sources:

svn checkout \
https://babel.ls.fi.upm.es/svn/McErlang/trunk \
McErlang

m Get bug fixes and improvements using subversion:

svn update

Test

property based testing

Installing

m We use Ubuntu — McErlang doesn’t work well under
Windows

m Compile McErlang:

cd McErlang; make

m Putscripts directory on the command path (in Bash):
export PATH="/McErlang/scripts:$PATH

m Read the manuals:

acroread doc/tutorial/tutorial.pdf
acroread doc/userManual/userManual.pdf

Test

property based testing

McErlang in practise: The Elevator Example

m We study the control software for a set of elevators
Ll evators [= 5]

Cﬂmel

Cﬂmel

Cﬂmel

m Used to be part of an Erlang/OTP training course from
Ericsson

Test

property based testing

The Elevator Example

Example complexity:

m Static complexity: around 1670 lines of code
s Dynamic complexity: around 10 processes (for two elevators

m Uses quite a few librariesists , gen_event , gen_fsm,
supervisor ,timer ,gs, application

sim_sup (supervisor

N

g_sup (supervisor system_sup (supervisor)

scheduler (gen_server) sys_event

@ elev_sup (supervisor
e_graphic (gen_fsm)

e_graphic (gen_fsm) elevator (gen_fsm) elevator (gen_fsm)

Test

property based testing

Running the elevator under McErlang

m First we just try to run it under the McErlang runtime system
(forgetting about model checking for a while)

m This will test the system under a less deterministic schexdul
than the normal Erlang scheduler

Test

property based testing

Running the elevator under McErlang

m First we just try to run it under the McErlang runtime system
(forgetting about model checking for a while)

m This will test the system under a less deterministic schexdul
than the normal Erlang scheduler

m EXxecuting:

mce:start
(#mce_opts
{program={sim_sup,start_link,[1,3,2]},
sim_external world=true,
algorithm={mce_alg_simulation,void}}).

Test

property based testing

Running the elevator under McErlang

First we just try to run it under the McErlang runtime system
(forgetting about model checking for a while)

This will test the system under a less deterministic screxdul
than the normal Erlang scheduler

Executing:

mce:start
(#mce_opts
{program={sim_sup,start_link,[1,3,2]},
sim_external world=true,
algorithm={mce_alg_simulation,void}}).

Seems to work...

Test

property based testing

Model checking the elevator under McErlang

Model checking is a bit more complicated:

Test

property based testing

Model checking the elevator under McErlang
Model checking is a bit more complicated:

m Thegs graphics will not make sense when model checking
We shut it off in model checking mode

Test

property based testing

Model checking the elevator under McErlang

Model checking is a bit more complicated:

m Thegs graphics will not make sense when model checking
We shut it off in model checking mode

m The example is very geared to smooth graphical dispiay

We modify the program to only have three (3) intermediate
points between elevator floors (normally 20)

Test

property based testing

Model checking the elevator under McErlang
Model checking is a bit more complicated:

m Thegs graphics will not make sense when model checking
We shut it off in model checking mode

m The example is very geared to smooth graphical dispiay

We modify the program to only have three (3) intermediate
points between elevator floors (normally 20)

m The program contain timers (for moving the elevater)

We assume that the programmginitely fastcompared to the
timers: timer only release when no program action is possibl

Test

property based testing

Model checking the elevator under McErlang
Model checking is a bit more complicated:

m Thegs graphics will not make sense when model checking
We shut it off in model checking mode

m The example is very geared to smooth graphical dispiay

We modify the program to only have three (3) intermediate
points between elevator floors (normally 20)

m The program contain timers (for moving the elevater)

We assume that the programmginitely fastcompared to the
timers: timer only release when no program action is possibl

m [n total, about 15 lines of code had to be changed to enable
model checking ot too bad!

Test

property based testing

Scenarios

m |Instead of specifying one big scenario with a really bigestat
space, we specify a number of smaller scenarios

m Paremeters:
Number of elevators
Number of floors
Commands

[{scheduler,f button_pressed,[1]},
{scheduler,e_button_pressed,[2,1]},
{scheduler,f_button_pressed,[1]}]

m QuickCheck can be used to generate a set of scenarios

Test

property based testing

Correctness Properties

»
rolest
property based testing

Correctness Properties

= NoO runtime exceptions

»
rolest
property based testing

Correctness Properties

= NoO runtime exceptions

m Checking:

> mce:start(#mce_opts
{program={run_scenario,run_scenario,
[2,2,[{scheduler,f_button_pressed,[1]}]]},
algorithm={mce_alg_safety,void}}).

