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PREFACE 

CONCURRENT PROGRAMMING 

This book describes a method for writing concurrent computer pro- 
grams of high quality. It is written for professional programmers and stu- 
dents who are faced with the complicated task of building reliable computer 
operating systems or real-time control programs. 

The motivations for mastering concurrent programming are both eco- 
nomic and intellectual. Concurrent programming makes it possible to use a 
computer  where many things need attention at the same t ime - -be  they 
people at terminals or temperatures in an industrial plant. It is wi thout  
doubt  the most  difficult form of  programming. 

This book presents a systematic way of developing concurrent programs 
in a structured language called Concurrent Pascal--the first of its kind. The 
use of this language is illustrated by three non-trivial concurrent programs : 
a single-user operating system, a job-stream system, and a real-time sched- 
uler. All of  these have been used successfully on a PDP 11/45 computer. 
The book includes the complete text  of these three programs and explains 
how they are structured, programmed, tested, and described. 

I n  an earlier book, Operating System Principles [Prentice-Hall, 1973] ,  

xi 



xii  PREFACE 

I tried to establish a background for studying existing operating systems in 
terms of  basic concepts.  This new tex t  tells the other side of  the s tory :  
how concurrent  programs can be constructed systematically from scratch. 
It also illustrates details of  important  design p r o b l e m s - - t h e  management  of  
input /ou tpu t ,  data files, and programs- -which  were deliberately omit ted 
from the first book.  So it is useful both as a practical supplement  to operat- 
ing system courses and also as a handbook  on structured concurrent  pro- 
gramming for engineers. 

COMPILATION AND TESTING 

A concurrent  program consists of  sequential processes tha t  are carried 
out  simultaneously. The processes cooperate  on common  tasks by exchang- 
ing data through shared variables. The problem is that  unrestr icted access 
to the shared variables can make the result of  a concurrent  program de- 
pendant  on the relative speeds of  its processes. This is obvious if you  think 
of  a car and a train passing through the same railroad crossing : it is the 
relative timing of these "processes" tha t  determines whether  they will 
collide. 

Unfor tunately ,  the execut ion speed of  a program will vary somewhat  
f rom one run to  the next.  It will be influenced by other  (unrelated) pro- 
grams running simultaneously and by operators responding to requests. 
So you  can never be quite sure what  an incorrect,  concurrent  program 
is going to do. If you  execute it many times with the same data you  will 
get a different  result each time. This makes it hopeless to judge what  went  
wrong. Program testing is simply useless as a means of  locating time-depen- 
dent  errors. 

Some of  these errors can no doubt  be located by proofreading. I have 
seen a programmer do this by looking at an assembly language program 
for a week. But, to  proofread a large program, you  must  understand it in 
complete  detail. So the search for an error may involve all of the people who 
wrote the program, and even then you  cannot  be sure it will be found. 

Well, i f  we  c a n n o t  m a k e  c o n c u r r e n t  programs  w o r k  by proo f read ing  
or  testing, then  I can see on ly  one  o the r  e f f ec t i ve  m e t h o d  at  the m o m e n t :  
to wri te  all c o n c u r r e n t  programs  in a p r o g r a m m i n g  language that  is so  
s t ruc tured  that  y o u  can spec i f y  exac t l y  w h a t  processes  can do  to shared 
variables and d e p e n d  on a compi l e r  to c h e c k  that  the programs sat is fy  
these assumpt ions .  Concurrent  Pascal is the first language that  makes 
this possible. 

In the long run it is no t  advisable to write large concurrent  programs 
in machine-oriented languages that  permit  unrestr icted use of  store loca- 
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tions and their addresses. There is just no way we will be able to make such 
programs reliable (even with the help of complicated hardware mechanisms). 

CONCURRENT PASCAL 

From 1963-65 I was one of ten programmers who wrote a Cobol com- 
piler in assembly language. This program of 40,000 instructions took 15 
man-years to build. Although it worked well, the compiler was very diffi- 
cult to maintain since none of us understood it completely. 

Five years later, compiler writing was completely changed by the se- 
quential programming language Pascal, invented by Niklaus Wirth. Pascal is 
an abstract language that  hides irrelevant machine detail from the program- 
mer. At the same time it is efficient enough for system programming. It is 
easily understood by programmers familiar with Fortran, Algol 60, Cobol, 
or PL/I. 

In 1974 A1 Hartmann used Sequential Pascal to write a compiler for my 
new programming language, called Concurrent Pascal. This compiler is 
comparable to a machine program of 35,000 instructions. But, written in 
Pascal, the program text  is only 8,300 lines long and can be completely 
understood by a single person. The programming and testing of this com- 
piler took only 7 months. 

The aim of  Concurrent Pascal is to do for operating systems what 
Sequential Pascal has done for compilers: to reduce the programming effort  
by an order of  magnitude. 

Concurrent Pascal extends Sequential Pascal with concurrent processes 
and monitors. The compiler prevents some time-dependent programming 
errors by checking that  the private variables of one process are inaccessible 
to another. Processes can only communicate by means of monitors. 

A monitor  defines all the possible operations on a shared data structure. 
It can, for example, define the send and receive operations on a message 
buffer. The compiler will check that  processes only perform these two 
operations on a buffer. 

A monitor  can delay processes to make their interactions independent of 
their speeds. A process that tries to receive a message from an empty buffer 
will, for example, be delayed until another process sends a message to it. 

If a programmer can design a process or monitor  correctly, the rest of 
a program will not  be able to make that  component  behave erratically 
(since no other part of the program has direct access to the variables used 
by a component) .  The controlled access to private and shared variables 
greatly reduces the risk o f  t ime-dependent program behavior caused by 
erroneous processes. 
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MODEL OPERATING SYSTEMS 

This book stresses the practice of  concurrent  programming. It con- 
tains a complete description of  three model  operating systems written in 
Concurrent  Pascal. 

Chapter 5 describes a single-user operating system, called Solo. It sup- 
ports the development  of  Sequential and Concurrent  Pascal programs on 
the PDP 11/45 computer .  Inpu t /ou tpu t  are hand]Led by concurrent  pro- 
cesses. Pascal programs can call one another  recursively and pass arbitrary 
parameters among themselves. This makes it possib]Le to  use Pascal as a job 
control  language. Solo is the first major example of  a hierarchical concurrent  
program made of  processes and monitors.  

Chapter 6 presents a job-stream system that  compiles and executes 
short  Pascal programs which are input from a card reader and are ou tput  on 
a line printer.  Input ,  execut ion,  and ou tpu t  take place simultaneously,  using 
buffers stored on disk. 

Chapter 7 discusses a real-time scheduler for  process control  applications 
in which a fixed number  of  concurrent  tasks are carried out  periodically 
with frequencies chosen by an operator.  

These chapters no t  only describe how to build different  kinds of  operat- 
ing systems but  also illustrate the main steps of  the program development  
process. 

The Solo system shows how a concurrent  program of  more than a 
thousand lines can be structured and programmed as a sequence of  com- 
ponents  of  less than one page each. The real-time scheduler is used to dem- 
onstrate how a hierarchical, concurrent  program can be tested systematically. 
The job-stream system illustrates how a program structure can be derived 
from performance considerations. 

LANGUAGE DEFINITION AND IMPLEMENTATION 

I have tried to make this book  as readable as possible to share an archi- 
tectonic view of  concurrent  programming effectively. Formalism is of ten  a 
stumbling block in the first encounter  with a new field, and the practice of  
s t ructured concurrent  programming is not  commonplace  yet.  So I have 
assumed in chapters 3 and 4 that  you  are so familiar with one or more 
programming languages that  it is sufficient to show the flavor of Sequential 
and Concurrent  Pascal by examples before describing the model  operating 
systems. 

But when you  wish to use a new programming language in your  own 
work, a precise definit ion of it becomes essential. So the Concurrent Pascal 
report is included in chapter  8. 
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The whole purpose of this work is to show how much a concurrent 
programming effort  can be reduced by using an abstract language that  
suppresses as much machine detail as one can afford to without  losing 
control of program efficiency. For this reason the introduction to Concur- 
rent Pascal ignores the question of how the language is implemented. 

Chapter 9 is an overview of the language implementation for those who 
feel uncomfortable unless they have a dynamic feeling for what their pro- 
grams make the machine do. I suspect that  most of us belong to that  group. 
Once you understand what a machine does, however, it is easier to forget 
the details again and start relying completely on the abstract concepts that  
are built into the language. 

TEACHING AND ENGINEERING 

Very few operating systems are so well-structured and well-documented 
that  they are worth studying in detail. And few (if any) computing centers 
make it possible for students to write their own concurrent programs in an 
abstract language. Since students can neither study nor build realistic operat- 
ing systems it is almost impossible to make them feel comfortable about the 
subject. 

This book tries to remedy that  situation. It defines an abstract language 
for concurrent programming that  has been implemented on the PDP 11/45 
computer. The compiler can be moved to other computers since it is written 
in Sequential Pascal and generates code for a simple machine that  can be 
simulated efficiently by microprogram or machine language. 

The book also offers complete examples of  model operating systems 
that  can be studied by students. 

If you are a professional programmer you can seldom choose your own 
programming language for large projects. But you can benefit from new 
language constructs--such as processes and mon i to r s - -by  taking them as 
models of a systematic programming style that  can be imitated as closely as 
possible in other languages (including assembly languages). 

The system kernel that  is described in chapter 9 illustrates this. It is an 
assembly language program written entirely by means of classes (a concept 
similar to monitors). Since this concept is not  in the assembly language it is 
described by comments only. 

The book can also be used as a handbook on the design of small operat- 
ing systems and significant portions of larger ones. 

If you are a software engineer you may feel that  the operating systems 
described here are much smaller than those you are asked to build. This 
raises the question of whether the concepts used here can help you build 
huge systems. My recommendation is to use abstract programming concepts 
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(such as processes and monitors) wherever you can. This will probably solve 
most programming problems in a simple manner and leave you with only 
a few really machine-dependent components (such as a processor scheduler 
and a storage allocator). As a means of organizing :your thoughts,  Concur- 
rent  Pascal can only be helpful. 

But I should also admit  that  I do not  see a future for large operating 
systems. They never worked well and they probably never will. They are 
just too complicated for the human mind. They were the product  of an 
early stage in which none of  us had a good feeling for what software quality 
means. The new technology that  supports wide-spread use Of cheap, per- 
sonal computers will soon make them obsolete. 

Although operating systems have provided the most spectacular exam- 
ples of  the difficulty of making concurrent programs reliable, there are 
other applications that  present problems of their own. As an industrial 
programmer I was involved in the design of process control programs for a 
chemical plant, a power plant, and a meteorological institute. These real- 
time applications had one thing in common:  they were all unique in their 
software requirements. 

When the cost of developing a large program cannot  be shared by many 
users the pressure to reduce the cost is much greater than it is for general- 
purpose software, such as compilers and operating systems. The only prac- 
tical way of reducing cost then is to give the process control engineers an 
abstract language for concurrent programming. To :illustrate this I rewrote 
an existing real-time scheduler from machine language into Concurrent 
Pascal (chapter 7). 

The recent reduction of hardware costs for microprocessors will soon 
put even greater pressure on software designers to reduce their costs as 
well. So there is every reason for a realistic programmer to keep an eye 
on recent developments in programming methodology'. 

PROJECT BACKGROUND 

In 1971, Edsger Dijkstra suggested that  concurrent programs might be 
easier to understand if all synchronizing operations on a shared data 
structure were collected into a single program unit  (which we now call 
a monitor) .  

In May 1972 I wrote a chapter on Resource Protection for Operating 
Sys tem Principles. I introduced a language notat ion for monitors and 
pointed out  that  resource protection in operating systems and type checking 
in compilers are solutions to the same problem: to verify automatically 
that  programs only perform meaningful operations on data structures. My 
conclusion was that  " I  expect  to see many  protect ion rules in future operat- 
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ing systems being enforced in the cheapest possible manner by type checking 
at compile time. However, this will require exclusive use of  efficient, well- 
structured languages for programming." This is still the idea behind Con- 
current Pascal. 

I developed Concurrent Pascal at the California Institute of Technology 
from 1972-75. The compiler was written by A1 Hartmann. Robert Deverill 
and Tom Zepko wrote the interpreter for the PDP 11/45. I built the model 
operating systems, and Wolfgang Franzen made improvements to one of 
them (Solo). 
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! 
DESIGN PRINCIPLES 

This book describes a method for writing concurrent programs of high 
quality. Since there is no common agreement among programmers about 
the qualities a good program should have, I will begin by describing my 
own requirements. 

1.1 PROGRAM QUALITY 

A good program must be simple, reliable, and adaptable. Without sim- 
plicity one cannot expect to understand the purpose and details of a large 
program. Without reliability one cannot seriously depend on it. And with- 
out  adaptability to changing requirements a program eventually becomes 
a fossil. 

Fortunately,  these essential requirements go hand in hand. Simplicity 
gives one the confidence to believe that  a program works and makes it clear 
how it can be changed. Simplicity, reliability, and adaptability make pro- 
grams manageable. 

In addition, it is desirable to make programs that  can work efficiently 
on several different computers for a variety of similar applications. But 
efficiency, portability, and generality should never be sought at the expense 
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of  simplicity, reliability, and adaptability, for only the latter qualities make 
it possible to understand what programs do, depend on them, and extend 
their capabilities. 

The poor  quality of  much existing software is, to a large extent ,  the 
result of turning these priorities upside down. Some programmers justify 
extremely complex and incomprehensible programs by their high efficiency. 
Others claim that  the poor  reliability and efficiency of their huge programs 
are outweighed by their broad scope of application. 

Personally I find the efficiency of  a tool that  nobody  fully understands 
irrelevant. And I find it difficult  to appreciate a general-purpose tool which 
is so slow that  it cannot  do anything well. But these are matters of taste and 
style and are likely to remain so. 

Whenever program qualities appear to be in conflict with one another 
I shall consistently settle the issue by giving first priority to manageability, 
second priority to efficiency, and third priority to generality. This boils 
down to the simple rule of  limiting our computer  applications to those 
which programmers fully understand and which machines can handle well. 
Although this is too narrow a view for experimentM computer  usage it is 
sound advice for  professional programming. 

Let  us now look more closely at these program qualities to see how they 
can be achieved. 

1.2 SIMPLICITY 

We will be writing concurrent  programs which are so large that  one can- 
no t  understand them all at once. So we must  reason about  them in smaller 
pieces. What properties should these pieces have? Well, they should be so 
small that  any one of  them is trivial to understand in itself. It would be ideal 
if they were no more than one page of  tex t  each so that  they can be compre- 
hended at a glance. 

Such a program could be studied page by page as one reads a book. But 
in the end, when we have unders tood what  all the pieces do, we must still be 
able to see what  their combined effect  as a whole is. If it is a program of  
many pages we can only do this by ignoring most  of our detailed knowledge 
about  the pieces and relying on a much simpler description of  what  they do 
and how they work together.  

So our  program pieces must  allow us to make a clear separation of  their 
detailed behavior and that  small part  of  it which is of interest when we 
consider combinations of  such pieces. In other  words, we must  distinguish 
between the inner and outer behavior of  a program piece. 

Program pieces will be built to perform well-defined, simple functions. 
We will then combine program pieces into larger configurations to carry out  
more complicated functions. This design method  is effective because it splits 
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a complicated task into simpler ones: First you convince yourself that  the 
pieces work individually, and then you think about how they work together. 
During the second part of the argument it is essential to be able to forget 
how a piece works in detai l--otherwise,  the problem becomes too compli- 
cated. But in doing so one makes the fundamental  assumption that  the piece 
always will do the same when it carries out its function. Otherwise, you 
could not  afford to ignore the detailed behavior of that  piece in your reason- 
ing about the whole system. 

So reproducible behavior is a vital property of program pieces that  we 
wish to build and study in small steps. We must clearly keep this in mind 
when we select the kind of program pieces that  large concurrent programs 
will be made of. The ability to repeat program behavior is taken for granted 
when we write sequential programs. Here the sequence of events is com- 
pletely defined by the program and its input data. But in a concurrent 
program simultaneous events take place at rates not  fully controlled by the 
programmer. They depend on the presence of other jobs in the machine and 
the scheduling policy used to execute them. This means that  a conscious 
effort  must be made to design concurrent programs with reproducible be- 
havior. 

The idea of reasoning first about what a pieces does and then studying 
how it does it in detail is most  effective if we can repeat this process by 
explaining each piece in terms of simpler pieces which themselves are built 
from still simpler pieces. So we shall confine ourselves to hierarchical struc- 
tures composed of layers of program pieces. 

It will certainly simplify our understanding of hierarchical structures if 
each part only depends on a small number of other parts. We will therefore 
try to build structures that  have minimal interfaces between their parts. 

This is extremely difficult to do in machine language since the slightest 
programming mistake can make an instruction destroy any instruction or 
variable. Here the whole store can be the interface between any two instruc- 
tions. This was made only too clear in the past by the practice of printing 
the contents of the entire store just to locate a single programming error. 

Programs written in abstract languages (such as Fortran, Algol, and 
Pascal) are unable to modify themselves. But they still have broad inter- 
faces in the form of global variables that  can be changed by every statement 
(by intention or mistake). 

We will use a programming language called Concurrent Pascal, which 
makes it possible to divide the global variables into smaller parts. Each of 
these is accessible to a small number of statements only. 

The main contribution of a good programming language to simplicity 
is to provide an abstract readable notation that  makes the parts and structure 
of programs obvious to a reader. An abstract programming language sup- 
presses machine detail (such as addresses, registers, bit patterns, interrupts, 
and sometimes even the number of processors available). Instead the lan- 



6 DESIGN PRINCIPLES Chap. 1 

guage relies on abstract concepts (such as variables, data types, synchro- 
nizing operations, and concurrent processes). As a result, program texts 
written in abstract languages are often an order of magnitude shorter than 
those written in machine language. This textual reduction simplifies program 
engineering considerably. 

The fastest way to discover whether or not  you  have invented a simple 
program structure is to t ry to describe it in completely readable t e r m s -  
adopting the same standards of clarity that  are required of a survey paper 
published by a journal. If you  take pride in your  own description you  have 
probably invented a good program structure. But if you discover that  there 
is no simple way of describing what you intend to do, then you should 
probably look for some other way of doing it. 

Once you appreciate the value of description as an early warning signal 
of unnecessary complexity it becomes self-evident that program structures 
should be described (without  detail) before they are built and should be 
described by the designer (and not  by anybody else). Programming is the art 
o f  writing essays in crystal clear prose and making them executable. 

1.3 RELIABILITY 

Even the most readable language notat ion cannot  prevent programmers 
from making mistakes. In looking for these in large programs we need all the 
help we can get. A whole range of techniques is available 

correctness proofs 
proofreading 
compilation checks 
execution checks 
systematic testing 

With the exception of  correctness proofs, all these techniques played a vital 
role in making the concurrent programs described in this book work. 

Formal proofs are still at an experimental stage, particularly for con- 
current programs. Since my aim is to describe techniques that  are immedi- 
ately useful for professional software development, I have omitted proofs 
here. 

Among the useful verification techniques, I feel those that  reveal errors 
at the earliest possible time during the program development should be 
emphasized to achieve reliability as soon as possible. 

One of  the primary goals of Concurrent Pascal is to push the role of 
compilation checks to the limit and reduce the use of execution checks 
as much as possible. This is not  done just to make compiled programs more 
efficient by reducing the overhead of execution checks. In program en- 
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gineering, compilation and execut ion checks play the same roles as preven- 
tive maintenance and flight recorders do in aviation. The latter only tell 
you  why a system crashed; the former prevents it. This distinction seems 
essential to  me in the design of  real-time systems that  will control  vital func- 
tions in society. Such systems must  be highly reliable before they are put  
into operation. 

Extensive compilation checks are possible only if the language nota t ion 
is redundant. The programmer must  be able to specify impor tant  properties 
in at least two different  ways so that  a compiler can look for possible incon- 
sistencies. An example is the use of  declarations to introduce variables and 
their types before they are used in statements. The compiler could easily 
derive this information from the s ta tements - -provided  these statements 
were always correct.  

We shall also follow the crucial principle of  language design suggested 
by Hoare: The behavior o f  a program written in an abstract language should 
always be explainable in terms of  the concepts o f  that language and should 
never require insight into the details o f  compilers and computers. Otherwise, 
an abstract nota t ion has no significant value in reducing complexity.  

This principle immediately rules out  the use of  machine-oriented fea- 
tures in programming languages. So I shall assume that all programming will 
take place in abstract programming languages. 

Dijkstra has remarked that  testing can be used only to show the presence 
of  errors but  never their absence. However true that  may be, it seems very 
worthwhile to me to show the presence of errors and remove them one at 
a time. In my experience, the combinat ion of  careful proofreading, extensive 
compilation checks, and systematic testing is a very effective way to make a 
program so dependable that it can work for months wi thout  problems. And 
that  is about  as reliable as most  other  technology we depend on. I do not  
know of  bet ter  methods  for verifying large programs at the moment .  

I view programming as the art of building program pyramids by adding 
one brick at a time to the structure and making sure that it does no t  collapse 
in the process. The pyramid must  remain stable while it is being built. I will 
regard a (possibly incomplete) program as being stable as long as it behaves 
in a predictable manner. 

Why is program testing so of ten difficult? Mainly, I think, because the 
addition of  a new program piece can spread a burst of  errors th roughout  the 
rest of a program and make previously tested pieces behave differently. This 
clearly violates the sound principle of  being able to assume that  when you  
have built and tested a part  of a large program it will continue to behave 
correct ly under all circumstances. 

So we will make the strong requirement  that  new program pieces added 
on top o f  old ones must not be able to make the latter fail. Since this proper- 
ty must  be verified before program testing takes place, it must  be done by 
a compiler. We must  therefore use a language nota t ion that  makes it clear 
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what program pieces can do to one another. This strong confinement o f  
program errors to the part in which they occur will make it much easier to 
determine from the behavior of a large program where its errors are. 

1.4 ADAPTABILITY 

A large program is so expensive to develop that  it must  be used for 
several years to make the effort  worthwhile. As time passes the users' needs 
change, and it becomes necessary to modify  the program somewhat to satisfy 
them. Quite often these modifications are done by people who did not  de- 
velop the program in the first place. Their main difficulty is to find out  how 
the program works and whether it will still work after being changed. 

A small group of people can often succeed in developing the first version 
of  a program in a low-level language with little or no documentat ion to sup- 
port  them. They do it by talking to one another daily and by sharing a men- 
tal picture of a simple structure. 

But later, when the same program must  be extended by other program- 
mers who are not  in frequent contact  with the original designers, it becomes 
painfully clear that  the "simple" structure is no t  described anywhere and 
certainly is not  revealed by the primitive language notat ion used. It is impor- 
tant  to realize that  for program maintenance a simple and well-documented 
structure is even more important than it is during program development. I 
will not  talk about  the situation in which a program that  is neither simple 
nor well documented must  be changed. 

There is an interesting relationship between programming errors and 
changing user requirements. Both of them are sources of instability in the 
program construction process that  make it difficult to reach a state in which 
you have complete confidence in what a program does. They are caused by 
our inability to fully comprehend at once what a large program is supposed 
to do in detail. 

The relative frequencies of program errors and c:hanging requirements are 
of crucial importance. If programming introduces numerous errors that  are 
difficult to locate, many of them may still be in the program when the user 
requests changes of its function. And when an engineer constantly finds him- 
self changing a system that  he never succeeded in raaking work correctly in 
the  first place, he will eventually end up with a very unstable product.  

On the other hand, if program errors can be located and corrected at a 
much faster rate than the system develops, then the addition of a new piece 
(or a change) to the program will soon lead to a stable situation in which the 
current version of the program works reliably and predictably. The engineer 
can then, with much greater confidence, adapt his product  to slowly chang- 
ing needs. This is a strong incentive to make program verification and testing 
fast. 

A hierarchical structure consists of program pieces that  can be studied 
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one at a time. This makes it easier to read the program and get an initial un- 
derstanding of  what  it does and how it does it. Once you  have that  insight, 
the consequences of changing a hierarchical program become clear. When 
you change a part of a program pyramid you must  be prepared to inspect 
and perhaps change the program parts that  are on top of it (for they are the 
only ones that  can possibly depend on the one you changed). 

1.5 PORTABILITY 

The ability to use the same program on a variety of  computers is desir- 
able for economic reasons: Many users have different computers; sometimes 
they replace them with new ones; and quite often they have a common 
interest in sharing programs developed on different machines. 

Portability is only practical if programs are written in abstract languages 
that  hide the differences between computers as much as possible. Otherwise, 
it will require extensive rewriting and testing to move programs from one 
machine to another. Programs written in the same language can be made 
portable in several ways: 

(1) by having different compilers for different machines. This is only 
practical for the most widespread languages. 

(2) by having a single compiler that  can be modified to generate code 
for different machines. This requires a clear separation within the compiler 
of those parts that  check programs and those that  generate code. 

(3) by having a single computer that  can be simulated efficiently on 
different machines. 

The Concurrent Pascal compiler generates code for a simple machine 
tailored to the language. This machine is simulated by an assembly language 
program of 4 K words on the PDP 11/45 computer. To move the language to 
another computer  one rewrites this interpreter. This approach sacrifices 
some efficiency to make portability possible. The loss of efficiency can be 
eliminated on a microprogrammable machine. 

1.6 EFFICIENCY 

Efficient programs save time for people waiting for results and reduce 
the cost of computation. The programs described here owe their efficiency 
to 

special-purpose algorithms 
static store allocation 
minimal run-time checking 



10 DESIGN PRINCIPLES Chap. 1 

Initially the loading of a large program (such as a compiler) from disk 
took about 16 sec on the PDP 11/45 computer. This was later reduced to 5 
sec by a disk allocation algorithm that depends on the special characteristics 
of program files (as opposed to data files). A scheduling algorithm that  tries 
to reduce disk head movement  in general would have been useless here. The 
reasons for this will be made clear later. 

Dynamic store algorithms that  move programs and data segments around 
during execution can be a serious source of inefficiency that  is not  under the 
programmer's control. The implementation of Concurrent Pascal does no t  
require garbage collection or demand paging of storage. It uses static alloca- 
tion of store among a fixed number of processes. The store requirements are 
determined by the compiler. 

When programs are written in assembly language it is impossible to 
predict what they will do. Most computers depend on hardware mechanisms 
to prevent such programs from destroying one another or the operating 
system. In Concurrent Pascal most  of this protection is guaranteed by the 
compiler and  is no t  supported by hardware mechanisms during execution. 
This drastic reduction of run-time checking is only possible because all 
programs are written in an abstract language. 

1.7 GENERALITY 

To achieve simplicity and reliability we will depend exclusively on a 
machine-independent language that  makes programs readable and extensive 
compilation checks possible. To achieve efficiency we will use the simplest 
possible store allocation. 

These decisions will no doubt  reduce the usefulness of Concurrent Pascal 
for some applications. But I see no way of avoiding that.  To impose struc- 
ture upon yourself is to impose restrictions on your  freedom of program- 
ming. You can no longer use the machine in any way you want (because 
the language makes it impossible to talk directly about  some machine 
features). You can no longer delay certain program decisions until execution 
time (because the compiler checks and freezes things much earlier). But the 
freedom you lose is often illusory anyhow, since it can complicate program- 
ming to the point  where you are unable to cope with it. 

This book describes a range of small operating systems. Each of them 
provides a special service in the most efficient and simple manner. They 
show that  Concurrent Pascal is a useful programming language for mini- 
computer operating systems and dedicated real-time applications. I expect 
that  the language will be useful (but no t  sufficient) for writing large, general- 
purpose operating systems. But that  still remains to be seen. I have tried to 
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make a programming tool that is very convenient for many applications 
rather than one which is tolerable for all purposes. 

1.8 CONCLUSION 

I have discussed the programming goals of  

simplicity 
reliability 
adaptability 
efficiency 
portabili ty 

and have suggested that they can be achieved by careful design of  program 
structure, language notation, compiler, and code interpreter. The properties 
that we must  look for are the following: 

structure: hierarchical structure 
small parts 
minimal interfaces 
reproducible behavior 
readable documentat ion 

notation: abstract and readable 
structured and redundant  

compiler: reliable and fast 
extensive checking 
portable code 

interpreter: reliable and fast 
minimal checking 
static store allocation 

This is the philosophy we will follow in the design of concurrent  programs. 

1.9 LITERATURE 

For me the most  enjoyable thing about  computer  programming is the 
insight it gives into problem solving and design. The search for simplicity 
and structure is common to all intellectual disciplines. 
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Here are a historian and a biologist talking about the importance of rec- 
ognizing structure: 

"It  is a matter o f  some importance to link teaching and research, even 
very detailed research, to an acceptable architectonic vision o f  the whole. 
Without such connections, detail becomes mere antiquarianism. Yet  while 
history wi thout  detail is inconceivable, wi thout  an organizing vision it quick- 
ly becomes incomprehens ib le . . .  What cannot be understood becomes 
meaningless, and reasonable men quite properly refuse to pay at tention to 
meaningless matters."  

William H. McNeill [1974] 

"There have been a number o f  physicists who suggested that biological 
phenomena are related to the finest aspects o f  the consti tut ion o f  matter, in 
a manner o f  speaking below the chemical level. Bu t  the evidence, which is 
almost too abundant, indicates that biological phenomena operate on the 
'systems' level, that is, above chemistry ."  

Walter M. Elsasser [1975] 

A linguist, a psychologist, and a logician have this to say about  writing 
and notat ion:  

"Omit  needless words. Vigorous writing is concise. A sentence should 
contain no unnecessary words, a paragraph no unnecessary sentences, for 
the same reason that a drawing should have no unnecessary lines and a ma- 
chine no unnecessary parts. This requires not  that the writer make all his 
sentences short, or that he avoid all detail and treat his subject only in 
outline, but that every word tell." 

William Strunk, Jr. [1959] 

"How complex or simple a structure is depends critically upon the way 
in which we describe it. Most  o f  the complex structures found in the world 
are enormously redundant, and we can use this redundancy to simplify 
their description. Bu t  to use it, to achieve the simplification, we must  find 
the right representation." 

Herbert A. Simon [1969] 

"There is something uncanny about  the power  o f  a happily chosen ideo- 
graphic language; for it of ten allows one to express relations which have no 
names in natural language and therefore have never been noticed by anyone. 
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Symbolism, then, 
tion. " 

becomes an organ of  discovery rather than mere nota- 

Susanne K. Langer [1967] 

An engineer and an architect discuss the influence of human errors and 
cultural changes on the design process: 

"First, one must perform perfectly. The computer resembles the magic 
of  legend in this respect, too. I f  one character, one pause, o f  the incantation 
is not strictly in proper form, the magic doesn't work. Human beings are not  
accustomed to being perfect, and few areas o f  human activity demand it. 
Adjusting to the requirement for perfection is, I think, the most difficult 
part o f  learning to program." 

Frederick P. Brooks, Jr. [1975] 

"Misfit provides an incentive to c h a n g e . . .  However, for the fit to occur 
in practice, one vital condition must be satisfied. It must  have time to hap- 
pen. The process must  be able to achieve its equilibrium before the next  cul- 
ture change upsets it again. It must actually have time to reach its 
equilibrium every time it is disturbed--or, if we see the process as continu- 
ous rather than intermittent, the adjustment of  forms must proceed more 
quickly than the drift o f  the culture contex t ."  

Christopher Alexander [1964] 

Finally, here are a mathematician and a physicist writing about  the 
beauty and joy of creative work: 

"The mathematician's patterns, like the painter's or the poet's, must 
be beautiful; the ideas, like the colours or the words, must fit together in a 
harmonious way. Beauty is the first test: there is no permanent place in 
the world for ugly mathematics." 

G. Hi Hardy [1967] 

"The most powerful drive in the ascent o f  man is his pleasure in his own 
skill. He loves to do what he does well and, having done it well, he loves to 
do it better. You see it in his science. You see it in the magnificence with 
which he carves and builds, the loving care, the gaiety, the effrontery. The 
monuments are supposed to commemorate kings and religions, heroes, 
dogmas, but in the end the man they commemorate is the builder. " 

Jacob Bronowski [ 1973 ] 
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P R O G R A M M I N G  CONCEPTS 

We will construct large concurrent programs as hierarchies of smaller 
components.  Each component  should have a well-defined function that  can 
be implemented and tested as an almost independent program. The com- 
ponents and their combinations should have reproducible behavior. And 
the verification and testing of such programs must take place much faster 
than they will change due to new requirements. 

This chapter introduces the kind of components we will use and de- 
scribes how to connect them. Our programming tool is a language called 
Concurrent Pascal. It extends the sequential programming language Pascal 
with new concepts called processes, monitors, and classes. 

This is an informal description of Concurrent Pascal. It uses examples, 
pictures, and words to bring out  the creative aspects of new programming 
concepts without  getting into their finer details. Other chapters will intro- 
duce a language notat ion for these concepts and define them concisely. This 
form of presentation is perhaps not  precise from a formal point of view. But 
it is, I hope, more effective from a human point Of view. 

15  
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2.1 CONCURRENT PROCESSES 

I will introduce the language by solving a simple and useful problem: 
How can text  be copied as fast as possible from a card reader to a line 
printer? 

Figure 2.1 shows a card reader, a line printer, and a program that  copies 
data from one to the other. The card reader and line printer can transfer 
1000 and 600 lines/min (corresponding to 60 and 100 msec/line). 

The simplest solution to the problem is a cyclical, sequential program 

cycle input; output  end 

that  inputs one line at a time from the card reader and outputs it to the line 
printer. 

Unfortunately,  this is very inefficient since it forces t h e  card reader 
and line printer to alternate 

input, output ,  input, output  . . . .  

so that  one of  them always waits while the other operates. As a result the 
copying speed is only 375 lines/min (or 160 msec/line). 

We can only increase the speed by letting the card reader and the line 
printer operate simultaneously (Fig. 2.2). The copy program now consists 
of two sequential processes that  are executed simultaneously 

card process: cycle input; send end 
printer process: cycle receive; output  end 

A card process inputs one line at a time from the card reader and sends 
it through a buffer to a printer process that  receives and outputs it to the 
line printer. This program copies text  at the speed of the slowest device (600 
lines/min). 

Since we are interested in abstract programming it is not  important  

CARD READER LINE PRINTER 

PROGRAM 

Fig. 2.1 Data copying 
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CARD READER BUFFER LINE PRINTER 

CARD PROCESS PRINTER PROCESS 

Fig. 2.2 Data flow among concurrent processes 

how concurrent processes are implemented on a computer .  All we need to 
know is that  they are executed simultaneously so that  they can make peri- 
pherals run at the same time. 

On some computers ,  a single processor will be mult iplexed among con- 
current  processes by means of  clock interrupts. On other  computers,  each 
process will be executed by its own processor. We will deliberately ignore 
these details and assume that  they are taken care of by the machine which 
executes the compiled code of  our  abstract concurrent  programs. (Chapter 9 
describes the implementat ion of  Concurrent  Pascal on the PDP 11/45 
computer .  ) 

Our refusal to be concerned with machine detail makes it impossible to 
predict the absolute and relative speeds o f  concurrent processes. We will, 
however, assume that all processes have positive speeds. (After all, why 
write a piece of program unless we know that the machine will execute it?) 
The machine will of ten be much faster than its peripherals so that  we can 
expect  processes to run roughly at the speed of  the devices they  control.  

2.2 PRIVATE DATA 

We will build concurrent  programs out  of  sequential processes that  are 
executed simultaneously. This is quite attractive since most  programmers 
already have a deep intuitive understanding of sequential programming. 

A sequential process consists of  a data structure and a sequential pro- 
gram that  operates on it (Fig. 2.3). The program statements are executed 
strictly one at a time. 

The impor tant  thing about  a sequential program is that  it always gives 

PRIVATE DATA 

SEQUENTIAL 
PROGRAM 

Fig. 2.3 A process 
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the same results when it operates on the same data independen t ly  o f  how 
fast  it is executed.  All that  matters is the sequence in which operations are 
carried out. 

A programming  error in a sequential program cma always be located by 
repeating the execut ion of the program several times with the data that  
revealed the error. In each of  these experiments ,  the values of  selected 
variables are recorded to determine whether  or no t  a certain program part  
works. This process of elimination continues until the error has been lo- 
cated. 

When a program part  has been found to behave correct ly in one test 
we can ignore that  part (and its variables) in subsequent  tests because it 
will continue to behave in exactly the same manner  each time the program 
is executed with the same data. So our  abil i ty  to test  a large, sequent ial  
program in small  s teps depends  fundamenta l l y  on the reproducible behavior 
o f  the program. 

The t ime-independent  behavior of  a sequential process is guaranteed, 
however~ only if its variables are inaccessible to other  processes. But if a pro- 
cess uses the values of a variable which another  process changes, then the 
result depends on the relative speeds of  the processes. 

When a concurrent  program is executed several times with the same 
data, the relative speed of  the processes will always vary somewhat.  In a 
mult iplexed computer  the execut ion of  a process will be influenced by the 
presence of  other  (perhaps unrelated) processes. And in a multiprocessor 
system, execut ion speeds will depend on how fast operators react to  program 
requests. 

If a concurrent  program contains an error that  makes one process change 
the variables of another  process at unpredictable times, then that  program 
will give different  results each t ime it is executed with the same data. 

Such unpredictable program behavior makes it impossible to locate an 
error by systematic testing. It can perhaps be found by studying the program 
tex t  in detail for  days. But this can be very frustrating (if no t  impossible) 
when it consists of  thousands of  lines and one has no clues about  where to 
look. 

I f  we wish to succeed in building large, concurrent  programs which are 
reliable, we mus t  use programming  languages that  are so well s tructured 
that  a compi ler  can catch m o s t  t ime-dependen t  errors (because nobody  else 
can). So we will choose a language nota t ion  that  clearly shows which variables 
a process owns. The compiler will then make sure that  these private variables 
are inaccessible to other  processes. 
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2.3 PERIPHERALS 

Peripheral devices are a potential source of erratic program behavior 
that  deserves careful attention. The classical programming technique for 
simultaneous input and processing of data is to use a double buffer that  is 
accessible both to a sequential program and its input device. 

The program inputs the first data item in a buffer variable x. While 
the program operates on x, the device inputs the second data item in another 
buffer variable y. The program then processes y while tile third data item is 
being input to x, and so on. 

More than one programmer has made the mistake of referring to a data 
item before it has been input completely. This makes the program result 
depend on the relative speed of program execution and input transfers. 

The problem is that  this programming technique turns a program and 
its peripherals into concurrent processes that  can refer to each other's "pri- 
vate" variables by mistake. 

In Concurrent Pascal a peripheral device can only be accessed by an 
operation io that  delays the calling process until the input /output  has been 
completed. So a variable is at any time accessible either to a single process 
or to a single device (but not  to both of them). A data transfer is just an- 
other sequential operation with a completely reproducible result. 

While a process is waiting for the completion of a data transfer, the 
computer  can execute other processes. So this approach does not  necessarily 
make the machine idle. Simultaneous input and processing of data items can 
be done by two processes connected by a buffer (Fig. 2.2). 

Another benefit of making input /output  an indivisible operation is that  
peripheral interrupts become irrelevant to the programmer. They are handled 
completely at the machine level. 

When computer  problems first arise they are often solved in very compli- 
cated ways. It takes a long time to discover the obvious solutions. And then 
it takes a while longer to get used to them. The programming of input/out- 
put  illustrates this well. 

2.4 SHARED DATA 

Although it is vital to make sure that  some variables are private to proc- 
esses, they must also be able to share data structures (such as a buffer). 
Otherwise, concurrent processes cannot exchange data and cooperate on 
common tasks. But since shared data are the major pitfall of concurrent 
programming we m u s t  proceed with extreme care and define exactly what 
processes can do with such data structures. 

The buffer in the copying program is a data structure shared by two con- 
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current  processes (Fig. 2.2). The details of how such a buffer  is constructed 
are irrelevant ' to its users. All the processes need to know is that  they  can 
send and receive data through it. If they try to  operate on the buffer  in any 
other  way it is probably either a programming mistake or an example of 
tr icky programming. In both  cases, one would like a compiler to detect  such 
misuse of  a shared data structure. 

To make this possible, we must  introduce a language construct  that  
will enable a programmer to tell a compiler how a shared data structure can 
be used by processes. This kind of system componen t  is called a monitor. 
A moni tor  can synchronize concurrent  processes and transmit  data among 
them. It can also control  the order in which competing processes use shared, 
physical resources. 

A moni tor  defines a shared data structure and all the operations proc- 
esses can perform on it (Fig. 2.4). These synchronizing operations are called 
monitor  procedures. A moni tor  also defines an initial operation that  is exe- 
cuted when its data structure is created. 

We can define a buffer as a monitor .  It will consist of shared variables 
defining the contents of  the buffer.  It  will also include two moni tor  proce- 
dures, send and receive. The initial operat ion will make the buffer  empty  
to  begin with. 

Processes cannot  operate directly on shared data. They  can only call 
moni tor  procedures (such as send and receive) that  have access to the data. 
A moni tor  procedure  is executed as part  of the calling process (just like any 
other  procedure).  

If concurrent  processes simultaneously call moni tor  procedures which 
operate on the same shared data, these procedures must  be executed strict- 
ly one at a time. Otherwise, processes might find the data structure in some 
(unknown) intermediate state, which would make the results of  moni tor  
calls unpredictable. 

This means that  the machine must  be able to delay processes for  short  
periods of  time until it is their turn to execute  moni tor  procedures. We will 
not  be concerned about  how this is done,  but  will just notice that  a process 

SHARED DATA 

SYNCHRONIZING 
OPERATIONS 

INITIAL 
OPERATION 

Fig. 2.4 A monitor  
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has exclus ive  access to shared data while it executes a moni tor  procedure.  
(Chapter 9 explains the implementat ion details of this.) 

So the machine on which concurrent  processes run will handle short-  
term schedul ing  of  simultaneous moni tor  calls. But the programmer must  
also be able to  delay processes for  longer periods of  time until their requests 
for  data and other  resources can be satisfied. For  example, if a process tries 
to receive data from an empty  buffer  it must  be delayed until another  
process sends more data. 

Concurrent  Pascal includes a simple data type,  called a queue,  that  can 
be used by moni tor  procedures to control  m e d i u m - t e r m  schedul ing  of 
processes. A moni tor  can either delay a calling process in a queue or con- 
t inue a process waiting in a queue. 

It is no t  impor tant  yet  to understand how these queues work except  
for the following rule: A process  has exclus ive  access to shared data on l y  
as long as it  con t inues  to e x e c u t e  s t a t e m e n t s  wi th in  a m o n i t o r  procedure .  A s  
soon  as a process  is de layed  in a queue  it loses its exclus ive  access unti l  
ano ther  process  calls the same m o n i t o r  and con t inues  its execu t ion .  

A compiler will check that  processes only access a moni tor  through its 
procedures. This has dramatic consequences for program reliability. It means 
that  once a moni tor  has been implemented correct ly other  parts of a pro- 
gram cannot  make it fail. It remains a stable, correct  c o m p o n e n t  no mat ter  
what  the rest of the program does. Compile-time protect ion of  private 
variables has the same effect on processes. 

Programming languages, such as Fortran,  Cobol, PL/1, and Pascal use 
common data structures ("global variables") as interfaces between separate 
program parts. This makes it easy for one part of a program to crash another  
by changing its data structure in unexpected  ways. 

Concurrent  Pascal is based on the assumption that  procedures  are a 
m u c h  safer interface mechan i sm  than c o m m o n  data structures.  Procedures 
associated with a data structure make it possible for  a programmer to define 
all the possible operations on the data and depend on a compiler to prevent 
the rest of a program from using the data in any other  way. 

2.5 ACCESS RIGHTS 

So far I have only int roduced the c o m p o n e n t s  from which concurrent  
programs can be constructed,  namely processes and monitors.  But we still 
need a precise way of describing how these components  can be c o n n e c t e d  
to form hierarchical s tructures.  

Figure 2.2 makes it obvious that  data flow from a card process through 
a buffer to a printer process. We will call this a data f l o w  graph. 