Test

property based testing

Correctness Properties

= NoO runtime exceptions

m Checking:

> mce:start(#mce_opts
{program={run_scenario,run_scenario,
[2,2,[{scheduler,f_button_pressed,[1]}]]},
algorithm={mce_alg_safety,void}}).

m Result:

** User code generated error:
exception error due to reason {badmatch,[]}
Stack trace:
scheduler:add _to_a_ stoplist near line 344/3
scheduler:handle cast/2

Test

property based testing

Correctness Properties

= NoO runtime exceptions

m Checking:

> mce:start(#mce_opts
{program={run_scenario,run_scenario,
[2,2,[{scheduler,f_button_pressed,[1]}]]},
algorithm={mce_alg_safety,void}}).

m Result:

** User code generated error:
exception error due to reason {badmatch,[]}
Stack trace:
scheduler:add _to_a_ stoplist near line 344/3
scheduler:handle cast/2

m Bug - the system received the “press button”™-command before
It had been initialised

Test

property based testing

*Hiding the bug”

m Instead of fixing the bug we hide it by only sending
commands when the system has started by enabling the option
IS_infinitely fast=true

m Checking:

> mce:start(#mce_opts
{program={run_scenario,run_scenario,
[2,2,[{scheduler,f _button_pressed,[1]}]]},
Is_infinitely fast=true,
algorithm={mce_alg_safety,void}}).

Test

property based testing

Correctness Properties

»
rolest
property based testing

Correctness Properties

m An elevator only stops at a floor after receiving an order to go
to that floor

(implemented as a monitor that keeps a set of floor requests,
and checks that visited floors are in the set)

Test

property based testing

A Monitor Implementing the Floor Request Property

-module(stop_after_order).
-behaviour(mce_behav_monitor).

%% The monitor state is a set of floor requests
init(_) -> ordsets:new().

%% Called when the program changes state
stateChange(_,FloorReqgs,Action) ->
case interpret_action(Action) of
{f button,Floor} ->
ordsets:add_element(Floor,FloorReqs);
{e button,Elevator,Floor} ->
ordsets:add_element(Floor,FloorReqs);
{stopped_at,Elevator,Floor} ->
case ordsets:is_element(Floor,FloorReqs) of
true -> FloorRegs;
false -> throw({bad_stop,Elevator,Floor})
end;
> FloorRegs

end Test

property based testing

Checking the first correctness property

m Checking:

> mce:start(#mce_opts
{program={run_scenario,run_scenario,
[3,2,[{scheduler,f button_pressed,[3]}]]},
Is_infinitely fast=true,
algorithm={mce_alg_safety,void},
monitor={stop_after order,void}}).

m Fails...

m We display the counterexample (a program trace) using a
custom pretty printer:

Floor button 3 pressed

Elevator 1 is moving up
Elevator 1 is approaching floor 2
Elevator 1 is stopping

Elevator 1 stopped at floor 2

Test

property based testing

More Correctness Properties

m Refining the floor correctness property:

An elevator only stops at a floor after receiving an order to go
to that floor, if no other elevator has met the request

(implemented as a monitor that keeps a set of floor requests;
visited floors are removed from the set)

Test

property based testing

More Correctness Properties

m Refining the floor correctness property:

An elevator only stops at a floor after receiving an order to go
to that floor, if no other elevator has met the request

(implemented as a monitor that keeps a set of floor requests;
visited floors are removed from the set)

m A Liveness property:

If there is a request to go to some floor, eventually some
elevator will stop there

Test

property based testing

McErlang Status and Conclusions

Supports a large language subset (full support for didinhu
and fault-tolerance and many higher-level components)

Everything written in Erlang
(programs, correctness properties, ...)

An alternative implementation of Erlang for testing
(using a much less deterministic scheduler)

Using McErlang and testing tools like QuickCheck can be
complementary activities:

0 Use QuickCheck to generate a set of test scenarios

[0 Run scenarios in McErlang

“IDE integration” coming soon (for Emacs and Eclipse)

Test

property based testing

	McErlang basics
	The McErlang model checker: Design Goals
	McErlang In Practise: A Really Small Example
	Example under normal Erlang
	Example under McErlang
	Example under McErlang
	Investigating the Error
	Error Cause
	Presentation Outline
	What is Model Checking
	Comparison with Random Testing
	Testing, run 1:
	Testing, run 2:
	Testing, run n:
	Model checking: 100% coverage
	What is the trick? How can we achieve 100% coverage
	Fundamental Difficulties of Model Checking
	The McErlang approach to model checking
	Adapting code for the new runtime environment
	Full Erlang Supported?
	Full Erlang supported?
	Extensions to Erlang in McErlang
	Compiling/preparing code for running under McErlang
	Controlling Translation
	Choice of Libraries
	Running programs under McErlang
	McErlang runtime options
	Algorithms
	What to check: Correctness Properties
	Safety Monitors
	A monitor example
	A monitor example implemented in Erlang
	What can monitors observe?
	Some Predefined Monitors
	Checking Liveness Properties
	The McErlang Debugger
	Things that can go wrong
	What can be done
	Recent Developments: QuickCheck/McErlang integrated
	McErlang in Practise: downloading
	Installing
	McErlang in practise: The Elevator Example
	The Elevator Example
	Running the elevator under McErlang
	Model checking the elevator under McErlang
	Scenarios
	Correctness Properties
	``Hiding the bug''
	Correctness Properties
	A Monitor Implementing the Floor Request Property
	Checking the first correctness property
	More Correctness Properties
	McErlang Status and Conclusions