Figure 2.5 shows the same system from a different  viewpoint. The 
circles are s y s t e m  c o m p o n e n t s ,  and the arrows are the access rights of  these 
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Fig. 2.5 System components and their access rights 
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components .  They show that  both processes can use the buffer,  but  tha t  
only the card process can use the card reader, and only the printer  process 
can use the line printer. This kind of  picture is an access graph. 

The access rights of  the processes only enable them to call the send and 
receive procedures defined by the buffer  monitor .  They do no t  give them the 
right to operate directly on the data structure that  represents the buffer.  
(I remark in passing that  peripheral devices can be looked upon as monitors  
implemented in hardware which can only be accessed by a single procedure 
io. ) 

This will be our s tructuring mechanism:  to connec t  program compo-  
nents  by access rights into hierarchical sys tems  in which  concurrent  pro- 
cesses c o m m u n i c a t e  by calling monitors .  

In a large concurrent  program these access rights should be writ ten down 
to make the program structure obvious to a reader and verifiable to a com- 
piler. So we will extend a process with access rights (Fig. 2.6). The access 
rights ment ion  the monitors  the process can call. 

Although the copying example does no t  show this, moni tor  procedures 
should also be able to call procedures  defined within other  monitors.  Other- 
wise, the language will no t  be very useful for hierarchical design. So a moni-  
tor can also have access rights to  o ther  monitors  (Fig. 2.7). 

Processes can only communicate  by means of monitors.  A compiler will 
check that  a process only uses the monitors  it has access to. 
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2.6 ABSTRACT DATA TYPES 

A process executes  a sequential  p r o g r a m - - i t  is an active c o m p o n e n t .  A 
m o n i t o r  is just  a co l lec t ion  o f  p rocedures  which do  no th ing  unti l  t hey  are 
called by  p r o c e s s e s - - i t  is a passive c o m p o n e n t .  But  there  are s t rong similari- 
ties be tween  a process and a m o n i to r :  b o th  def ine a data  s t ruc tu re  (private 
or  shared)  and the  meaningfu l  opera t ions  on it. The  main d i f fe rence  be tween  
processes and mon i to r s  is the  way they  are scheduled  for  execu t ion .  

I t  seems natural ,  there fore ,  to  regard processes and mon i to r s  as abstract 
data types def ined  in terms o f  the  opera t ions  one  can pe r fo rm on them.  
They  are abs t rac t  because the  rest  o f  a p rogram only  knows what  one  can do  
wi th  them w i t h o u t  depending  on  how the  da ta  are s t ruc tu red  and manipu-  
lated. I t  is even possible to  change the data representation w i t h o u t  inf luenc-  
ing the  rest  of  a p rogram as long as the  opera t ions  remain  the  same. 

In the  copy ing  system the  buf fe r  can be represen ted  e i ther  by  a single 
line slot, an array o f  lines, a l inked list, or  a t ree  s t ruc ture .  And it can be 
s tored  e i ther  in core  or  on  disk. The  processes do  n o t  care as long as t h ey  
can send and receive lines th rough  it. This gives the p ro g ram m er  the  f r eedom 
to  e x p e r i m e n t  wi th  d i f fe ren t  da ta  representa t ions  to  improve  pe r fo rmance .  

The hiding o f  imp lemen ta t ion  details wi thin an abstract data type  
makes  it easier to tune  a program locally. I t  also makes  it easier to under- 
s tand what  the program does as a whole,  since all these di f ferent  data repre- 
sentat ions i m p l e m e n t  the same abstract  idea o f  sending and receiving. 

Since a compi le r  can check  tha t  these opera t ions  are the only  ones 
carried ou t  on  the  abs t rac t  da ta  s t ruc ture  we can h o p e  to  be able to  build 
very  reliable, c o n c u r r e n t  programs in which  con t ro l l ed  access to  da ta  and 
physical  resources is guaranteed  before  these programs are p u t  in to  opera- 
t ion  (or even tes ted) .  This will solve to  a large e x t e n t  the  resource pro tec t ion  
problems  in the  cheapes t  possible m a n n e r  ( w i t h o u t  hardware  mechanisms 
and run- t ime overhead) .  
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Fig. 2.8 A pipeline system 

A useful concept can be used over and over again (and not  just once). So 
we will define processes and monitors as data types and make it possible to 
use several instances of each of them in a system. We can, for example, use 
two buffers to build a pipeline system in which data pass through a card 
process, a copy process, and a printer process (Fig. 2.8). 

The copy process will format  the text  so that  each file begins and ends 
with a blank page, each page begins and ends with a blank line, and each line 
is surrounded by blank margins. 

Since input /output  and execution alternate strictly within peripheral 
processes it is desirable t o  keep their data processing minimal to make the 
devices run as fast as possible. This is achieved by formatt ing the text  in a 
separate process that  can run while the other processes are waiting for 
input /output .  This extension of the copying system also has the advantage 
of leaving all the previous components unchanged (Fig. 2.5). So here we have 
an example of how one can adapt a program to new requirements wi thout  
changing it completely. 

In a concurrent program the programmer only defines the buffer type 
once but declares two instances of it. I will distinguish between definitions 
and instances of components  by calling them system types and system 
components. Access graphs (such as Fig. 2.8) will always show system 
components  (not system types). 

During program execution the machine creates a separate data structure 
for each system component.  But components  of the same type share a single 
copy of the procedures associated with the data. So the pipeline system uses 
two copies of the buffer variables but  only one copy of the send and receive 
procedures. 

To make the programming language useful for hierarchical system de- 
sign it should permit the division of a system type, such as the copy process, 
into smaller system types. Let us assume that  the buffers in Fig. 2.8 transmit 
whole lines of text  between the processes. The text  formatt ing can then be 
done one step at a time by means of three abstract data types inserted be- 
tween the copy process and its ou tpu t  buffer (Fig. 2.9). 

The copy process calls a file maker which adds blank pages to each text  
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Fig. 2.9 Decomposition of the copy process 

file. The file maker in turn calls a page m a k e r  which adds blank lines to each 
tex t  page. The page maker then calls a line m a k e r  which adds a margin to 
each tex t  line before sending it through the buffer. 

The file, page, and line makers are only used by the copy process. Such 
components  which can only be called by a single other  component  will be 
called classes. 

A class defines a data structure and the possible operations on it (just 
like a monitor) .  The exclusive access of a process to  class variables can be 
guaranteed completely at compile time. The machine does not  have to sched- 
ule simultaneous calls of  class procedures at run time, because such calls 
cannot  occur. This makes class calls considerably faster than moni tor  calls. 

2.7 HIERARCHICAL STRUCTURE 

If we pu t all the components  of  the pipeline system together  we get a 
complete picture of its structure. In Fig. 2.10, classes, monitors,  and pro- 
cesses are marked, C, M, and P. 

In an access graph a process is a node that  no other  node has access to. 
A class is one that  a single other  node has access to. And a moni tor  is one 
that  two or more other  nodes have access to. (The phrase "has access t o "  
also means "points  to . " )  

Some years ago I was part  of a team that  built a mult iprogramming 
system in which processes can appear and disappear dynamically [Brinch 
Hansen, 1970] .  In practice, this system was used mostly to set up a fixed 
configuration of  processes. This is to be expected,  since most  concurrent  
programs control  computers  with a fixed configuration of peripherals and 
perform a fixed number  of  control  tasks in some environment.  
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Fig. 2.10 Hierarchical system structure 

Dynamic process deletion certainly complicates the meaning and imple- 
mentat ion of a programming language considerably. And since it seems to 
be unnecessary in many real-time applications, it is probably wise to exclude 
it altogether. So a concurrent program will consist o f  a f ixed number o f  
processes, monitors, and classes. These components  and their data struc- 
tures will exist forever after system initialization. A concurrent program 
can, however, be extended by recompilation. 

It remains to be seen whether this restriction will simplify or complicate 
operating system design. But the poor quality of most existing operating 
systems clearly demonstrates an urgent need for simpler approaches. 

In other programming languages the data structures of processes, moni- 
tors, and classes would be called global data. This term would be misleading 
in Concurrent Pascal, where each data structure can be accessed by a single 
component  only. It seems more appropriate to call them permanent  data 
structures. 

A Concurrent Pascal compiler will check that  the private data of a 
process are accessed only by that  process. It will also check that  the data 
structure of a class or moni tor  is accessed only by its procedures. 

Figure 2.10 shows that  the access rights within a concurrent program 
normally are not  tree structured. Instead they form a directed graph. This 
partly explains why the traditional scope rules of block structured languages 
are inconvenient for concurrent programming (and, I believe, for sequential 
programming as well). In addition, the access rights to variables in these 
languages are not  very selective (a block can use not  only its own variables 
but also those defined in all blocks surrounding it). In Concurrent Pascal, a 
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program component  has access to only a small number of  other components.  
And these components  are accessible only through well-defined procedures. 

Since the execution of a monitor  procedure will delay the execution of 
further calls of the same monitor,  we must prevent a monitor  from calling 
itself recursively. Otherwise, processes can become deadlocked waiting (in 
vain) for themselves to leave monitors before they reenter them. So the 
compiler will check that  the access rights of system components are hier- 
archically ordered (or, if you like, that  there are no cycles in the access 
graph). 

The hierarchical ordering of system components has vital consequences 
for system design and testing: 

A hierarchical, concurrent program can be tested component  by com- 
ponent,  bottom up (but could, of course, be conceived top down or by 
iteration). Here the " b o t t o m "  of a program is all the components which do 
not  use any other components,  while the " t o p "  is those components which 
no other components use. 

When an incomplete program has been shown to work correctly (by 
proof or testing), a compiler can guarantee that  this part of the system will 
continue to work correctly when new untested components are added on 
top of it. Programming errors within new components  cannot make old 
components fail because old components do not  call new components,  and 
new components only call old components through well-defined procedures 
that  have already been tested. 

Several other reasons besides program correctness make a hierarchical 
structure attractive : 

(1) A hierarchical system can be studied in a stepwise manner as a 
sequence of abstract machines simulated by programs [Dijkstra, 1971].  

(2) A partial ordering of process interactions permits one to use 
mathematical induction to prove certain overall properties of the system 
(such as the absence of deadlocks) [Brinch Hansen, 1973b].  

(3) Efficient resource utilization can be achieved by ordering the 
program components according to the speed of the physical resources they 
control (with the fastest resources being controlled at the bot tom of the 
system) [Dijkstra, 1971]. 

(4) A hierarchical system designed according to the previous criteria is 
often nearly decomposable from an analytical point  of view. This means that  
one can develop stochastic models of its dynamic behavior in a stepwise 
manner [Simon, 1969]. 

It seems most natural to represent a hierarchical system, such as Fig. 
2.10, by a two-dimensional picture. But in order to write a concurrent 
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program, we must  somehow represent these access rules by linear text. This 
limitation of written language tends to obscure the simplicity of the original 
structure. That is why I have tried to explain the purpose of Concurrent 
Pascal by means of pictures instead of language notation.  

The next two chapters introduce the language notat ion of Sequential 
and Concurrent Pascal and present a complete, executable program for the 
pipeline system. 



SEQUENTIAL PASCAL 

The purpose of this work is to experiment with a small number of con- 
cepts for concurrent programming. Instead of inventing a new programming 
language from scratch I have used an existing sequential language Pascal as a 
host for these ideas. The resulting language is Concurrent Pascal. 

The model operating systems described here are written in Concurrent 
Pascal. All other programs are written in Sequential Pascal: compilers, edi- 
tors, input /output  drivers, job control interpreters, disk allocators, and 
user programs. 

This is a short, informal overview of Sequential Pascal. It is neither com- 
plete nor concise. But it should be sufficient to understand the programs 
described later. For historic reasons there are minor differences between the 
most recent version of Pascal [Jensen and Wirth, 1974] and the one used 
here. Since these differences do not  change the direction of this work they 
will be ignored. 

The representation of basic symbols is somewhat restricted by the 
character set used (ASCII). I have improved this slightly by using bold face 
types for word symbols in this book. Apart from this, the programs are 
presented in their original executable form. I have become used to this 
program representation and find it as readable as any other. 

29 
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3.1 PROGRAM STRUCTURE 

A Sequent ia l  Pascal p r o g r a m  consists  o f  dec la ra t ions  of  

cons t an t s  
da ta  types  
variables  
rou t ines  

and  a sequence  of  statements t h a t  ope ra t e  on  these  objects .  T h e  s t a t e m e n t s  
will be  e x e c u t e d  one  at a t ime.  

An ou t l ine  o f  a p r o g r a m  is s h o w n  be low.  

cons t  l inelength = 132;  

t y p e  line = a r ray  ( .1 . . l inelength.)  o f  char;  

var  pageno ,  m a x n o :  integer;  ok:  boo lean ;  

p r o c e d u r e  w r i t e t e x t ( t e x t :  l ine);  
var  i: integer;  c: char ;  
begin  

i: = 0; 
r epea t  

i : = i + l ;  
c: = text ( . i . ) ;  
d isp lay(c) ;  

u n t i l  c = ' '" 
e n d ;  

, , o , ,  

begin  
° ° , o °  

i f  p ageno  = m a x n o  t h e n  

begin  
wr i t e t ex t ( ' f i l e l im i t  '); 
ok:  = false; 

e n d ;  
. ° , . o  

e n d .  

The  p r o g r a m  defines  a c o n s t a n t  linelength with  the; value 132 and  a da ta  
t y p e  line which  is an a r ray  o f  charac te r s  n u m b e r e d  1, 2, 3 . . . .  , l inelength.  
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I t  uses th ree  variables:  t w o  integers,  called pageno and  maxno ,  and a boo lean  
ok. 

The  p r o g r a m  also defines a p r o c e d u r e  wri t e t ex t  which uses a line para-  
m e t e r  n a m e d  text.  The  p r o c e d u r e  has t w o  local variables:  an in teger  i and  a 
cha rac te r  c. One  o f  the  p r o g r a m  s t a t emen t s  calls this p r o c e d u r e  to  wri te  the  
t e x t  s tr ing ' f i le l imit ' .  

The  objec ts  used by  the  p rog rams  have  unique  identifiers 

l inelength 
line 
pageno  
m a x n o  
ok  
w r i t e t e x t  
, • • • , 

These  ident if iers  are in t roduced  by  dec lara t ions  be fo re  t hey  are used in s tate-  
ments .  This r e d u n d a n c y  enables  a comp i l e r  to  de t ec t  misspel led  or  ambigu-  
ous identif iers.  (S t r ic t ly  speaking,  the  same ident i f ie r  can be  used  fo r  differ-  
en t  objec ts  wi th in  d i f f e ren t  rou t ines  and  da ta  s t ruc tures ,  bu t  this is n o t  
i m p o r t a n t  here .)  

3.2 CONSTANTS AND VARIABLES 

I f  a cons tan t  is used several t imes  in a p rog ram it  is useful  to  def ine  its 
value once  and  refer  to  it  e lsewhere  by  an ident i f ie r  

cons t  page length  = 512;  f irs t l ine = 2; 

This makes  it  easy to  change the  value la ter  if  necessary.  
ASCII  charac te rs  are n u m b e r e d  0 to  127. These  ordinal values can be 

used to  def ine  unpr in t ab l e  charac te rs  such as N L  (new line) and  EM (end 
m e d i u m )  

cons t  nl = ' ( :10 : ) ' ;  e m =  ' ( : 25 : ) ' ;  

One  can also n a m e  str ing cons tan t s  and  real cons tan t s  

cons t  pass5 = ' spass5 ' ;  
o n e d a y  = 86400 .0  " s e c o n d s " ;  
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A comment ,  such as " s e c o n d s " ,  has no  e f f ec t  on  t h e  p rog ram.  
In Pascal a variable v m u s t  a lways  be  o f  s o m e  fixed[ type T 

v a r y :  T 

The  t y p e  def ines  all the  possible  values o f  the  variable.  
The  dec lara t ions  

va t  pageno ,  m a x n o :  in teger ;  
ok:  boo lean ;  

res t r ic t  the  variables  pageno and maxno t o  integer values 

. . .  -2,-1, 0, 1, 2 , . . .  

and  l imi t  the  var iable  ok t o  boolean values 

false, t rue  

The  basic ope ra t ions  on  var iables  are assignment o f  values 

m a x n o :  = 255  
pageno :  = pageno  + 1 
ok :=  false 

and  comparisons for  equa l i ty  

ff pageno  = m a x n o  t h e n . . .  

or  inequa l i ty  

The  f ixed  types  
m a k i n g s o m e  of  the i r  a s s u m p f i o n s e x p l i c i t .  The  d e c l E a t i o n  

while  s ta tus  <> c o m p l e t e  d o . . .  

o f  variables enhance  the  readab i l i ty  o f  p r o g r a m s  by  

Chap. 3 

vat  pageno :  in teger  
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reveals that  the programmer only intends to assign integer values to the 
variable pageno, perform arithmetic operations on it, and compare it to 
other  integers. Anything else is a mistake on his part. 

This explicit assumption enables a compiler to detect  meaningless state- 
ments, such as an assignment of a boolean value to an integer variable 

pageno:= false 

or a comparison of  integer and boolean variables 

if pageno = ok t h e n . . .  

Although a computer  may represent the boolean values false and true by 
0 and 1, it is essential to consider booleans and integers as different  concepts 
in a programming language. Otherwise, a compiler cannot  perform this kind 
of type checking. 

3.3 SIMPLE DATA TYPES 

The data type  concept  plays a central role in abstract programming 
because it clarifies the assumptions of programs and makes them part ly 
verifiable during compilation. 

The simple data types consist of values that  can only be operated upon 
as a whole. They are either enumerations or reals. The types 

type  integer = (-32768,  -32767 . . . .  0, 1, ... 32767) 

type  boolean = (false, true) 

type  char = (nul, soh, ... '# ' ,  '$', ... '0' ,  '1' ,  ... 'a', 'b', ... del) 

are enumerations. Each of  them defines a finite, ordered set of values. These 
standard types need no t  be defined by the programmer. This is only done 
here to show their values. 

The language nota t ion does no t  reveal how these values are represented 
in a computer .  The integer values might be stored as two's complement  bit 
patterns, the boolean values as 0 and 1, and the character values as 0 to 127. 
Pascal enables the programmer to ignore details o f  machine representation 
and consider integers, booleans, and characters as distinct, abstract concepts. 
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The programmer can also define his own enumerat ion types. For exam- 
ple, the definition 

type  iooperat ion = (input, output ,  move, control)  

introduces a new data type called iooperation. Its values are called input, 
output, move, and control. A computer  might represent these values by 0, 1, 
2, and 3, but  this is irrelevant to  the programmer. 

Other examples of new enumerat ion types are 

type  iodevice = (typedevice, diskdevice, tapedevice, 
printdevice, carddevice) 

type  ioresult = (complete,  intervention,  transmission, 
failure, endffle, endmedium, s tar tmedium) 

Enumerat ion variables are declared as follows 

vat count ,  lineno, charno:  integer; 

ok: boolean; 

c: char; 

status: ioresult; 

An enumerat ion value can be used to select a s tatement  to  be executed 

if count  < 0 then wri te( ' - ' )  else write( '  ') 

if (count  = pagelength) or (c = em) then 
begin write(text) ;  count :  = 0 end 

case status of 
complete:  

ok: = true; 
intervention: 

begin wait; ok: = false end; 
transmission, failure: 

begin write( 'errors ') ;  ok:= false; end 
end 
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or  to  repeat the  e x e c u t i o n  o f  a s t a t e m e n t  

fo r  l ineno:= 1 to  f irst l ine - 1 do  wri te(nl)  

while  (c < >  ' # ' )  & (charno  < l inelength)  do  
begin wr i te (c) ;  charno:  = cha rno  + 1; read(c)  end  

r epea t  read(c)  unt i l  c = em 

An e n u m e r a t i o n  t y p e  can also be  a subrange of  a n o t h e r  one  

t y p e  f i leno = 1..2; 

digit  = '0 ' . .  ' 9 ' ;  

i o m a r k  = endf i l e . . s t a r tmed ium;  

var f: f i leno;  d: digit;  m:  i omark ;  

These  dec lara t ions  res t r ic t  the  var iable  f to  the  values 1 and  2, the  var iable  
d to  the  values '0 ' ,  '1 ' ,  . . . '9 ' ,  and  the  var iable  m to  the  values endfile, end- 
medium, and  startmedium. F o r  e x a m p l e  

f := 2; d := '3 ' ;  m:  = e n d m e d i u m ;  

T h e s t a n d a r d  t y p e  real consists  o f  a f ini te  se t  o f  the  real n u m b e r s  

var seconds:  real;  

seconds :=  seconds  + 1.0; 

i f  seconds  > =  o n e d a y  then  seconds:  = seconds  - oneday ;  

The  fo l lowing s t andard  func t ions  convert values o f  one  s imple  t y p e  to  
a n o t h e r  

o rd (x )  

chr (x)  

cony(x )  

t r unc (x )  

The  ordinal  value o f  the  cha rac t e r  x. 

The  cha rac te r  wi th  the  ordinal  value x. 

The  real co r r e spond ing  to  the  in teger  x. 

The  in teger  co r r e spond ing  to  the  real x. 
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Example :  

SEQUENTIAL PASCAL 

cons t  o n em in  = 60.0  " s eco n d s" ;  
vat  min,  sec: integer;  r em:  real;  
s ec := t runc ( rem - conv(min)  * onemin )  

Chap. 3 

Example :  

vat  digit:  char;  rem:  integer;  
digit:  = chr (abs( rem rood  10) + o rd ( ' 0 ' ) )  

3.4 STRUCTURED DATA TYPES 

Arrays,  records ,  and sets are da ta  s t ruc tures  c o m p o s e d  of  s impler  types.  
T h e y  can be ope ra t ed  u p o n  e i ther  as a whole  or  c o m p o n e n t  by  c o m p o n e n t .  

An array is a da ta  s t ruc tu re  wi th  a f ixed  n u m b e r  of  c o m p o n e n t s  of  the  
same type .  A t e x t  line, fo r  example ,  can be de f ined  as an array of  characters  

t y p e l i n e  = array ( .1 . .132.)  o f  char  

The  individual characters  have indices f r o m  1 to  132. 
The  declarat ions  

var t ex t ,  e r ror :  line; charno :  integer;  

i n t roduce  two  line variables, t ex t  and error, and an in teger  variable,  charno. 
Lines can be ope ra t ed  u p o n  as a whole  

if  s tatus < >  c o m p l e t e  t h en  t ex t :  = er ror  

or  charac te r  by  charac te r  

fo r  cha rno :  = 1 to  132 do  e r ro r ( . charno . ) :  = '? '  

An array e l emen t  is selected by means  of  its inffex 

e r ror ( . charno . )  
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During program execution the machine checks that  indices are within the 
range of the arrays (here 1 to 132). 

A record is a data structure with a fixed number of components that  
may be of different types. For example, to output  a line on a printer one 
uses a record that  defines the input /output  operation and its result 

type ioparam = record 
operation: iooperation; 
status: ioresult; 
arg: integer 

end 

This data type is called an ioparam. It contains three fields named operation, 
status, and arg. These fields are of types iooperation, ioresult, and integer 
defined earlier. 

A line is printed as follows 

vat param: ioparam; text:  line; 

param.operation: = output;  
repeat io(text, param, printdevice) 
until param.status = complete; 

(The extra argument in the record is only used for disks and magnetic tapes.) 
A record field is selected by means of its identifier 

param.operation 
param.status 

Instead of repeatedly qualifying record fields with the same record 
identifier one can do it once by means of a with statement 

with param do 
begin 

operation: = output;  
repeat io(text, param, printdevice) 
until status = complete; 

end 
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The data  type  

type  characters = set o f  char  

defines all the possible subsets of  characters,  among  others 

where 

vat empty ,  signs, digits: characters;  
empty :=  (..) 
signs := (. '+', ' - ' .  ) 
digits:= (. '0 ' ,  '1' ,  '2' ,  '3' ,  '4' ,  '5' ,  '6' ,  '7' ,  '8' ,  '9 ' .) 

Another  example  of  a set type  is 

type  cyl inder  = set o f  sector  

type  sector = 0..23 

which defines a disk cyl inder  as a set of  sectors numbered  0 to 23. 
In general, a set  t ype  

set o f  T 

defines all the possible subsets of  the  values of  an enumera t ion  type  T. 
The basic set  operat ions are 

or  un ion  
& intersect ion 
- difference 
in membership  

Example:  

var numeric :  characters;  

numeric  := signs or digits 

Chap. 3 
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Example: 
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vat pool:  cylinder; next:  sector; 

while no t  (next in pool)  do 
next:= (next+l )  mod 24; 
pool: = pool  - (.next.) 

We will occasionally use a variable that  can have values of  different  
types, such as boolean, integer, or identifier. A possible notat ion for this 
might be 

var param: either boolean, integer, or identifier; 

param:= boolean(false) 
param := integer(X 5) 
if param = identif ier( 'backup')  then ... 

This idea is a bit more cumbersome to express in Pascal. The variable must  
be defined as a record that  contains either a boolean field, an integer field, 
or an identifier field. This record must  include a tag field that  defines which 
of the three variants is being represented by the other  record field 

type  argtag = (booltype,  int type,  idtype);  
type argtype = record 

case tag: argtag o f  
bool type:  (bool: boolean); 
int type:  (int: integer); 
idtype:  (id: identifier) 

end; 
vat param: argtype; 

The type argtag defines the possible values of the tag field. The type  argtype 
defines a record with three variants. If the tag field has the value booltype 
then the rest of the record is a boolean field named bool. On the other  hand, 
if the tag value is inttype the record contains an integer field called int, and 
so on. 

This variant record can be used as follows 
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with param do 
begin tag: = bool type;  bool:= false end 

if param.tag = idtype then ... 

The programmer pays a price for  the flexibility' of  variant types. Every 
time a program refers to a variant field the machine will check whether  the 
tag value is consistent with the variant assumed. 

3.5 ROUTINES 

A routine is a sequence of  statements with parameters that  have been 
combined into a single action. Data types and routines are the main com- 
ponents  of  Sequential Pascal programs. There are two kinds of routines:  
procedures and functions. 

Example: 

procedure readpage(addr: integer; var block: page); 
var param: ioparam; 
begin 

with param do 
begin 

operation:= input; 
arg:= addr; 
repeat  io(block, param, diskdevice) 
until  status = complete;  

end; 
end 

where 

type  page = array (.1..512.) of  char 

This procedure is called readpage. Its parameters are an integer and a 
disk page, called addr and block. The procedure can use the values of both 
parameters but  can only change the second one. The distinction between 
constant and variable parameters is made by omitt ing or writing the symbol 
var before the parameters 

addr: integer vat block: page 
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The  p rocedu re  also uses a local variable param to  pe r fo rm disk input .  
The  p rocedu re  can be execu t ed  by  being called with  arguments cor- 

responding  to  those  specif ied in its def in i t ion  

var pageno:  integer;  slot:  page; 

readpage(pageno,  slot) 

A func t ion  is a rou t ine  tha t  comp u te s  a single value 

func t ion  hash(id:  ident i f ier) :  integer;  
var key,  i: integer;  c: char;  
begin 

key:  = 1 ; i :  = 0; 
r epea t  

i: = i + 1; c:= id(.i.); 
i f  c < >  ' ' t h en  

key:  = key  * ord(c)  m o d  table length  + 1; 
unt i l  (c = ' ') or  (i = idlength) ;  
hash := key;  

end  

This func t ion  conver ts  an ident i f ier  

c o n s t  i d l e n g t h  = 1 2  
t ype  ident i f ier  = array ( .1. . idlength.)  o f  char  

in to  an integer  value called its hash key  

vat  name:  ident i f ier ;  key:  integer;  
key :=  hash(name)  

3.6 SCOPE RULES 

A program is m u c h  easier to  unders t and  if  each of  its s t a tements  opera te  
on ly  on  a small n u m b e r  o f  variables and if  each variable is accessible on ly  to  
a small par t  o f  the  program.  This par t  of  the  program is called the  scope of  
the  variable. 

The  variables declared at  the  beginning o f  a Sequent ia l  Pascal p rogram 
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are accessible throughout  the program. These global variables exist as long as 
the program is being executed. 

The variables declared within a routine are only accessible to that  
routine. These local variables exist only while the routine is being executed. 

The compiler checks these scope rules. 
Since the local variables disappear after the execution of  a routine they 

can only be used to hold temporary results. More permanent results must be 
stored in global variables. This tends to make the global data structures 
large and complicated for nontrivial programs. It also makes programs hard 
to understand since every s ta tement  can potentially change the global data. 

Programs can become somewhat  obscure when routines change global 
variables that  a re  not  passed to them as parameters. The following is an 
example of  these side effects 

vat header: line; endinput:  boolean; 
out: record count:  integer; text:  line end; 

. . . . .  

procedure  initialize(text: line); 
begin 

header:= text;  
endinput:= true; 
out .count := 0; 

end 

Instead of  letting this procedure change the global variables header, endin- 
put, and out without  prior warning, one could ask the programmer to pass 
them as explicit arguments to the routine. However, the intention of  this 
programming style is to show that these three arguments are always the 
same. This assumption would be hidden throughout  the program (and might 
be violated by mistake) if all arguments had to be explicit. 

The problem is simply that this routine needs local variables that are 
permanent  rather than temporary.  But  Sequential Pascal does not  make it 
possible for the programmer to restrict the access to a permanent  variable 
to one (or just a few routines). It is accessible either to all routines or to 
none. This problem with global variables is solved in Concurrent Pascal. 

3.7 TYPE CHECKING 

In Pascal every constant, variable, and expression has a type  that  is 
known during compilation. This enables a compiler to check that operands 
are compatible with the operations performed on them. The compiler does 
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this by simulating the execution of statements using the types of the oper- 
ands instead of their values. 

An example will show how this works 

vat ok: boolean; codelength: integer; 

if ok & (codelength > 0) then savefile 

By replacing the operands with their types we get the abstract s tatement 

if boolean & (integer > integer) then statement 

The comparison of two integers is a legal subexpression that  produces a 
boolean result (since it is either true or false). This reduces the expression to 

if boolean & boolean then statement 

The and operation on two booleans produces a boolean result 

if boolean then statement 

So the whole expression has a boolean value which is exactly what is re- 
quired by a conditional statement. 

On the other hand, the statement 

if ok & codelength then savefile 

will be found incorrect since an and operation cannot be performed on a 
boolean and an integer 

if boolean & integer then statement 

Type checking depends on a comparison of declarations and state- 
ments written in different parts of a program text. This textual separation 
makes it difficult to find type errors by proofreading the text. It is therefore 
vital to design a programming language such that  these obscure errors can 
be discovered during compilation. 



44 SEQUENTIAL PASCAL Chap. 3 

Automatic  type  checking assumes that the types o f  all operands and the 
possible operations on them are known  during compilation. In Sequential 
Pascal all operands have fixed types, and the elementary operations on the 
standard types (boolean, char, integer, and real) are known as well (&, or, 
not, +, -, * , / ,  < ,  =, > ,  and so on). 

But  when the programmer introduces a structured data type, such as 

type  diskffle = record 
unit: disk; 
map: filemap; 
opened: boolean 

end 

and defines four operations on it 

procedure open(file: diskfile; mapaddr: integer) 
procedure close(file: diskfile) 
procedure read(file: diskfile; pageno: integer; vat block: page) 
procedure write(file: diskfile; pageno: integer; block: page) 

the language does not  make it possible to tell the compiler that  these are 
supposed to be the only operations one can perform on disk files. 

In Concurrent Pascal type  checking is extended to data structures as 
well. The problem of doing this is closely related to the problem of limiting 
the scope of  permanent  variables to a small number of  routines. 

Occasionally, a system programmer must  be able to relax the rules of  
type  checking somewhat.  This can be done wi thout  going to the other 
extreme of  introducing variables that  are treated as typeless bit patterns 
throughout  the program (as assembly languages and some implementation 
languages do). 

Consider again an operating system procedure that  outputs  a page of  
data to a disk file 

procedure write(file: diskfile; pageno: integer; block: page) 
begin ..... end 

where a page is defined as a text  string 

type  page = array (.1..512.) of  char 
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This procedure can be used to ou tpu t  a t ex t  string x as page number  i on a 
disk file f 

vat f: diskfile; i: integer; x: page; 
write(f, i, x) 

But if we insist that the arguments of  a procedure call must  be of  the 
same types as the parameters defined within the procedure,  then we cannot  
use the same procedure to  ou tpu t  a page of  another  type,  say an array of 
integers 

type  intpage = array (.1..256.) o f  integer 
vat g: diskfile; j: integer; y: intpage; 
write(g, j, y) 

We could, of  course, suggest the use of a type  definition that  mentions 
all the possible variants of  a disk page. But this is unrealistic. When a system 
programmer writes a disk file rout ine he cannot  anticipate all the possible 
data types that  users will assign to disk pages in the future. All the pro- 
grammer knows and can depend on when he writes the disk file procedure 
is the physical length of  a disk page. This is one of the few cases in which 
one cannot  hope to hide machine detail. 

To make the output  procedure more general we will define the disk 
page as a universal parameter 

procedure write(file: diskfile; pageno: integer; 
block: univ page) 

The symbol univ indicates that  the procedure can be called with any argu- 
ment  that  occupies the same number  of  store locations as a disk page. It can 
now be called with the integer page y as an argument. Before and after  the 
call, the variable y is regarded strictly as an integer page. And within the 
procedure,  the parameter  is considered strictly as a disk page. Type check- 
ing is only relaxed at the point  where the procedure is being called. 

3.8 LITERATURE 

Hoare [1973] and Wirth [1976b] discuss philosophies of  language de- 
sign and evaluation. In Structured programming, Hoare [1972] summarizes 
the fundamental  concepts of  data types and structures. 
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Wirth's books [1973 and 1976a] are very readable introductions to 
systematic programming in Sequential Pascal. The User m a n u a l  and  repor t  
by Jensen and Wirth [1974] is a short overview and concise definition of  
Pascal. 
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4 
CONCURRENT PASCAL 

Earlier I explained the concepts of  Concurrent  Pascal informally by 
means of pictures of  a hierarchical pipeline that  copies tex t  from a card 
reader to a line printer and formats it. I will now use the same example to 
introduce a language notat ion.  The presentation is still i n fo rma l - - i t  shows 
the concepts of the language rather than its details. 

We will program the components  of the pipeline program one at a 
t ime (Fig. 2.10). 

4.1 INPUT/OUTPUT 

The standard procedure 

io(block, param, device) 

makes a peripheral device input  or ou tpu t  a data block as defined by an 
additional parameter. The calling process is delayed until the operat ion is 
completed. 

47 
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We will write the pipeline program for a computer  on which the device 
and its parameter must be of the following types 

type iodevice = (typedevice, diskdevice, tapedevice, 
printdevice, carddevice) 

type ioparam = record 
operation: iooperation; 
status: ioresult; 
arg: integer 

end 

where 

type iooperation = (input, output ,  move, control) 

type ioresult = (complete, intervention, transmission, 
failure, endfile, endmedium, startmedium) 

A process defines an input /ou tput  operation and its argument before 
starting a device. After the data transfer the device returns one of the follow- 
ing results 

complete 

intervention 

transmission 

failure 

endfile 

endmedium 

startmedium 

The operation succeeded. 

The operation failed, but can be; repeated after 
manual intervention. 

The operation failed due to a transmission error, 
but can be repeated immediately. 

The operation failed and cannot be repeated until 
the device has been repaired. 

An end of file mark was reached. 

An end of medium mark was reached. 

A start of medium mark was reached. 

The types of a data block and the extra argument within an io para- 
meter vary from device to device but  will be fairly self-evident in each case 
(see Chapter 8 for details). 

The card reader and line printer can transfer one line at a time 
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cons t  l inelength = 132 
t ype  line = array ( .1. . l inelength.)  o f  char  

The  card reader  inputs  80 characters  per  line ( w i t h o u t  a t e rmina t ion  
character) .  The  line p r in te r  ou tpu t s  a variable n u m b e r  o f  characters  on each 
line t e rmina ted  by  a NL  or  FF  charac te r  

cons t  nl = ' ( :10 : ) ' ;  f f  = ' ( :12: ) ' ;  

A c o n c u r r e n t  p rogram mus t  ensure tha t  its devices are used by  at  m o s t  one  
process at  a t ime (since the  mach ine  does n o t  check  this). 

4.2 PROCESSES 

Although we only  need  one  printer process, we m a y  as well def ine  it  as 
a general sys tem type  o f  which several copies m a y  exist  

t ype  pr in te rprocess  = 
process (buf fer :  l inebuffer ) ;  

vat param:  ioparam;  t ex t :  line; 

begin 
pa ram.opera t ion :  = o u tp u t ;  
cycle  

buf fe r . rece ive( tex t ) ;  
r epea t  io( tex t ,  param, pr in tdevice)  
unt i l  param.s ta tus  = comple te ;  

end;  
end;  

A pr in te r  process has access to  a buffer of  t y p e  linebuffer ( to  be def ined  
later).  The  process has two  variables, param and text, of  ioparam and line 
types.  

A process type  defines a sequential program: in this case, an endless 
cycle  tha t  receives a line f rom the  buf fe r  and ou tpu t s  it  to  the  pr inter .  

The  receive opera t ion  on  the  buf fe r  

buf fe r . rece ive( tex t )  

re turns  a line o f  text .  
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The output  of a line is repeated until it is successfully completed (that 
is, until the operator turns on the power of the line printer and puts it under 
computer  control). 

The next component  type is a card process. 

type cardprocess = 
process(buffer: linebuffer); 

var param: ioparam; text, error: line; 
charno: integer; 

begin 
for charno: = 1 to 80 do error(.chamo.):= ' ? ' ;  
param.operation: = input; 
with param do 
cycle 

repeat io(text, param, carddevice) 
until status < >  intervention; 
if status < >  complete then text:=: error; 
buffer.send(text);  

end; 
end; 

A card process has access to a line buffer. It uses four private variables: an 
io parameter,  two lines called t e x t  and error, and an integer called charno. 

The process inputs lines from the card reader and sends them through 
the buffer. If the power of the card reader is turned off, the input is re- 
peated until the operator intervenes. A card input with transmission errors 
is replaced by question marks. 

Finally, we need a copy  process that  can transmit data from one buffer 
to another. 

type copyprocess = 
process(inbuffer, outbuffer:  linebuffer); 

vat consumer: filemaker; text:  line; 

begin 
init consumer(outbuffer);  
with inbuffer, consumer do 
cycle receive(text); write(text) end; 

end; 
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A c o p y  process has access to  an input and an ou tpu t  buffer. I t  has two 
private variables: a consumer of  type  filemaker (def ined later)  and a text  
line. 

The  s t a t emen t  

init  c o n s u m e r ( o u t b u f f e r )  

initializes the consumer  and connec t s  it  to  the  o u t p u t  buffer .  This is ex- 
plained in more  detai l  later. 

To  begin with,  a c o n c u r r e n t  p rogram is ex ecu t ed  as a single, sequent ia l  
process called the  initial process. I t  contains  declara t ions  o f  the  o the r  pro- 
cesses and mon i to r s  

vat  inbuffer ,  ou tb u f f e r :  l inebuffer ;  
reader:  cardprocess;  
copier :  copyprocess ;  
pr inter :  pr in terprocess ;  

The  sys tem c o m p o n e n t s  are a card  process,  a co p y  process,  and a p r in te r  
process called the  reader, copier, and printer. T h e y  are c o n n e c t e d  by  input  
and ou tpu t  buffers. 

The  initial process starts the  reader  process by  an init s t a t em en t  

init  r eader ( inbuf fe r )  

which allocates storage for  the  private variables of  the  process and starts its 
e xe c u t i on  wi th  access to  the  inpu t  buffer .  The  access rights of  a process to  
o the r  sys tem componen t s ,  such as the  inpu t  buffer ,  are also called its para- 
meters. 

A process can only  be init ialized once. Af te r  init ial ization,  the para- 
meters  and private variables of  a process exist  forever.  T h e y  are called 
permanent  variables. 

The  ini t  s t a t emen t  can be used to  s tar t  c o n c u r r e n t  execu t ion  of  several 
processes and def ine thei r  access rights. The  s t a t e m e n t  

init reader ( inbuf fe r ) ,  
copier ( inbuffer ,  ou tbu f fe r ) ,  
p r i n t e r (ou tbu f f e r )  

starts c o n c u r r e n t  execu t ion  of  the reader  process (with access to  the  input  
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buffer), the copier process (with access to both buffers), and the printer 
process (with access to the output  buffer). 

A process can only access its own parameters and private variables. The 
latter are not  accessible to other system components. Compare this with the 
more liberal scope rules of block-structured languages, in which a routine can 
access not  only its own parameters and local variables but  also those declared 
globally. 

In Concurrent Pascal all variables accessible to a system component  are 
declared within its type definition. This access rule and the init s tatement 
make it possible for a programmer to state access rights explicitly and have 
them checked by a compiler. They also make it possible to study a system 
type as a self-contained program unit. 

Although the examples do not  show this, one can also define constants, 
data types, and procedures within a process. These objects can only be 
used within the process type. 

4.3 MONITORS 

A line buffer is a monitor  type. 

type linebuffer = 
monitor  

vat contents: line; full: boolean; 
sender, receiver: queue; 

procedure entry receive(vat text:  line); 
begin 

if not  full then delay(receiver); 
text:= contents; full:= false; 
continue(sender); 

end; 

procedure entry send(text: line); 
begin 

if full then delay(sender); 
contents:= text;  full:= true; 
continue(receiver); 

end; 

begin full:= false end; 
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The monitor  defines a set of  shared variables: The contents of the buffer is 
a single line. A boolean defines whether or no t  the buffer is full. Two vari- 
ables of type queue are used to delay the sender and receiver processes until 
the buffer becomes empty and full, respectively. 

The monitor  defines two procedures, send and receive. These monitor  
procedures are marked with the word entry to distinguish them from local 
procedures used within the monitor  only (there are none of these in this 
example). 

Receive delays the calling process until the buffer is full. It  then returns 
a text  line to the process. Finally, the procedure continues the execution 
of a sending process (if it is waiting in the sender queue). 

Send delays the calling process until the buffer is empty. It then puts 
a text  line into the buffer and continues the process (if any) waiting in the 
receiver queue. (The queueing mechanism will be explained in detail short- 
ly.) 

The initial s tatement  of a line buffer makes it empty to begin with. 
A line buffer is declared and initialized as follows within the initial 

process 

vat inbuffer: linebuffer; 
init inbuffer 

The init statement allocates storage for the shared variables of the input 
buffer and executes its initial statement. A monitor  can be initialized only 
once. After initialization, the shared variables of a monitor  exist forever. 
They are called permanent  variables. 

The parameters and local variables of  a monitor  procedure exist only 
while it is being executed, however. They are called temporary variables. 

A monitor  procedure can only access its own temporary and permanent 
variables. These variables are not  accessible to other system components. 
Other components can, however, call procedure entries within a monitor  
(provided they have access to it). 

While a monitor  procedure is being executed, it has exclusive access to 
the permanent variables of the monitor. If concurrent processes try to 
call procedures within the same monitor  simultaneously, these procedures 
will be executed strictly one at a time. 

Only monitors and constants can be permanent parameters of processes 
and monitors. This rule ensures that  processes communicate only by means 
of monitors. 

It is possible to define constants, data types, and local procedures within 
monitors (and processes). These local objects of a system type can only be 
used within that  system type. 
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To prevent deadlocks of  moni tor  calls and ensure that  access rights are 
hierarchical the following rules are enforced:  A rout ine must  be declared 
before it can be called; rout ine definitions cannot  be nested and cannot  call 
themselves; and a system type  cannot  call its own routine entries. 

The absence of  recursion makes it possible for a compiler  to determine 
the store requirements of  all system components .  This and the use of  perma- 
nent  components  make it possible to use a f ixed store allocation in a com- 
puter  t ha t  does not  support  paging (see Chapter 9 for  details). 

Since system components  are permanent  they must  be declared as 
permanent  variables of  other  components .  

4.4 QUEUES 

A moni tor  procedure can delay a calling process for  any length of time 
by executing a delay operat ion on a queue variable. Only one process at a 
time can wait in a queue. When a calling process is delayed by a moni tor  
procedure it loses its exclusive access to the moni tor  variables until another  
process calls the same moni tor  and executes a continue operat ion on the 
queue in which the first process is waiting. 

The cont inue operat ion makes the calling process return from its moni- 
tor  procedure.  If another  process is waiting in the selected queue, that  proc- 
ess will immediately resume its execut ion of  the moni tor  procedure in which 
it was delayed. After  being resumed, the process again has exclusive access 
to  the permanent  variables of  the monitor .  

A single-process queue is the simplest tool  thai; gives the programmer 
complete control  of the medium-term scheduling of individual processes. 
A queue is still a fairly abstract concept  which allows one to  ignore the 
identi ty of a process and think of  it merely as " the  calling process" or " the  
process waiting in this queue ."  It also hides the details of processor schedul- 
ing that  take place during preempt ion and resumption of  a process. 

A queue must  be declared as a permanent  variable within a moni tor  
type.  The larger programs described later show how multiprocess queues 
can be built  f rom single-process queues. 

4.5 CLASSES 

A file maker is defined as a class type.  It has access to a line buffer. Its 
permanent  variables define a page maker, called the consumer, and a boolean 
eof  denoting the end of  a t ex t  file. 

The class defines a procedure entry write tha t  skips a page a t  the be- 
ginning and the end of a file and transmits its t ex t  lines to the page maker. 
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It also includes a local funct ion m o r e  that  defines whether  or not  a 
line contains tex t  or an end of file mark. (The latter is a card consisting of  
the character # followed by blanks.) 

The initial s t a t e m e n t  of  a file maker initializes its page maker  and sets 
the boolean eof  to true. 

A class can only be initialized once. After  initialization, its parameters 
and private variables exist forever. A class routine can only access its own 
temporary  and permanent  variables. These cannot  be accessed by  other  
components.  

type  filemaker = 
class(buffer: l inebuffer); 

vat consumer: pagemaker; eof: boolean; 

funct ion more( text :  line): boolean; 
vat charno: integer; 
begin 

if text( .1.)  < >  '# '  then 
more: = true else 

begin 
charno:= 80; 
while text( .charno.)  = ' ' do 

charno: = charno - 1; 
more:= (charno < >  1); 

end; 
end; 

procedure entry write(text:  line); 
begin 

if eof  then 
begin consumer.skip; eof:= false end; 
.if more( text)  then 

consumer.wri te( text)  else 
begin consumer.skip; eof: = true end; 

end; 

begin init consumer(buffer) ;  eof: = true end; 

A class is a system componen t  that  cannot  be called simultaneously by 
several other  components .  This is guaranteed by the following rule: A class 
must  be declared as a permanent  variable within a system type;  a class can 
be passed as a permanent  parameter  to  another  class (but  no t  to a process 
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or monitor).  So a chain of  nested class calls can only be started by a single 
process (possibly from within a monitor).  Consequently,  it is not  necessary 
to schedule simultaneous class calls at run t i m e -  they simply cannot  occur. 

A page maker is also a class. 

type  pagemaker = 
class(buffer: linebuffer); 

vat consumer: linemaker; lineno: integer; 

procedure newpage; 
vat text:  line; 
begin 

text(. 1.) := ff; consumer.write(text);  
text(.1.)  := nl; consumer.write(text);  
lineno := 1; 

end; 

procedure entry skip; 
begin newpage end; 

procedure entry write(text:  line); 
begin 

consumer, write(text);  
if lineno -- 60 then newpage else 

lineno:= lineno + 1; 
end; 

begin init consumer(buffer);  newpage end; 

A page maker defines a procedure entry that  skips the rest of  a page and 
another one that writes 60 lines per page. 

The page maker uses another class called a line maker. 

type linemaker = 
class(buffer: linebuffer); 

vat image: line; charno: integer; 
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procedure entry write(text: line); 
begin 

for charno: = 27 to 106 do 
image(.charno.): = text(.charno - 26.); 

buffer.send(image); 
end; 

begin 
for charno:= 1 to 26 do 

image(.charno.) := ' '" 
image(.107.) := nl; 

end; 

This class extends a text  line with a left margin of 26 characters and termi- 
nates it with a NL character before sending it through the buffer. 

4.6 A COMPLETE PROGRAM 

We can now put  all these components together into a complete, con- 
current program. A Concurrent Pascal program consists of nested definitions 
of system types (processes, monitors, and classes). The outermost of these 
is the initial process which declares and initializes the other processes and 
the monitors that  connect them. 

When the execution of  a process (such as the initial process) terminates, 
its permanent variables continue to exist. This is necessary because these 
variables may be monitors that  are used by other processes. 

The following is a complete program for the pipeline system. It has been 
running on a PDP 11/45 computer. 

" * * * * * * * * * * * * * * * * * * * * * * *  

* input /output  types * 
* *  * * *  * * * * * *  * * : ~ * *  * ~  * * * * * ' ~  

type iodevice = (typedevice, diskdevice, tapedevice, 
printdevice, carddevice); 

type iooperation = (input, output ,  move, control); 

type ioresult = (complete, intervention, transmission, 
failure, endfile, endmedium, startmedium); 
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type ioparam = record 
operation: iooperation; 
status: ioresult; 
arg: integer 

end; 

const linelength = 132; 
type line = array (.1..hnelength.) of  char; 

const nl = '(:10:) ' ;  f f  = '( :12:) ' ;  

~ * * * * * * * * * * * * * * *  

* linebuffer * 
* * * * * * * * * * * * * * * "  

type linebuffer = 
moni tor  

vat contents: line; full: boolean; 
sender, receiver: queue; 

procedure entry receive(var text:  line); 
begin 

if not  full then delay(receiver); 
text:= contents; full: = false; 
continue(sender); 

end; 

procedure entry send(text:  line); 
begin 

if full then delay(sender); 
contents: = text;  full: = true; 
continue(receiver); 

end; 

begin full:= false end; 

" * * * * * * * * * * * * * *  

* hnemaker * 
* * * * * * * * * * * * * * ~ '  

type linemaker = 
class(buffer: linebuffer); 

Chap. 4 



Sec. 4.6 A COMPLETE PROGRAM 

vat image: line; charno: integer; 

procedure entry write(text:  line); 
begin 

for charno: = 27 to 106 do 
image(.charno.) := text(.charno - 26.); 

buffer.send(image); 
end; 

begin 
for charno:= 1 to 26 do 

image(.charno.):= ' '" 
image(.107.) := nl; 

end; 

~ * * * * * * * * * * * * * * *  

* pagemaker * 

type  pagemaker = 
class(buffer: linebuffer); 

var consumer: linemaker; lineno: integer; 

procedure newpage; 
vat text: line; 
begin 

text( . i . )  := ff; consumer.write(text);  
text(.1.) := nl; consumer.write(text);  
lineno := 1; 

end; 

procedure entry skip; 
begin newpage end; 

procedure entry write(text:  line); 
begin 

consumer.write(text);  
if lineno = 60 then newpage else 

lineno:= lineno + 1; 
end; 

begin init consumer(buffer);  newpage end; 

59 
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* filemaker * 

type filemaker = 
class(buffer: linebuffer); 

vat consumer: pagemaker; eof: boolean; 

funct ion more(text:  line): boolean; 
vat charno: integer; 
begin 

if text(.1.) < >  '# '  then 
more:= true else 

begin 
charno:= 80; 
while text(.charno.) = ' ' do 

charno := charno - 1; 
more: = (charno < >  1); 

end; 
end; 

procedure entry write(text:  line); 
begin 

if eof then 
begin consumer.skip; eof:= false end; 
if more(text) then 

consumer.write(text) else 
begin consumer.skip; eof:= true end; 

end; 

begin init consumer(buffer);  eof: = true end; 

Chap. 4 

* c~dprocess * 
$ * $ * $ $ $ $ $ $ $ * $ * $ ~ ' ~  

type cardprocess = 
process(buffer: linebuffer); 

vat param: ioparam; text,  error: line; 
charno: integer; 
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begin 
for charno: = 1 to 80 do error(.charno.): = '?'; 
param.operation: = input; 
with param do 
cycle 

repeat io(text,  param, carddevice) 
until status < >  intervention; 
if status < >  complete  then text:  = error; 
buffer, send (text); 

end; 
end; 

~ * * * * * * * * * * * * * * * *  

* copyprocess * 

type  copyprocess = 
process(inbuffer, outbuffer:  linebuffer); 

vat consumer: fflemaker; text:  line; 

begin 
init consumer(outbuffer) ;  
with inbuffer, consumer do 
cycle receive(text); write(text) end; 

end; 

* * * * * * * * * * * * * * * * * * * * *  

* printerprocess * 
* * * * * * * * * * * * * * * * * * * * *  

type  printerprocess = 
process(buffer: linebuffer); 

vat param: ioparam; text:  line; 

begin 
param.operation: = output ;  
cycle 

buffer.receive(text); 
repeat io(text,  param, printdevice) 
until param.status = complete;  

end; 
end; 
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~ * * * * * * * * $ * $ $ * * * * * $ $ $  

* initi~ process * 
$ * $ $ * $ * * $ * $ $ * $ $ $ $ * * * ~  

var inbuffer, outbuffer:  linebuffer; 
reader: cardprocess; 
copier: copyprocess; 
printer: printerprocess; 

begin 
init inbuffer, outbuffer,  

reader(inbuffer), 
copier(inbuffer, outbuffer),  
printer(outbuffer);  

end. 

4.7 EXECUTION TIMES 

Section 8.15.9 defines the execution times for Concurrent Pascal state- 
ments on a PDP 11/45 computer. We will use these figures to illustrate how 
one estimates the execution time of a statement,  such as 

for charno: = 27 to 106 do 
image(.charno.) := text( .charno - 26.) 

which is the bottleneck of the copying process in the pipeline system. 
The assignment statement takes the following time (in psec) 

image 40 
(.charno.) 10 
:= 8 
text  40 
(.charno 10 
- 9 

26.) 7 

indexed enumeration 
enumeration variable 
enumeration assignment 
indexed enumeration 
enumeration variable 
enumeration subtraction 
enumeration constant  

124 psec 

So the whole for statement takes 

82 + (69 + 124) * 80 = 15522 psec 
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or about 16 msec. Since the printing of a line takes 100 msec, there is more 
than enough time to do the formatting simultaneously. 

The following figures give a feeling for the cost of routine calls and 
processor multiplexing 

simple routine call 
class routine call 
monitor  routine call (no processor switching) 
delay or continue (processor switching) 
io 

58 psec 
80 psec 

200 psec 
600 ~sec 

1500 psec 

To call a class routine is almost as fast as calling a simple routine. The short- 
term scheduling of simultaneous monitor  calls make them almost three times 
slower than class calls. If a monitor  call delays the calling process or contin- 
ues another process waiting in a queue, the resulting processor switching 
takes another 0.6 msec. Input /output ,  which usually causes the processor 
to switch from one process to another twice (before and after the transfer), 
uses about 1.5 msec of processor time. 

Although the exact timing of processor multiplexing is unknown to a 
Concurrent Pascal programmer, the execution figures make it possible to 
predict the total amount  of processor time used by the pipeline program per 
line copied and estimate the cycle time of each process roughly. 

4.8 CONCLUSION 

We have constructed a nontrivial, concurrent program from small, trivial 
components that  can be studied in almost any order you please. We will 
now pause and look at Concurrent Pascal in the light of the programming 
principles presented in Chapter 1. 

Program structure 

The pipeline program consists of 4 processes, 3 classes, and 1 monitor  
type which are connected hierarchically. Each component  is small (10-  20 
lines) and uses a small number of  other components ( 1 - 3 ) .  The program 
and its components have reproducible behavior and will print a text  correct- 
ly each time it is input independently of its speed of execution. 
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Language notation 

Concurrent Pascal is an abstract programming language that  hides most  
of  the machine details which make assembly language programming so 
troublesome 

registers and store locations 
data representation 
variable addresses 
machine instructions and jumps 
peripheral instructions and interrupts 
processor and store allocation 

Compared to assembly language, Concurrent Pascal reduces the text  of a 
program by an order of magnitude and makes it clear what  the program 
components are and how they are connected. 

The declaration of objects before they are used is a redundancy that  
makes it possible to check automatically whether a program satisfies some 
of  the assumptions on which it was built. 

Compiler 

The Concurrent Pascal compiler for the PDP 11/45 computer  performs 
extensive checks of 

program syntax 
declarations 
type compatibility 
access rights 
hierarchical structure 

Almost none of these consistency checks are possible for a machine language 
program which is an unstructured sequence of instructions operating on 
typeless, global variables that  do not  have to be declared (but can be ac- 
cessed by computing arbitrary addresses). 

The Concurrent Pascal compiler generates code for an abstract computer  
simulated by a machine program. It can be moved to other computers by re- 
writing this interpreter of  4 K words. 

The compiler has been running without  errors since January 1975. It 
compiles about 10 lines/sec on a PDP 11/45 computer  using a slow disk 
(50 msec/transfer) for intermediate storage of  code. 
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Interpreter 

The abstract code generated by the compiler is about  60 per cent slower 
than the corresponding machine code. In practice, however, concurrent 
programs are often limited by the speed of peripherals rather than by the 
interpreter (as shown in Section 4.7). 

Operating systems which handle user programs written in machine 
language must necessarily take the pessimistic view that  all programs could 
turn out  to be random bit patterns. To prevent such programs from crashing 
a system, the designer must depend heavily on hardware protection mecha- 
nisms. The RC 4000 multiprogramming system is one of those heroic sys- 
tems that  try to make concurrent programs reliable at the machine level 
(Brinch Hansen, 1970). 

The exclusive use of abstract programming languages changes the ap- 
proach to reliability completely. When all programs are certified by a reliable 
compiler one can eliminate hardware protection mechanisms entirely as we 
have done on the PDP 11/45 computer. The Concurrent Pascal interpreter 
only checks that  array indices are within range. This is one of the few cases 
in which abstract programming is even more efficient than machine program- 
ming. 

The static store allocation among processes makes it possible for con- 
current programs to execute efficiently at fairly predictable speeds. 

We will now apply this programming technique to more complicated 
concurrent tasks. 

4.9 LITERATURE 

The classes in Concurrent Pascal are a restricted form of those invented 
by Dahl [1972] for the Simula 67 language. Simula 67 makes the variables 
of a class directly accessible both inside and outside that  class. Concurrent 
Pascal classes can only be accessed by procedure calls. 

Dijkstra suggested the idea of monitors in 1971. I proposed the first 
language notation for them [Brinch Hansen, 1973].  In 1972 I suggested 
the use of queue variables (called "events") for process scheduling. Hoare 
[1974] used a first-come, first-served variant of these queues (called "con- 
ditions"). In defining Concurrent Pascal, I finally decided to use the simplest 
possible form of queues (with a single process waiting in each) [Brinch 
Hansen, 1975].  
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CONCURRENT PROGRAMS 



THE SOLO OPERATING SYSTEM 

This is a description of the first operating system Solo written in the 
programming language Concurrent Pascal. It is a simple, but  useful single- 
user operating system for the development and distribution of Pascal pro- 
grams for the PDP 11/45 computer.  It has been in use since May 1975. 

5.1 OVERVIEW 

From the user's point  of  view there is nothing unusual about  the Solo 
system. It supports editing~ compilation, and storage of Sequential and Con- 
current Pascal programs. These programs can access either console, cards, 
printer, tape or disk at several levels (character by  character, page by page, 
file by file, or by direct device access). Input, processing, and output  of  files 
are handled by concurrent  processes. Pascal programs can call one another 
recursively and pass arbitrary parameters among themselves. 

To the system programmer, however, Solo is quite different from many 
other operating systems 

(1) Less than 4 per cent of it is written in machine language. The rest 
is written in Sequential and Concurrent Pascal. 

69 
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(2) In contrast to machine-oriented languages, :Pascal does not  contain 
low-level programming features, such as registers, addresses, and interrupts. 
These are all handled by the virtual machine which executes compiled 
programs. 

(3) System protect ion is achieved largely by means of  compile-time 
checking of access rights. Run-time checking is minimal and is not  sup- 
ported by hardware mechanisms. 

(4) Solo is the first major example of a hierarchical concurrent  pro- 
gram implemented by  means of abstract  data types (classes, monitors,  and 
processes). 

(5) The complete  system consisting of more than 100,000 machine 
words of  code (including two compilers) was developed by a s tudent  and 
myself  in less than a year. 

To appreciate the usefulness of Concurrent Pascal one needs a good 
understanding of  at least one operating system written in the language. The 
purpose of this section is to look at the Solo system from the user's point  
of  view before studying its internal structure. It tells how the user operates 
the system, how data flow inside it, how programs call one another and 
communicate,  how files are stored on d i sk ,  and how well the system per- 
forms in typical tasks. 

Job Control 

The user controls lbrogram execution from a display (or a teletype).  
He calls a program by writing its name and parameters, for example 

move(5) 
read(maketemp, seqcode, true) 

The first command positions a magnetic tape at file number  5. The second 
one inputs the file to disk and stores it as sequential code named maketemp. 
The boolean true protects the file against accidental deletion in the future. 

If the user forgets which programs are available, he may for example 
type  

help 

(or anything else). The system responds by writing 
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not  executable, try 
list(catalog, seqcode, console) 

The suggested command lists the names of all sequential programs on the 
console. 

If the user knows that  the disk contains a certain program, but is uncer- 
tain about its parameter conventions, he can simply call it as a program 
without  parameters, for example 

read 

The program then gives the necessary information 

try again 
read(file: identifier; kind: filekind; protect: boolean) 

using 
filekind = (scratch, ascii, seqcode, concode) 

Still more information about a program can be gained by reading its manual 

copy(readman, console) 

A user session may begin with the input of a new Pascal program from 
cards to disk 

copy(cards, sorttext) 

followed by a compilation 

pascal(sorttext, printer, sort) 

If the compiler reports errors on the program listing 

pascal: 
compilation errors 
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the next  step is usually to edit the program text  

edit(sorttext)  
. o ,  

and compile it again. After a successful compilation, the user program can 
now be called directly 

sort( ... ) 

The system can also read job control  commands from other media, 
for example 

do(tape) 

A task is preempted by pushing the BEL key on the console. This 
causes the system to reload and initialize itself. The command start can be 
used to replace the Solo system with any other concurrent  program stored 
on disk, for example 

start(jobstream) 

This s tar ts  the job stream system described in Chapter 6. The Solo system 
can be restarted by pushing the BEL key. 

Data Flow 

Figure 5.1 Shows the data flow inside the system when the user is 
processing a single text  file sequentially by copying, editing, or compiling 
it. 

The input, processing, and ou tpu t  of  text  take place simultaneously. 
Processing is done by  a job process that  starts input  by sending an argument 
through a buffer to an input  process. The argument is the name of the input 
device or disk file. 

The input process sends the data through another buffer to the job  
process. At the end of  the file the input  process sends an argument through 
yet  another buffer to the job process indicating whether  any transmission 
errors occurred during the input. 
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Fig. 5.1 Processes and buffers 

Output  is handled similarly by an ou tpu t  process and another set of 
buffers. 

In a single-user operating system it is desirable to process a file con- 
tinuously at the highest possible speed. So the data are buffered in core 
instead of on disk. The capacity of each buffer is 512 characters. 

Control Flow 

Figure 5.2 shows what happens when the user types a command such as 
edit(cards, tape) 

After system loading the machine executes a Concurrent Pascal program 
(Solo) consisting of three processes. Initially the input and output  processes 
both load and call a sequential program io while the job process calls another 
sequential program do. The do program reads the user command from the 
console and calls the edit program with two parameters, cards and tape. 

The editor starts its input by sending the first parameter to the io 
program executed by the input process. This causes the io program to call 
another program cards which then begins to read cards and send them to 
the job process. 

The editor starts its output  by sending the second parameter to the io 
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program executed by the output  process. The latter calls a program tape 
which receives data from the job process and puts them on tape. 

At the end of the file the cards and tape programs return to the io 
programs which then await further instructions from the job process. The 
editor returns to the do program which continues to read and interpret the 
next  command from the console. 

It is worth observing that  the operating system itself has no built-in 
drivers for input /ou tput  from various devices. Data are simply produced 
and consumed by Sequential Pascal programs stored on disk. The operating 
system contains only the mechanism to call these. This gives the user com- 
plete freedom to supplement the system with new devices and simulate 
complicated input /output  such as the merging, splitting, and formatting of 
files without  changing the job programs. 

Most important  is the ability of Sequential Pascal programs to call one 
another recursively with arbitrary parameters. In Fig. 5.2, for example, the 
do program calls the edit program with two identifiers as parameters. This 
removes the need for a separate (awkward) job control language. The job 
con trol language is Pascal. 

This is illustrated more dramatically in Fig. 5.3, which shows how the 
command 

pascal(sorttext, printer, sort) 

causes the do program to call the program Pascal. The latter in turn calls 
seven compiler passes one at a time, and (if the compiled program is correct) 
Pascal finally calls the filing system to store the generated code on disk. 
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Fig. 5.3 Compilation 

A program does not  know whether it is being called by another program 
or directly from the console. In Fig. 5.3 the Pascal program calls the filing 
system. The user may, however, also call the file system directly 

file(protect, sort, true) 

to protect his program against accidental deletion. 
r 

The Pascal pointer and heap concepts give programs the ability to pass 
arbitrarily complicated data structures among each other, such as symbol 
tables during compilation [Jensen and Wirth, 1974]. In most cases, however, 
it suffices to use identifiers, integers, and booleans as program parameters. 

Store Allocation 

The run-time environment of Sequential and Concurrent Pascal is a 
kernel of 4 K words. This is the only program written in machine language. 
The user loads the kernel from disk into core by means of the operator's 
panel. The kernel then loads the Solo system and starts it. The Solo system 
consists of a fixed number of  processes. They occupy fixed amounts of core 
store determined by the compiler. 

All other programs are written in Sequential Pascal. Each process stores 
the code of the currently executed program in a fixed core segment. After 
termination of a program called by another, the process reloads the previous 
program from disk and returns to it. The data used by a process and the 
programs called by it are all stored in a core resident stack of fixed length. 
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Fig. 5.4 File system 

File System 

The backing store is a slow disk with removable packs. Each user has his 
own disk pack containing the system and his private files. So there is no 
need for a hierarchical file system. 

A disk pack contains a catalog of all files stored on it. The catalog 
describes itself as a file. A file is described by its name, type,  protection, 
and disk address. Files are looked up by hashing. 

All system programs check the types of their input files before operating 
on them and associate types with their output  files. The Sequential Pascal 
compiler, for example, will take input  from an ascii file (but not  from a 
scratch file), and will make its ou tpu t  a sequential code file. The possible 
file types are scratch, ascii, seqcode, and concode. 

Since each user has his own disk pack, files need only be protected 
against accidental overwriting and deletion. All files are initially unpro- 
tected. To protect  one the user must  call the file system from the console 
as described in the section on control flow. 

To avoid compacting of files (lasting several minutes), file pages are 
scattered on disk and addressed indirectly through a page map (Fig. 5.4). 
A file is opened by looking it up in the catalog and bringing its page map 
into core. 

The resident part of the Solo system implements only the most  fre- 
quently used file operations: lookup, open, close, get, and put. A nonresi- 
dent, sequential program, called file, handles the more complicated and 
less frequently used operations: create, replace, rename, protect, and delete 
file. 

Disk Allocation 

The disk always contains a scratch file of 255 pages called next. A pro- 
gram creates a new file by outputt ing data to this :file. It then calls the file 
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system to associate the data with a new name, a type, and a length (< 255). 
Having done this the file system creates a new instance of next. 

This scheme has two advantages 

(1) All files are initialized with typed data. 
(2) A program creating a file need only call the nonresident file system 

once (after producing the file). Without the file next the file system would 
have to be called at least twice: before output  to create the file, and after 
output  to define its final length. 

The disadvantage of having a single file next is that  a program can only 
create one file at a time. 

Unused disk pages are defined by a set of page indices stored on disR. 
On a slow disk special care must  be taken to make program loading fast. 

If program pages were scattered randomly on the disk it would take 16 
sec to load the compiler and its input /output  drivers. An algorithm de- 
scribed later reduces this to 5 sec. When the system creates the file next it  
tries to place it on consecutive pages within neighboring cylinders as far as 
possible (but  will scatter the pages somewhat if it has to). It then rearranges 
the page indices within the page map to minimize the number of disk revolu- 
tions and cylinder movements needed to load the file. Since this is done 
before a program is compiled and stored on disk it is called disk scheduling 
at compile time. 

The system uses a different allocation technique for the two temporary 
files used during compilation. Each pass of the compiler takes input from a 
file produced by its predecessor and delivers output  to its successor on 
another file. A program maleetemp creates these files and interleaves their 
page indices (making every second page belong to one file and every second 
one to the other). This makes the disk head sweep slowly across both files 
during a pass instead of moving wildly back and forth between them. 

Operator Communication 

The user communicates with the system through a console. Since a task 
(such as editing) usually involves several programs executed by concurrent 
processes these programs must identify themselves to the user before asking 
for input or making output  

do: 
edit(cards, tape) 
edit: 

do: 
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Program identity is only displayed every time the user starts talking to a 
different program. A program that  communicates several times with the 
user without  interruption (such as the editor) only identifies itself once. 

Normally only one program at a time tries to talk to the user (the 
current program executed by the job process). But an input /output  error 
may cause a message from another process 

tape: 
inspect 

Since processes rarely compete for the console, it is sufficient to give a 
process exclus ive  access to the user for input or output  of a single line. A 
conversation of several lines will seldom be interrupted. 

A Pascal program only calls the operating system once with its identifi- 
cation. The system will then  automatically display it when necessary. 

Size and Performance 

The Solo system consists of an operating system written in Concurrent 
PasCal and a set of system programs written in Sequential Pascal. 

Program Pascal lines Mach ine  words  

operating system 1300 4 K 
do, io 700 4 K 
file system 900 5 K 
concurrent compiler 8300 42 K 
sequential compiler 8300 42 K 
editor 400 2 K 
input /output  programs 600 3 K 
others 1300 8 K 

21800 110 K 

(The two Pascal compilers can be used under different operating systems 
written in Concurrent Pascal - -not  just Solo.) 

The amounts of code written in different programming languages are 

Per cent  

machine language 4 
Concurrent Pascal 4 
Sequential Pascal 9,'] 
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This clearly shows that a good sequential programming language is more 
important  for operating system design than a concurrent  language. But al- 
though a concurrent  program may be small it still seems worthwhile to write 
it in a high-level language that enables a compiler to do thorough checking 
of  data types and access rights. Otherwise, it is far too easy to make time- 
dependent  programming errors, which are extremely difficult to locate. 

The kernel written in machine language implements the process and 
monitor  concepts of Concurrent. Pascal and responds to interrupts. It is in: 
dependent  of the particular operating system running on top of it. 

The Solo system requires a core store of 39 K words for programs and 
data. 

kernel 
operating system 
input /output  programs 
job programs 

4 K words 
11 K words 

6 K words 
18 K words 

core store 39 K words 

This amount  of  space allows the Pascal compiler to compile itself. 
The speed of  text  processing using disk input and tape ou tpu t  is 

copy 11600 char/sec 
edit 3 3 0 0 ' 6 2 0 0  char/sec 
compile 240 char/sec 

All these tasks are 60-100 per cent disk limited. These figures do not  distin- 
guish between time spent waiting for peripherals and time spent executing 
operating system or user code Since this distinction is irrelevant to the user. 
They illustrate an overall performance of a system written in a high-level 
language using straightforward code generation wi thout  any optimization. 

Final Remarks 

The compilers for Sequential and Concurrent Pascal were designed and 
implemented by A1 Hartmann and myself  in half a year. I wrote the operat- 
ing system and its utility programs in 3 months. In machine language this 
would have required 20-30 man-years and nobody  would have been able 
to understand the system fully. The use of an efficient, abstract program- 
ming language reduced the development cost to less than 2 man-years and 
produced a system that is completely understood by two programmers. 

The low cost o f  programming mahes it acceptable to throw away awh- 
ward programs and rewrite them. We did this several times: An early 6-pass 
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compiler was never released (although it worked perfectly) because we found 
its structure too complicated. The first operating system written in Concur- 
rent Pascal (called Deamy) was used only to evaluate the expressive power 
of the language and was never built. The second one (called Pilot) was used 
for several months but  was too slow. 

From a manufacturer 's  point  of view it seems both realistic and attrac- 
tive to replace a huge ineffective "general-purpose" operating system with a 
range of small, efficient systems for special purposes. 

The kernel, the operating system, and the compilers were tested very 
systematically initially and appear to be correct. 

In an excellent paper, Stoy and Strachey [1972] recommend that  one 
should learn to build good operating systems for single users before trying 
to satisfy many users simultaneously. I have found this to be very good 
advice. I have also tried to follow the advice of Lampson [1974] and make 
both the high- and low-level abstractions available to the user programmer. 

5.2 JOB INTERFACE 

The following describes the interface between user programs and the 
Solo operating system. 

Solo enables a single user to develop and execute Sequential Pascal 
programs on a PDP 11/45 computer. A Sequential Pascal program is stored 
in compiled form on disk and invoked by a user command from console. 
A sequential program interacts with the Solo system by means of procedures 
implemented within the operating system. These interface procedures and 
their parameter types are declared in a prefix to the user's program. The 
prefix enables the Pascal compiler to make complete type checking of calls 
to the operating system. No hardware mechanisms are used to supplement 
the compile-time checking of job interactions with run-time checking. 

The system can put  the prefix automatically in front  of user programs 
before they are compiled. This makes it impossible to violate the system in- 
terface conventions. The interface can be modified by editing and recompila- 
t ion of the Solo operating system (the latter taking about  2.5 min). The use 
of an interface declaration during compilation seems to be a very simple 
solution to the nontrivial problem of how to confine a user program to a 
well-defined set of interactions with an operating system. 

This section explains the standard interface to the Solo system and gives 
an example of  its use by a Sequential Pascal program. The implementat ion of  
the interface procedures within the Solo system is explained later. One of 
the interface procedures allows Pascal programs to call one another recur- 
sively and pass parameters among themselves. This makes it possible to use 
Sequential Pascal as a job control language. 
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Program Parameters 

In the Solo system a Sequential Pascal program can be called either by 
the operating system itself or by another Pascal program. The caller passes 
a list of parameters to the program. They can be booleans, integers, identi- 
fiers, pointers, or nfltypes. The program parameters are declared in a prefix 
to the user's program text  

const  idlength = 12; 
type identifier = array (.1..idlength.) of  char; 

type argtag = 
(niltype, booltype,  inttype, idtype, ptr type);  

type pointer = @ anytype;  

type argtype = record 
case tag: argtag of  

niltype, bool type:  (bool: boolean);  
inttype: (int: integer ); 
idtype: (id: identifier); 
ptr type:  (ptr: pointer) 

end; 

const maxarg = 10; 
type arglist = array (.1..maxarg.) of  argtype; 

program p(var param: arglist); 

"user program text  follows here" 

The programmer can refer to a program parameter as follows 

param(.2.) 

The user calls a program by writing its name and parameters on the con- 
sole, for example 

copy(cards, tape) 
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This causes the system to call the program copy with the two identifiers 
cards and tape as parameters as explained in Section 5.1. The system always 
extends the parameters specified by the user with a boolean. It is used by 
the program to indicate whether it succeeded in doing its job. So the copy 
program has access to three parameters 

ok: boolean; "param(.1.)"  
source: identifier; "param(.2.)"  
destination: identifier; "param(.3.)"  

(The rest of the parameters are niltypes.) 
A program must check tha t  its parameters are of the right types to de- 

tect  a meaningless call, such as 

copy(15, true) 

This can be done as follows 

var source: argtype; 

source:= param(.2.); 
with source do 
if tag < >  idtype then help 

where help is a procedure within the program that  tells the user how to call 
it correctly. 

A program can return parameter values to its caller before it terminates, 
for example 

vat ok: boolean; 

param(.1.).booh= ok; 

Catalog Lookup 

A Sequential Pascal program can call a set of procedures implemented 
within the Solo operating system. These interface procedures and their 
parameter types are declared in the program prefix. As an example, the 
procedure 
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procedure lookup(id: identifier; var attr: fileattr; 
vat found: boolean) 

enables a program to call the operating system to look up a file in the disk 
catalog. Since the procedure is implemented within the operating system it 
is only necessary to declare its name and parameters in the prefix to user 
programs. 

Lookup returns a boolean, telling whether the file was found in the cata- 
log. If it was, it also returns the attributes of the file. These attributes are 
defined by type definitions in the program prefix 

type filekind = 
(empty, scratch, ascii, seqcode, concode); 

type fileattr = record 
kind: filekind; 
addr: integer; 
protected: boolean; 
notused: array (. 1.. 5.) of integer 

end 

The file attributes define what kind of file it is as well as the disk address 
and protection status. There are four kinds of files: scratch, ascii text, se- 
quential code, and concurrent code. 

As an example, the copy program will look up the name of its source file 
to check that  it is an ascii file stored on disk or produced by a sequential 
input program 

vat source: argtype; attr: fileattr; found: boolean; 

with source do 
if tag < >  idtype then help else 
begin 

lookup(id, attr, found); 
if not  found then 

error( 'source file unknown(:  10: )') else 
case attr.kind of  

scratch, concode: 
error( 'source kind must be ascii or seqcode (:10:) ');  

ascii, seqcode: 
end; 

end 
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[ The (: 10: ) denotes the ascii character number 10 = newline. ] 

Input/Output Streams 

A program starts its input /output  by sending the names of the source 
and destination files to the input and output  processes. This is done by 
means of an interface procedure 

where 

It can be used as follows 

procedure writearg(s: argseq; arg: argtype) 

type argseq = (inp, out) 

vat source, dest: argtype; 

writearg(inp, source) 
writearg(out, dest) 

After this the program can read and write its data character by character 
by calling the interface procedures 

procedure read(vat c: char) 
procedure write(c: char) 

So the main loop of the copy program could be written this way 

vat c: char; 

repeat 
read(c); write(c); 

until c = em 

where e m  is the end of medium character. 
The read and write procedures are convenient for text  processing, but 
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somewhat  slow for simple copying. So the copy program transmits its data 
page by page by calling the interface procedures 

procedure readpage(var block: univ page; vat eof: boolean) 
procedure writepage(block: univ page; eof: boolean) 

where 

const  pagelength = 512; 
type  page = array (.1..pagelength.) of  char; 

(The key word universal  makes it possible to use these procedures to trans- 
mit  any data type  that  can be stored on a page, and not  just a textstring.) 

A file produced by a process must  be terminated by an empty  page and 
a boolean e o f  = true. This leads to the following loop in the copy program 

vat block: page; eof: boolean; 

repeat 
readpage(block, eof); 
writepage(block, eof); 

until eof  

At the end of  the file, the program must  receive a boolean from the 
input and output  processes to see whether transmission errors occurred dur- 
ing the input /output .  These booleans are received by calling the interface 
procedure 

procedure readarg(s: argseq; var arg: argtype) 

For example 

vat ok: boolean; arg: argtype; 

readarg(inp, arg); 
if not  arg.bool then ok:= false; 
readarg(out, arg); 
if not  arg.bool then ok:= false; 
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Operator Communication 

A program communicates with the operator 's console by means of the 
interface procedures 

procedure accept(vat c: char) 
procedure display(c: char) 

These can, for example, be used to implement  the following procedure with- 
in a user program 

procedure wri tetext( text :  line); 
var i: integer; c: char; 
begin 

i:= 0; 
repeat  

i: = i + 1; 
c:= text(.i.); 
display(c); 

until c = nl; 
end 

where 

const nl = ' ( :10:) ' ;  

cons t  l inelength = 132;  
type  line = array (.1..linelength.) o f  char; 

A program identifies itself once and for all by calling the interface 
procedure 

procedure identify(header:  line) 

For example 

identify( 'copy: ( :10 :)') 
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causes the Solo system to prefix input /ou tput  requests on the console with 
the name of the copy program. If the copy program writes the message 

writetext( 'source file unknown( :10: )') 

it will be displayed as 

copy: 
source file unknown 

to the operator. If a program communicates several times with the operator 
without  being interrupted by another one it is only identified once on the 
terminal. 

Program Calls 

A Sequential Pascal program can call another Pascal program by means 
of the interface procedure. 

procedure run(id: identifier; vat param: arglist; 
vat line: integer; var result: progresult) 

The program is identified by its name in the disk catalog. The caller passes 
it a list of arguments. Upon return the caller is informed about  where and 
how the program terminated (by means of a line number and a program 
result) 

type progresult = 
(terminated, overflow, pointererror, rangeerror, 
varianterror, heaplimit, stacklimit, codelimit, 
timelimit, callerror) 

If the copy program, for example, is called to output  a file to disk, it 
will call a file program to enter the new file in the disk catalog. This is done 
as follows 
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vat dest: argtype; length: integer; 
where: (nowhere, ondisk, elsewhere); 

procedure savefile; 
var line: integer; result: progresult; 

list: arglist; 
begin 

with list(.1.) do 
begin tag: = bool type;  bool:= false end; 
with list(.2.) do 
begin tag:= idtype; 

if where = nowhere then id: = 'create ' 
else id := 'replace '; 

end; 
with list(. 3.) do 
begin tag: = idtype; id: = dest.id end; 
with list(.4.) do 
begin tag: = inttype;  int: = length end[; 
with list(. 5.) do 
begin tag: = idtype; id:= 'ascii ' end; 
with list(.6.) do 
begin tag: = bool type;  booh= false end; 
run('file ', list, line, result); 
if (result < >  terminated) or not  list(.1.).bool 

then error( 'destination file lost(: 10: )'); 
end 

This has the same effect  as the console command 

Chap. 5 

file(create, dest, length, ascii, false) 

(The boolean false is the protect ion status of the new file.) 
The ability of  Pascal programs to call other Pascal programs and pass 

parameters to them makes it possible to use Pascal as a job  control  language. 
In this example, the copy program controls the execution of the file pro- 
gram. 

Disk Files 

A program can access a disk file sequentially by  sending its name to the 
input process which then transmits its contents to the job process. 
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A program can also make random access to a disk file by means of the 
interface procedures. 

procedure open(f: file; id: identifier; var found: boolean) 
procedure close(f: file) 
procedure get(f: file; p: integer; vat block: univ page) 
procedure put(f: file; p: integer; block: univ page) 
function length(f: file): integer 

where 

type file = 1..2 

Open makes a file with a given name accessible (if it is found on disk). 
Close makes it inaccessible again. Get and put  transfer page number  p of 
file number  f to and from core. (File pages are numbered 1, 2 , . . . ,  length.) 
Length defines the number  of pages in a file. 

Direct Input/Output 

The lowest level of input /output  is defined by two interface procedures 

procedure i0transfer(device: iodevice; vat param: ioparam; 
vat block: univ page) 

procedure iomove(device: iodevice; vat param: ioparam) 

where 

type iodevice = (typedevice, diskdevice, tapedevice, 
printdevice, carddevice); 

type iooperation = (input, output,  move, control); 
type ioarg = (writeeof, rewind, upspace, backspace); 
type ioresult = (complete, intervention, transmission, 

failure, endfile, endmedium, startmedium); 
type ioparam = record 

operation: iooperation; 
status: ioresult; 
arg: ioarg 

end 
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These are the elementary input /output  operations discussed in Section 4.1. 

Heap Allocation 

The interface procedures 

procedure mark(vat top: integer) 
procedure release(top: integer) 

return the current top address of the heap and reset it to a given value as 
explained in Chapter 8. 

Task Kind 

The interface function 

function task: taskkind 

where 

type taskkind = (inputtask, jobtask, outputtask) 

tells a program whether it is being executed by the., input process, the job 
process, or the output  process. 

The Complete Prefix 

const nl = '( :10:) ' ;  ff  = '( :12:) ' ;  
cr = '( :13:) ' ;  em = '( :25:) ' ;  

const pagelength = 512; 
type page = array (.1..pagelength.) of  char; 

const linelength = 132; 
type line = array (.1..linelength.) of  char; 

const idlength = 12; 
type identifier = array (.1..idlength.) of  char; 
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type file = 1..2; 

type filekind = (empty, scratch, ascii, seqcode, concode); 

type fileattr = record 
kind: filekind; 
addr: integer; 
protected: boolean; 
notused: array (.1..5.) of integer 

end; 

type iodevice = (typedevice, diskdevice, tapedevice, 
printdevice, carddevice); 

type iooperation = (input, output, move, control); 

type ioarg = (writeeof, rewind, upspace, backspace); 

type ioresult = (complete, intervention, transmission, 
failure, endfile, endmedium, startmedium); 

type ioparam = record 
operation: iooperation; 
status: ioresult; 
arg: ioarg 

end; 

type taskkind = (inputtask, jobtask, outputtask); 

type argtag = (niltype, booltype, inttype, idtype, ptrtype); 

type pointer = @ boolean; 

type argtype = record 
case tag: argtag of 

niltype, booltype: (bool: boolean); 
inttype: (int: integer); 
idtype: (id: identifier); 
ptrtype: (ptr: pointer) 

end; 

const maxarg = 10; 
type arglist = array (.1..maxarg.) of argtype; 
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type argseq = (inp, out); 

type progresult = (terminated, overflow, pointererror, 
rangeerror, varianterror, heaplimit, 
stacklimit, codelimit, timelimit, 
callerror); 

procedure read(vat c: char); 
procedure write(c: char); 

procedure open(f: file; id: identifier; vat found: boolean); 
procedure close(f: file); 
procedure get(f: file; p: integer; vat block: univ page); 
procedure put(f: file; p: integer; block: univ page); 
function length(f: file): integer; 

procedure mark(vat top: integer); 
procedure release(top: integer); 

procedure 
procedure 
procedure 

identify(header: line); 
accept(vat c: chat); 
display(c: chat); 

procedure readpage(vat block: univ page; vat eof: boolean); 
procedure writepage(block: univ page; eof: boolean); 

procedure readline(vat text: univ line); 
procedure writeline(text: univ line); 

procedure readatg(s: argseq; vat arg: atgtype); 
procedure writearg(s: argseq; arg: argtype); 

procedure lookup(id: identifier; vat attr: fileattr; 
vat found: boolean); 

procedure iotransfer(device: iodevice; vat param: ioparam; 
vat block: univ page); 

procedure iomove(device: iodevice; vat param: ioparam); 

function task: taskkind; 
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procedure run(id: identifier; vat param: arglist; 
v a r  line: integer; vat result: progresult); 

program p(var param: arglist); 

The compiler regards the prefix as being the first part  of a Sequential 
Pascal program. The input, job, and ou tpu t  processes use the same prefix 
(but the procedures readline and writeline have no effect  within the job  
process). 

A Sequential Program: Copy 

This is an example of a complete program that uses the prefix to interact 
with the operating system. The program copies a text  file from a source 
medium (console, cards, disk, or tape) to a destination medium (console, 
printer, disk, or tape). 

var source, dest: argtype; ok: boolean; 
where: (nowhere, ondisk, elsewhere); 
length: integer; 

procedure wri tetext( text:  line); 
vat i: integer; c: char; 
begin 

i: = 0; 
repeat  

i:= i + 1; 
c:= text(.i.); 
display(c); 

until c = nl; 
end; 

procedure error(text:  line); 
begin 

wri tetext( text) ;  
ok:= false; 

end; 
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procedure help; 
begin 

if ok then 
begin 

wri te text( ' t ry  again( : 10 : ) ' ) ;  
wri tetext( '  copy(source,  destination: identifier) (: 10 :)'); 
ok:= false; 

end; 
end; 

procedure savefile; 
vat line: integer; result: progresult; 

list: arglist; 
begin 

with list(.1.) do 
begin tag: = bool type;  bool:  = false end; 
with list(.2.) do 
begin tag: = idtype; 

if where = nowhere then id: = 'create ' 
else id: = 'replace '; 

end; 
with list(.3.) do 
begin tag: = idtype; id: = dest.id end; 
with list(.4.) do 
begin tag: = int type;  int: = length end; 
with list(.5.) do 
begin tag: = idtype; id: = 'ascii ' end; 
with list(.6.) do 
begin tag: = bool type;  bool:  = false end; 
run('file ', list, line, result); 
if (result < >  terminated) or no t  list(.1.).bool then 

error( 'destination file lost( :10:) '); 
end; 
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procedure checkarg; 
vat attr: fileattr; found: boolean; 
begin 

source:= param(:2.); 
with source do 
if tag < >  idtype then help else 
begin 

lookup(id, attr, found);  
if no t  found then 

error( 'source file unknown(:  10: ) ') else 
case attr.kind of  

scratch, concode: 
error( 'source kind must be ascii or seqcode (: 10: )'); 

ascii, seqcode: 
end; 

end; 
dest: = param(.3.); 
with dest do 
if tag < >  idtype then help else 
begin 

lookup(id, attr, found);  
if not  found then where:= nowhere else 
if attr.kind = seqcode then where:= elsewhere else 

i f  at tr .protected then 
error( 'destination file protected (:10:) ')  else 
where:= ondisk; 

end; 
end; 

procedure initio; 
vat arg: argtype; 
begin 

writearg(inp, source); 
if where = elsewhere then writearg(out, dest) else 
begin 

with arg do 
begin tag: = idtype; id:= 'next ' end; 
writearg(out, arg); 

end ;  
end; 
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procedure checkio; 
vat arg: argtype; 
begin 

readarg(inp, arg); 
if not arg.bool then ok:= false; 
if where < >  elsewhere then 
begin readarg(out, arg); length:= arg.int end; 
readarg(out, arg); 
if not arg.bool then ok:= false; 
if (where < >  elsewhere) & ok then saveffle; 

end; 

procedure copytext; 
vat block: page; eof: boolean; 
begin 

repeat 
readpage(block, eof); 
writepage(block, eof); 

until eof; 
end; 

procedure initialize; 
begin 

identify('copy: (: 10: )'); 
ok:= (task = jobtask); 
checkarg; 

end; 

procedure terminate; 
begin 

with param(.1.) do 
begin tag: = booltype; bool:= ok end; 

end; 

begin 
initialize; 
if ok then 
begin 

initio; 
copytext; 
checkio; 

end; 
terminate; 

end. 
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The copy program initializes itself by checking its arguments. If they 
are ok it starts concurrent input /output ,  copies the file, and checks the 
input /output  for transmission errors. 

Conclusion 

The Sequential Pascal compiler assumes that  the interface procedures 
and their parameter types are declared exactly the same way in the prefix 
and within the operating system. Since the compiler has no way of checking 
whether the prefix is correct it must  be handled with some care. 

In developing the Solo system, we found it sufficient to maintain the 
prefix as a standard card deck that  was put  in front  of all the programs 
before they were stored on disk. The prefix is now kept on disk as a separate 
text  file. It can be put  in front  of a program file by means of a concatenation 
program called from the console 

concat(prefix, source, dest) 

As long as the informal use of a single prefix causes no problems for 
system programmers, I see no reason to handle it by more complicated, 
automatic mechanisms. But, for general use, it is, of course, much safer 
and more convenient to let the system automatically put a prefix in front  
of all user programs before compilation. The job stream system described 
in Chapter 6 does just that. 

Since the compiler refuses to accept further interface definitions after 
the key word program, a user cannot change a pref ix  by adding his own 
declarations to it. In many cases, a much smaller prefix than the one de- 
scribed here will be used. As an example, the job stream system will compile 
and execute programs with input from cards and output  on a line printer. 
A compiled program needs only a prefix defining five procedures for reading 
and writing of text  and numbers. 

The use of a prefix to check interactions between an operating system 
and its jobs illustrates a persistent theme in the Concurrent Pascal project: 
Program relationships that remain unchanged for long periods of  time can 
be verified once and for all at compile time. The verification of system 
invariants at compile time contributes to program reliability by detecting 
errors before systems are put into operation. It also increases program 
efficiency by removing the need for complicated hardware protection 
mechanisms. 
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5.3 PROCESSES, MONITORS, AND CLASSES 

This is a description of the program structure of  the Solo operating 
system. 

The main idea of Concurrent  Pascal is to  divide the global data struc- 
tures of an operating system into small parts and define the meaningful 
operations on each of  them. In Solo, for  example, t:here is a data structure,  
called a resource, which is used to give concurrent  processes exclusive access 
to a disk. This data structure can only be accessed[ by means of  two pro- 
cedures that  request and release access to the disk. The programmer specifies 
that  these are the only operations one can perform on a resource, and the 
compiler checks that  this rule is obeyed in the rest of the system. This 
approach to program reliability has been called resource protection at 
compile time [Brinch Hansen, 1973b] .  

The combinat ion of  a data structure and the operations used to access it 
is called an abstract data type. It is abstract because the rest of the system 
only needs to know what operations one can perform on it but  can ignore 
the details of how they are carried out. A Concurrent  Pascal program is con- 
structed from three kinds of abstract data types: processes, monitors,  and 
classes. Processes perform concurrent  operations oll data structures. They 
use monitors to  synchronize themselves and exhange data. They access pri- 
vate data structures by means of  classes. Chapters 2 and 4 are an overview of  
these concepts and their use in concurrent  programming. 

The following is a complete,  annota ted  program listing of the Solo 
system. It also explains how the system was tested systematically. 

Program Structure 

Solo consists of  a hierarchy of  program layers, each of which controls a 
particular kind of compute r  resource, and a set of concurrent  processes that  
use these resources (Fig. 5.5). 

Resource management controls the scheduling of the operator 's  console 
and the disk among concurrent  processes. 

Console management lets processes communicate  with the opera tor  after 
they have gained access to the console. 

Dish management gives processes access to disk files and a catalog de- 
scribing them. 

Program management fetches program files from disk into core on 
demand from processes that  wish to execute  them. 

Buffer management transmits data among processes. 

These facilities are used by seven concurrent  processes: 
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Fig. 5.5 Program layers and processes 

A job process executes Pascal programs upon request from the operator. 
Two input/output  processes produce and consume the data of the 

job process. 
A card process feeds punched cards to the input process which then 

removes trailing blanks from them and packs the text  into blocks. 
A printer process prints lines that  are unpacked from blocks and sent 

to it by the output  process. 
A loader process preempts and reinitializes the operating system when 

the operator pushes the bell key on the console. 
An initial process starts up the rest of the system after system loading. 
The term program layer is only used as a convenient way of explaining 

the gross division of labor within the system. It is not  represented by the 
language notat ion of Concurrent Pascal. 
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Abstract Data Types 

Each p r o g r a m  layer  consis ts  o f  one  or m o r e  abs t r ac t  da ta  types  (moni -  
to r s  and  classes). 

Resource management 

A fifo class i m p l e m e n t s  a first-in, f i r s t -out  queue  t h a t  is used  to  main-  
ta in  mul t ip rocess  queues  and  message  buffers .  

A resource m o n i t o r  gives processes  exclusive access to  a c o m p u t e r  re- 
source.  I t  is used  to  con t ro l  disk access. 

A typewriter resource m o n i t o r  gives processes  exclusive access to  a 
conso le  and tells t h e m  w h e t h e r  t h e y  need  to  iden t i fy  themse lves  to  the  
ope ra to r .  

Console management 

A typewriter class t r ansmi t s  a single l ine b e t w e e n  a process  and  a con-  
sole ( b u t  does  n o t  give the  process  exclusive access to  it). 

A terminal class gives a process  the  i l lusion t ha t  i t  has its own  pr iva te  
conso le  by  giving the  process  exclusive access to  the  o p e r a t o r  fo r  i npu t  or  
o u t p u t  o f  a single line. 

A terminal stream makes  a t e rmina l  l o o k  cha rac t e r  or ien ted .  

Disk management 

A disk class can access a page  a n y w h e r e  on  disk ( b u t  does  n o t  give a 
process  exclusive access to  it). I t  uses a t e rmina l  to  r e p o r t  disk failure.  

A disk file class can access any  page  be longing  to  a pa r t i cu la r  file. The  
file pages,  which  m a y  be sca t t e red  on disk, are addressed  ind i rec t ly  t h r o u g h  
a page map .  The  disk address  of  the  page  m a p  ident if ies  the  file. I t  uses a 
disk to  access the  m a p  and its pages. 

A disk table class m a k e s  a disk ca ta log  o f  files l o o k  l ike an a r ray  of  
entries,  some  o f  which  descr ibe  files, and  some  of  which  are e m p t y .  The  
entr ies  are ident i f ied  b y  numer i c  indices. The  class uses a disk file to  access 
the  ca ta log  page by  page. 

A disk catalog m o n i t o r  can l o o k  up  files in a ca ta log  b y  means  o f  the i r  
names.  I t  uses a r e source  to  get  exclusive access to  the  disk and  a disk tab le  
to  scan the  catalog.  

A data file class gives a process  access to  a n a m e d  disk file. I t  uses a 
resource ,  a disk catalog,  and  a disk file to  access the  disk. 
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Program management 

A program file class can load a named disk file into core when a process 
wishes to execute it. It uses a resource, a disk catalog, and a disk file to do 
this. 

A program stack monitor  keeps track of nested program calls within a 
process. 

Buffer management 

The buffer monitors transmit various kinds of messages between pro- 
cesses: arguments (enumerations or identifiers), lines, and pages. 

The following defines the purpose, specification, and implementation 
of  each of these abstract data types. 

Input/Output 

The data types below are used in elementary input /output  operations. 
They define the identifiers of peripheral devices, input /output  operations 
and their results, as well as the data types to be transferred (printer lines 
and disk pages). They are similar to the input /output  types used in the 
pipeline program (Section 4.1). 

type iodevice = (typedevice, diskdevice, tapedevice, 
printdevice, carddevice); 

type iooperation = (input, output,  move, control); 

type ioarg = (writeeof, rewind, upspace, backspace); 

type ioresult = (complete, intervention, transmission, 
failure, endffle, endmedium, startmedium); 

type ioparam = record 
operation: iooperation; 
status: ioresult; 
arg: ioarg 

end; 

const nl = '(:10:)'; ff  = '(:12:)'; 
cr -- ' ( :13:) ' ;  em = '(:25:) ' ;  
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cons t  l inelength = 132;  
t ype  line = ar ray  ( .1. . l inelength.)  o f  char;  

cons t  pagelength = 512;  
t y p e  page = array ( .1. .pagelength.)  o f  char;  

Fifo Queue 

A fifo keeps t rack  o f  the  length and the  head  and tail indices of  an array 
used as a first-in, f i rs t -out  queue  (bu t  does n o t  con ta in  the  queue  e lements  
themselves) .  

The  access rights and  rout ines  o f  a f i fo  are: 

type fifo = class(limit: integer) 
A fifo is init ial ized wi th  a cons t an t  t ha t  defines its range of  queue  indices 
1..limit.  

function arrival: integer 
Returns  the  index  o f  the  n e x t  queue  e l em en t  in which  an arrival can take  
place. 

function departure: integer 
Returns  the  index of  the  n e x t  queue  e l emen t  f rom which  a depar tu re  can 
take  place. 

function empty: boolean 
Defines whe the r  the  queue  is e m p t y  (arrivals = depar tures) .  

function full: boolean 
Defines whe the r  the  queue  is full (arrivals = depar tures  + limit).  

A user  o f  a f ifo queue  mus t  ensure tha t  the  length o f  the  queue  remains 
wi th in  its physical  l imit  

0 < arrivals - depar tures  < l imit  

I M P L E M E N T A T I O N :  

A f i fo  queue  is r ep resen ted  b y  its l imit,  head,  tail, and length.  The  Con- 
cu r ren t  Pascal compi le r  will ensure tha t  these variables are accessed on ly  by  
the  rou t ines  of  the  class. In general,  a class variable can be accessed on ly  by  
calling one  of  the  rou t ine  entries associated wi th  it. The  s t a t e m e n t  a t  the  
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end of the class is executed when an instance of a fifo queue is declared 
and initialized. 

type fifo = 
class(limit: integer); 

vat head, tall, length: integer; 

function entry arrival: integer; 
begin 

arrival:= tail; 
tail:= tail mod limit + 1; 
length:= length + 1; 

end; 

function entry departure: integer; 
begin 

departure:= head; 
head:= head mod limit + 1; 
length := length - 1; 

end; 

function entry empty:  boolean; 
begin empty:= (length = O) end; 

function entry full: boolean; 
begin full:= (length = limit) end; 

begin head:= 1; tail:= 1; length:= 0 end; 

R esou rce 

A resource gives processes exclusive access to a computer resource (but 
does not  perform any operations on the resource itself). 

t ype  resource = mon i to r  

procedure  request  
Gives the calling process exclusive access to the resource. 

procedure  release 
Makes the resource available for other processes. 
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A user o f  a resource  m u s t  reques t  i t  be fo re  using it  and mus t  release i t  
af terwards.  If  the  resource  is released wi thin  a finite, t ime it  will also b e c o m e  
available to  any  process request ing it wi th in  a f ini te t ime. In shor t ,  the  
resource  scheduling is fair. 

I M P L E M E N T A T I O N :  

A resource  is r ep resen ted  by  its s tate  (free or used) and a queue  o f  
processes wait ing for  it. The  mul t iprocess  queue  is r epresen ted  by  two  da ta  
s t ructures :  an array o f  single process  queues  and a f i fo  to  keep  t rack  o f  the  
queue  indices. 

The initial s t a t e m e n t  o f  the  m o n i t o r  sets the  resource  s ta te  to  free and 
initializes the  f i fo  variable wi th  a cons t an t  def ining the  to ta l  n u m b e r  o f  
processes which can wai t  in the  queue.  

The compi le r  will ensure tha t  the  m o n i t o r  variables can be accessed on ly  
by  calling the  rou t ine  entries associated wi th  them.  The  vir tual  mach ine  will 
ensure tha t  at mos t  one  process at  a t ime is execu t ing  a rou t ine  wi th in  this 
mon i to r .  The  m o n i t o r  can delay or  con t inue  the  ex ecu t i o n  of  a calling 
process.  

A rou t ine  associated wi th  a class or  m o n i t o r  is called b y  men t ion ing  the  
class or m o n i t o r  variable fo l lowed  b y  the  n am e  o f  the  rout ine .  As an exam- 
ple, the  call 

next .arr ival  

will p e r fo rm  an arrival opera t ion  on  the  f i fo  variable next. 

const processcount = 7; 
t ype  p rocessqueue  = array ( .1 . .processcount . )  o f  queue ;  

t ype  resource  -- 
m o n i t o r  

vat  free:  boo lean ;  q: p rocessqueue ;  nex t :  f i fo;  

procedure entry request ;  
begin 

if  f ree  t hen  f ree:= false 
else de lay  (q(. next .  arrival. ) ); 

end; 
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procedure entry release; 
begin 

if next .empty  then free: = true 
else continue(q(.next.departure.  )); 

end; 

begin free:= true; init next(processcount) end; 

Typewriter Resource 

A typewriter  resource gives processes exclusive access to a typewriter  
console. A calling process supplies its own identification and is told whether 
it needs to display it to the operator. 

type typeresource = monitor 

procedure request(text: line; var changed: boolean) 
Gives the calling process exclusive access to the resource. The process identi- 
fies itself by a text  line. A boolean changed defines whether this is the same 
identification that  was used in the last call of  request (in which case there 
is no need to display it to the operator again). 

procedure release 
Makes the resource available for other processes. 

The resource scheduling is fair, as explained earlier. 

IMPLEMENTATION: 

type typeresource = 
monitor  

vat free: boolean; q: processqueue; next: fifo; header: line; 

procedure entry request(text:  line; var changed: boolean); 
begin 

if free then free:= false 
else delay(q(.next.arrival. )); 

changed:= (header < >  text);  
header:= text;  

end; 
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procedure entry release; 
begin 

if next .empty then free:= true 
else Continue(q(.next.departure.)); 

end; 

begin 
free: = true; header(.1.):= nl; 
init next(processcount);  

end; 

Typewriter 

A typewriter can transfer a text  line to or from a typewriter console. It 
does not  identify the calling process on the console or give the process ex- 
clusive access to it. 

type typewriter = class(device: iodevice) 
A typewriter is initialized with the identifier of the device it controls. 

procedure write(text:  line) 
Writes a line on the typewriter. 

procedure read(var text: line) 
Rings the bell on the typewriter and reads a line from it. Single characters 
or the whole line can be erased and retyped by typing control c or control l. 
The typewriter responds to erasure by writing a question mark. 

A newline character (NL) terminates the input or output  of a line. A 
line that  exceeds 73 characters is forcefully terminated by a newline charac- 
ter. 

IMPLEMENTATION: 

The standard procedure io delays the calling process until the transfer of 
a single character is completed. 

The procedure writechar is no t  a routine entry;  it can only be called 
within the typewriter class. 
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t y p e  typewr i t e r  = 
class(device: iodevice);  

c o n s t  l inelimit = 7 3;  
cancelchar  = '(: 3 :)' " con t ro l  c" ;  
cancelline = '( :12:) '  "con t ro l  1"; 

p rocedure  wri techar(x:  char); 
vat  param: ioparam;  c: char; 
begin 

param.opera t ion  := ou tpu t ;  
C :  = X ;  

io(c, param, device);  
end;  

p rocedure  en t ry  wr i te ( text :  line); 
vat  param: ioparam;  

i: integer; c: char;  
begin 

pa ram.opera t ion  := ou tpu t ;  
i: = O; 
repea t  

i:= i + 1; c: = text( . i . ) ;  
io(c, param, device);  

unti l  (c = nl) or  (i = linelimit);  
if  c < >  nl then  wri techar(nl) ;  

end;  



108 THE SOLO OPERATING SYSTEM Chap. 5 

p r o c e d u r e  en t ry  read(vat  t ex t :  line); 
cons t  bel = ' ( :7 : ) ' ;  
vat  param:  ioparam;  

i: integer;  c: char;  
begin 

wr i techar (be l ) ;  
pa r am.ope ra t i on :=  input ;  
i: = 0; 
r epea t  

io(c,  param,  device);  
if  c = cancell ine then  
begin 

wr i techar(n l ) ;  
wr i t echar ( ' ? ' ) ;  
i: = 0; 

end else 
i f  c = cance lchar  t h en  
begin 

i f  i > 0 t h e n  
begin 

wr i t echar ( ' ? ' ) ;  
i : = i -  1; 

end;  
end  else 
begin i: = i + 1; tex t ( . i . ) :  = c end;  

unt i l  (c = nl) or  (i = l inelimit);  
if  c < >  nl t h en  
begin 

wri techar(nl ) ;  
t ex t ( . l ine l imi t  + 1.) := nl; 

end;  
end;  

begin end;  

Terminal 

A terminal  gives a single process  exclusive access to  a t ypewr i t e r ,  identi-  
fies the  process to  the  opera to r ,  and t ransfers  a line to  or  f rom the  device. 

t ype  terminal = class(access: typeresource)  
The  terminal  uses a t ypew r i t e r  resource  to  get exclusive access to  the  device. 
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procedure read(header: line; var text: line) 
Writes a header (if necessary) on the typewriter  and reads a text  line from it. 

procedure write(header, text: line) 
Writes a header (if necessary) followed by a text  line on the typewriter.  

The header identifies the calling process. It is only ou tpu t  if it is differ- 
ent from the last header ou tpu t  on the typewriter.  

IMPLEMENTATION: 

A class or moni tor  can only call other classes or monitors if they are 
declared as variables within it or passed as parameters to it during initializa- 
tion. So a terminal can only call the moni tor  access and the class unit. These 
access rights are checked during compilation. 

type  terminal = 
class (access: typeresource);  

vat unit: typewriter;  

procedure entry read(header: line; vat text:  line); 
var changed: boolean; 
begin 

access.request(header, changed); 
if changed then unit.write(header); 
unit .read(text);  
access.release; 

end; 

procedure entry write(header, text: line); 
var changed: boolean; 
begin 

access.request(header, changed); 
if changed then unit.write(header); 
unit. write( text  ); 
access.release; 

end; 

begin init unit(typedevice) end; 
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Terminal Stream 

A terminal  s t ream enables a process to  iden t i fy  i tself  once  and for  all 
and then  p roceed  to  read and wri te  single characters  on  a terminal .  

type terminalstream = class(operator: terminal) 
A terminal  s t ream uses a terminal  to  i npu t  or o u t p u t  a line at  a t ime. 

procedure read(var c: char) 
Reads a charac te r  f r o m  the  terminal .  

procedure write(c: char) 
Writes a charac te r  on  the  terminal .  

procedure reset(text: line) 
Ident if ies  the  calling process.  

I M P L E M E N T A T I O N :  

The  terminal  s t ream uses two  line buffers  fo r  inpu t  and ou tpu t .  

t yp e  t e rmina l s t ream = 
class(operator :  terminal) ;  

cons t  l inel imit  = 80; 

var header :  line; end inpu t :  boo lean ;  
inp, ou t :  r ecord  coun t :  integer;  text:: line end;  

procedure in i t ia l ize( text :  line); 
begin 

header :  = t ex t ;  
end inpu t :  = t rue ;  
o u t . c o u n t :  = 0; 

end;  
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procedure entry read(var c: char); 
begin 

with inp do 
begin 

if endinput then 
begin 

operator.read(header, text);  
count  := 0; 

end; 
count:  = count  + 1; 
c := text( .count.) ;  
endinput:= (c = nl); 

end; 
end; 

procedure entry write(c: char); 
begin 

with out  do 
begin 

count:= count  + 1; 
text( .count.) :  = c; 
if (c = nl) or (count  = linelimit) then 
begin 

operator.write(header,  text);  
count:= O; 

end; 
end; 

end; 

procedure entry reset(text:  line); 
begin initialize(text) end; 

begin initialize ( 'unidentified: (: 10: )') end; 

Disk 

A disk can transfer any page to or from a disk device. 

t ype  disk = class( typeuse:  t yperesource)  
A disk uses a typewriter  resource to get exclusive access to 
report  disk failure. 

a terminal to 
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procedure read(pageaddr: integer; var block: univ page) 
Reads a page identified by its absolute disk address. 

procedure write(pageaddr: integer; var block: univ page) 
Writes a page identified by its absolute page address. 

A page is declared as a universal type to make it possible to use the disk 
to transfer pages of different types (and not  just text).  

IMPLEMENTATION: 

After a disk failure, the disk writes a message to the operator and 
repeats the operation when he types a NL character. 

type disk = 
class(typeuse: typeresource);  

vat operator: terminal; 

procedure transfer(command: iooperation; 
pageaddr: univ ioarg; vat block: page); 

vat param: ioparam; response: line; 
begin 

with param, operator do 
begin 

operation:= command;  
arg:= pageaddr; 
io(block, param, diskdevice); 
while status < >  complete do 
begin 

write ('disk:(: 10: )', 'error(: 10: )'); 
read( 'push return(: 10: )', response); 
io(block, param, diskdevice); 

end; 
end; 

e n d ;  

procedure ent ry  read(pageaddr: integer; var block: univ page); 
begin transfer(input, pageaddr, block) end; 
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procedure entry  write(pageaddr: integer; var block: univ page); 
begin t ransfer(output ,  pageaddr, block) end; 

begin init operator( typeuse)  end; 

Disk file 

A disk file enables a process to access a disk file consisting of  a fixed 
number  of  pages (< 255). The disk file is identified by the absolute disk 
address of  a page map that  defines the length of  the file and the disk ad- 
dresses of  its pages. From the point  of  view of  a calling process the pages of  
a file are numbered 1, 2 , . . . ,  length. 

type disk file = class(typeuse: typeresource) 
A disk file uses a typewri ter  resource to get exclusive access to  the operator  
after  a disk failure. Initially, the file is closed (inaccessible). 

procedure open(mapaddr : in teger) 
Makes a disk file with a given page map accessible. 

procedure close 
Makes the disk file inaccessible. 

function length: integer 
Returns the length of  the disk file (in pages). The length of  a closed file is 
zero. 

procedure read(pageno : integer; var block: univ page) 
Reads a page with a given number  from the disk file. 

procedure write(pageno : integer; var block: univ page) 
Writes a page with a given number  on the disk file. 

A user of  a file must open it before using it and close it afterwards. Read 
and write have no effect  if the file is closed or if the page number  is outside 
the range 1..length. 

IMPLEMENTATION: 

The variable length is prefixed with the word entry. This means that  its 
value can be used directly outside the class. It  can, however, only be changed 
within the class. So a variable entry is similar to a funct ion entry. Variable 
entries can only be used within classes. 
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const maplength = 255; 
type filemap = record 

filelength: integer; 
pageset: array (.1..maplength.) of integer 

end; 

type diskfile = 
class(typeuse: typeresource); 

vat unit: disk; map: filemap; opened: boolean; 

entry length: integer; 

function includes(pageno: integer): boolean; 
begin 

includes: = opened & 
(1 <= pageno) & (pageno <= length); 

end; 

procedure entry open(mapaddr: integer); 
begin 

unit.read(mapaddr, map); 
length := map.filelength; 
opened: = true; 

end; 

procedure entry close; 
begin 

length := O; 
opened:= false; 

end; 

procedure entry read(pageno: integer; vat block: univ page); 
begin 

if includes(pageno) then 
unit.read(map.pageset(.pageno. ), block); 

end; 

procedure entry write(pageno: integer; var block: univ page); 
begin 

if includes(pageno) then 
unit.write(map.pageset(.pageno.), block); 

end; 
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begin 
init unit(typeuse); 
length:= 0; 
opened: = false; 

end; 

Catalog Structure 

The disk contains a catalog of all files. The data types below define the 
structure of the catalog. 

The catalog is itself a file defined by a page map stored at the catalog 
address. Every catalog page contains a fixed number of catalog entries. A 
catalog entry describes a file by its identifier, attributes, and hash key. The 
search length defines the number of files that  have a hash key equal to the 
index of this entry. It is used to limit the search for a nonexisting file name. 

The attributes of a file are its kind (empty, scratch, ascii, sequential or 
concurrent code), the address of its page map, and a boolean defining 
whether it is protected against accidental deletion or overwriting. The latter 
is checked by all system programs operating on the disk, but not  by the 
operating system. Solo provides a mechanism for protection, but does not  
enforce it. 

const idlength = 12; 
type identifier = array (.1..idlength.) of char; 

type filekind = (empty, scratch, ascii, seqcode, concode); 

type fileattr = record 
kind: filekind; 
addr: integer; 
protected: boolean; 
notused: array (. 1.. 5.) of  integer 

end; 

type catentry = record 
id: identifier; 
attr: fileattr; 
key, searchlength: integer 

end; 

const catpagelength = 16; 
type catpage = array (.1..catpagelength.) of  catentry; 

const cataddr = 154; 
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Disk Table 

A disk table makes a disk catalog look like an al~ay of  catalog entries 
identified by  numeric indices 1, 2 . . . . .  length. 

type disktable -- 
class( typeuse : typeresource ; cataddr : in teger ) 
A disk table uses a typewri ter  resource to get exclusive access to the operator  
after a disk failure and a catalog address to locate a catalog on disk. 

function length: integer 
Defines the number  of  entries in the catalog. 

procedure read(i: integer; var elem: catentry) 
Reads entry number  i in the catalog. If the entry number  is outside the 
range 1..length the contents of the entry are undefined. 

IMPLEMENTATION: 

A disk table stores the most  recently used catalog page to make a se- 
quential search of the catalog fast. 

type  disktable = 
class(typeuse: typeresource;  cataddr: integer); 

var file: diskfile; pageno: integer; block: catpage; 

entry length: integer; 

procedure entry read(i: integer; vat elem: catentry); 
vat index: integer; 
begin 

index:= ( i -  1) div catpagelength + 1; 
if pageno < >  index then 
begin 

pageno:= index; 
file.read(pageno, block); 

end; 
elem:= block(.(i - 1) rood catpagelength + 1.); 

end; 
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begin 
init file(typeuse); 
file. open (cataddr); 
length: = file.length * catpagelength; 
pageno: = 0; 

end; 

Disk Catalog 

The disk catalog describes all disk files by means of a set of  named 
entries that  can be looked up by processes. 

type diskcatalog = 
monitor(typeuse: typeresource; diskuse: resource; cataddr: integer) 
A disk catalog uses a resource to get exclusive access to the disk during a 
catalog lookup and a typewri ter  to get exclusive access to the operator  after 
a disk failure. It uses a catalog address to  locate the catalog on disk. 

procedure lookup(id: identifier; var attr: fileattr; var found: boolean) 
Searches for a catalog entry describing a file with a given identifier and 
indicates whether  it found it. If so, it also returns the file attributes. 

IMPLEMENTATION: 

A disk catalog uses a disk table to make a cyclical search for an identi- 
fier. The initial catalog entry is selected by hashing. The search stops when 
the identifier is found or when there are no more entries with the same 
hash key, The disk catalog has exclusive access to the disk during the lookup 
to prevent compet ing processes from causing disk arm movement .  

type  diskcatalog = 
moni tor( typeuse:  typeresource;  diskuse: resource; 

cataddr: integer); 

vat table: disktable; 



118 THE SOLO OPERATING SYSTEM Chap. 5 

func t ion  hash(id:  ident i f ier ) :  integer;  
vat  key,  i: integer;  c: char;  
begin 

key :=  1 ; i :  = 0 ;  
r epea t  

i: = i + 1; c: = id(.i.); 
i f  c < >  ' ' t h e n  

key:  = key  * ord(c)  m o d  table . length  + 1; 
un t i l  (c = ' ') o r  (i = idlength) ;  
hash: = key ;  

end;  

p rocedu re  e n t r y  lookup( id :  ident i f ier ;  vat  at t r :  f i leat tr ;  
var f o u n d :  boolean) ;  

vat  key ,  more ,  index:  integer;  elem: ca t en t ry ;  
begin 

diskuse . request ;  
key :=  hash(id);  
t ab le . read(key ,  e lem);  
more :=  e lem.searchlength;  
index:=  key ;  f ound :=  false; 
while no t  f o u n d  & (more  > 0) do  
begin 

tab le . read( index ,  elem);  
i f  e lem.id = id t hen  
begin a t t r :=  e lem.a t t r ;  f ound :  = t rue  end  
else 
begin 

i f  e l em.key  = key  t h e n  more :  = m o r e  - 1; 
index:  = index  m o d  tab le . length  + 1; 

end; 
end;  
diskuse.release;  

end; 

begin ini t  t ab le ( typeuse ,  ca taddr)  end;  

Data File 

A data  file enables a process  to  access a disk file by  means  of  its name  in 
a disk catalog. The  pages of  a da ta  file are n u m b e r e d  1, 2, ..., length.  
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type data file -- 
class( typeuse: typeresource; diskuse: resource; catalog: diskcatalog) 
A data  file uses a resource  to  get exclusive access to  the  disk dur ing a page 
t ransfer  and a t ypewr i t e r  resource  to  get exclusive access to  the  ope ra to r  
a f te r  disk failure. I t  uses a catalog to  l o o k  up  the file. Init ial ly the  data  file 
is inaccessible (closed).  

procedure open(id: identifier; var found: boolean) 
Makes a file with a given ident i f ier  accessible if  it  is f o u n d  in the  catalog. 

procedure close 
Makes the  file inaccessible. 

procedure read(pageno : in teger; var block: univ page) 
Reads a page with a given n u m b e r  f rom the  file. I t  has no  e f fec t  if  the  file 
is closed or if  the  page n u m b e r  is outs ide  the  range 1.. length. 

procedure write(pageno: integer; var block: univ page) 
Writes a page wi th  a given n u m b e r  on the  file. I t  has n o  e f fec t  if  the  file is 
closed or  if  the  page n u m b e r  is outs ide  the  range 1.. length. 

function length: integer 
Defines the  n u m b e r  o f  pages in the  file. The  length o f  a closed file is zero.  

A user of  a da ta  file mus t  open  it be fore  using it  and close i t  af terwards.  
I f  a process needs exclusive access to  a da ta  file while using it, this mus t  be 
ensured at  h igher  levels o f  programming.  

I M P L E M E N T A T I O N :  

type  dataf i le  = 
class( typeuse:  t ype resource ;  diskuse: resource;  

catalog: diskcatalog);  

var file: diskfile; opened :  boo lean ;  

e n t r y  length:  integer;  



120 THE SOLO OPERATING SYSTEM 

procedure entry open(id: identifier; var found:: boolean); 
vat attr: fileattr; 
begin 

catalog.lookup(id, attr, found); 
if found then 
begin 

diskuse.request; 
file. open (attr. addr); 
length:= file.length; 
diskuse.release; 

end; 
opened:= found; 

end; 

procedure entry close; 
begin 

file.close; 
length: = O; 
opened:= false; 

end; 

procedure entry read(pageno: integer; vat bloc'k: univ page); 
begin 

if opened then 
begin 

diskuse.request; 
file.read(pageno, block); 
diskuse.release; 

end; 
end; 

procedure entry write(pageno: integer; vat block: univ page); 
begin 

if opened then 
begin 

diskuse.request; 
file.write(pageno, block); 
diskuse.release; 

end; 
end; 

Chap. 5 
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begin 
init file(typeuse); 
length := 0; 
opened:= false; 

end; 

Program File 

A program file can transfer a sequential program from a disk file into 
core. The program file is identified by its name in a disk catalog. 

type progfile = 
class(typeuse: typeresource; diskuse: resource; catalog: diskcatalog) 
A program file uses a resource to get exclusive access to the disk during 
program loading and a typewri ter  resource to get exclusive access to the 
operator  after disk failure. It uses a disk catalog to look up the file. 

procedure open(id: identifier; vat state: progstate) 
Loads a program with a given identifier from disk and returns its state. 
The program state is one of  the following: ready for  execution,  not found, 
the disk file is not sequential code, or the file is too big to be loaded into 
c ore. 

function store: progstore 
Defines the variable in which the program file is stored. A program store is 
an array of disk pages. 

IMPLEMENTATION: 

A program file has exclusive access to the disk until it has loaded the 
entire program. This is to prevent competing processes from slowing down 
program loading by causing disk arm movement .  

Solo uses two kinds of  program files (progfilel and progfile2): one 
for large programs and another  one for small ones. They differ only in the 
dimension of  the program store used. The need to repeat  the entire class 
definit ion to handle arrays of different  lengths is an awkward inheritance 
from Pascal. 

type  progstate = (ready, not found,  notseq, toobig); 

const  storelength = 40 "(or  8)";  
type  progstore = array (.1..storelength.) of  page; 
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type  progfile = 
class(typeuse: typeresource;  diskuse: resource; 

catalog: diskcatalog); 

vat file: diskfile; 

entry store: progstore; 

procedure entry  open(id: identifier; vat state: progstate); 
vat attr: ffleattr; found: boolean; pageno: integer; 
begin 

catalog.lookup(id, attr, found);  
with diskuse, file, attr do 
if not  found then 

state:= no t found  else 
if kind < >  seqcode then 

state:= notseq else 
begin 

request; 
open(addr);  
if length <= storelength then 
begin 

for pageno:= 1 to  length do 
read(pageno, store(.pageno.)); 

state:= ready; 
end else 

state: = toobig; 
close; 
release; 

end; 
end; 

begin init file(typeuse) end; 

Program Stack 

A program stack maintains a last-in, first-out list of  identifiers of pro- 
grams that have called one another. It enables a process to keep track of  
nested calls of  sequential programs. 

t y p e  progstacl¢  = m o n i t o r  

For historical reasons a program stack was defined as a monitor.  In the 
present version of  the system it might as well have been a class. 
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function space: boolean 
Tells whether there is more space in the program stack. 

function any: boolean 
Defines whether the stack contains any identifiers. 

procedure push(id: identifier) 
Puts an identifier on top of  the stack. It has no effect if the stack is full. 

procedure pop(var line, result: univ integer) 
Removes a program identifier from the top of the stack and defines the line 
number at which the program terminated as well as its result. The result 
either indicates normal termination or one of several run-time errors as 
explained in the Concurrent Pascal report (Chapter 8). 

procedure get(vat id: identifier) 
Defines the identifier stored in the top of the stack (without  removing it). 
It has no effect if the stack is empty.  

IMPLEMENTATION: 

A program stack measures the extent  of the heap of the calling process 
before pushing a program identifier on the stack. If a pop operation shows 
abnormal termination, the heap is reset to its original point to prevent the 
calling process from crashing due to lack of data space. 

The standard routines 

attribute setheap 

are defined precisely in the Concurrent Pascal report (Chapter 8). 

type resulttype = (terminated, overflow, pointererror, 
rangeerror, varianterror, heaplimit, 
stacklimit, codelimit, timelimit, 
callerror); 

type attrindex = (caller, heaptop, progline, progresult, 
runtime); 

type progstack = 
monitor  

const stacklength = 5; 
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vat stack: array (.1..stacklength.) of 
record 

progid: identifier; 
heapaddr: integer 

end; 
top: O..stacklength; 

function entry space: boolean; 
begin space:= (top < stacklength) end; 

function entry any: boolean; 
begin any:= (top > O) end; 

procedure entry push(id: identifier}; 
begin 

if top < stacklength then 
begin 

top: = top + 1; 
with stack(.top.) do 
begin 

progid: = id; 
heapaddr: = attribute(heaptop); 

end; 
end; 

end; 

procedure entry pop(vat line, result: univ integer); 
const terminated = O; 
begin 

line:= attribute(progline); 
result: = attribute(progresult); 
if result < >  terminated then 

setheap(stack( .top. ) .heapaddr); 
top:= t o p -  1; 

end; 

procedure entry get(vat id: identifier); 
begin 

if top > 0 then id: = stack(.top.).progid; 
end; 

Chap. 5 

begin top: = 0 end; 
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Page Buffer 

A page buffer transmits a sequence of data pages from one process to 
another. Each sequence is terminated by an end of  file mark. 

type pagebuffer = monitor 

procedure read(var text: page; var eof : boolean) 
Receives a message consisting of a text  page and an end of file indication. 

procedure write(text: page; eof: boolean) 
Sends a message consisting of a text  page and an end of file indication. 

If the end of file is true then the text  page is empty.  

IMPLEMENTATION: 

A page buffer stores a single message at a time. It will delay the sending 
process as long as the buffer is full and the receiving process until it becomes 
full (0 ~< writes - reads ~. 1). 

Solo also implements buffers for transmission of  arguments (enumera- 
tions and identifiers) and lines. They are similar to the page buffer (but use 
no end of file marks). The need to duplicate the routines for each message 
type is an inconvenience caused by the fixed data types of Pascal. 

type pagebuffer = 
monitor  

vat buffer: page; last, full: boolean; 
sender, receiver: queue; 

procedure entry read(vat text:  page; vat eof: boolean); 
begin 

if not  full then delay(receiver); 
text:= buffer; eof:= last; full:= false; 
continue(sender); 

end; 
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procedure entry write(text: page; eof: boo]Lean); 
begin 

if full then delay(sender); 
buffer:= text;  last:= eof; full:= true; 
continue(receiver); 

end; 

begin full:= false end; 

Character Stream 

A character stream enables a process to communicate with another 
process character by character. 

type charstream = class(buffer: pagebuffer) 
A character stream uses a page buffer to transmit one page of characters at 
a time from one process to another. 

procedure initread 
Opens a character stream for reading. 

procedure initwrite 
Opens a character stream for writing. 

procedure read(var c: char) 
Reads the next  character from 
stream is not  open for reading. 

the stream. The effect is undefined if the 

procedure write(c: char) 
Writes the next  character in the stream. The effect is undefined if the stream 
is not  open for writing. 

A sending process must  open its stream for writing before using it. The 
last character transmitted in a sequence should be an end of medium (EM). 

A receiving process must open its stream for reading before using it. 

IMPLEMENTATION: 

type charstream = 
class(buffer: pagebuffer); 

vat text:  page; count:  integer; eof: boolean;  
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procedure entry read(vat c: char); 
begin 

if count  = pagelength then 
begin 

buffer.read(text,  eof); 
count:= O; 

end; 
count: = count + 1; 
c: = text( .count.);  
ff c = em then 
begin 

while not  eof do buffer.read(text,  eof); 
count: = pagelength; 

end; 
end; 

procedure entry initread; 
begin count: = pagelength end; 

procedure entry write(c: char); 
begin 

count: = count  + 1; 
text(.count.)  := c; 
if (count = pagelength) or (c = em) then 
begin 

buffer.write(text,  false); count: = O; 
if c -- em then buffer.write(text,  true); 

end; 
end; 

procedure entry initwrite; 
begin count:= 0 end; 

begin end; 

Tasks and Arguments 

The following data types are used by several processes 

type taskkind = (inputtask, jobtask, outputtask);  

type argtag = (niltype, booltype, inttype, 
idtype, ptrtype);  

127 
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type argtype = record 
tag: argtag; 
arg: identifier 

end; 

c o n s t  m a x a r g  = 10; 
type arglist = array (.1..maxarg.) of argtype; 

type argseq = (inp, out);  

The task k ind defines whether a process is performing an input task, a 
job task, or an output  task. It is used by sequential programs to determine 
whether they have been called by the right kind of process. As an example, 
a program that  controls card reader input can only be called by an input 
process. 

A process that  executes a sequential program passes a list of arguments 
to it. A program argument consists of a tag field defining its type (boolean, 
integer, identifier, or pointer) and another field defining its value. (Since 
Concurrent Pascal does not  include the variant records of Sequential Pascal 
one can only represent a program argument by the largest one of its vari- 
ants -- an identifier.) 

A job process is connected to an input process and an output  process 
by two argument buffers called its input  and ou tpu t  sequences. 

,.lob Process 

A job process executes Sequential Pascal programs that  can call one 
another recursively. Initially, it executes a program called do. A job process 
also implements the interface between sequential programs and the Solo 
operating system defined in Section 5.2. 

type jobprocess = 
process( typeuse : typeresource ; ~diskuse : resource; 

catalog: diskcatalog; inbuffer, outbuffer:  pagebuffer; 
inrequest, inresponse, outrequest, outresponse: argbuffer; 
stack: progstack ); 

"program data space = " ÷  16000 
A job process needs access to the operator's console, the disk, and its cata- 
log. i t  is connected to an input and an output  process by two page buffers 
and four  argument buffers as explained in Section 5.1. It uses a program 
stack to handle nested calls of sequential programs. 
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It requires a data space of 16000 bytes for user programs and a code 
space of 20000 bytes. This enables the Pascal compiler to compile itself. 

IMPLEMENTATION: 

The private variables of a job process give it access to a terminal stream, 
two character streams for input and output ,  and two data files. It uses a 
large program file to store the currently executed program. These variables 
are inaccessible to other processes. 

The job process contains a declaration of a sequential program that  de- 
fines the types of its arguments and the variable in which its code is stored 
(the latter is inaccessible to the program). It also defines a list of interface 
routines that  can be called by a program. These routines are implemented 
within the job process. They are defined in Section 5.2. 

Before a job process can call a sequential program it must  load it from 
disk into a program store and push its identifier onto a program stack. After 
termination of the program, the job process pops its identifier, line number, 
and result from the program stack, reloads the previous program from disk 
and returns to it. 

A process can only interact with other processes by calling routines 
within monitors that  are passed as parameters to it during initialization 
(such as the catalog declared at the beginning of a job process). These access 
rights are checked at compile time. 

type jobprocess = 
process(typeuse: typeresource; diskuse: resource; 

catalog: diskcatalog; inbuffer, outbuffer:  pagebuffer; 
inrequest, inresponse, outrequest, outresponse: 
argbuffer; stack: progstack); 

"program data space = " +  16000 

const maxfile = 2; 
type file = 1..maxfile; 

vat operator: terminal; opstream: terminalstream; 

instream, outstream: charstream; 

files: array (.file.) of  datafile; 

code: progfile "(large)"; 
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program job(var param: arglist; store: progstore); 
entry read, write, open, close, get, put, length, 

mark, release, identify, accept, display, readpage, 
writepage, readline, writeline, readarg, write~cg, 
lookup, iotransfer, iomove, task, run; 

procedure call(id: identifier; vat param: arglist; 
var line: integer; var result: resulttype); 

var state: progstate; lastid: identifier; 
begin 

with code, stack do 
begin 

line: = 0; 
open(id, state); 
if (state = ready) & space then 
begin 

push(id); 
job(param, store); 
pop(line, result); 

end else 
if state = toobig then result:= codelimit 

else result:= callerror; 
if any then 
begin get(lastid); open(lastid, state) end; 

end; 
end; 

procedure entry read(vat c: char); 
begin instream.read(c) end; 

procedure entry write(c: char); 
begin outstream.write(c) end; 

procedure entry open(f: file; id: identifier; 
vat found: boolean); 

begin files(.f.).open(id, found) end; 

procedure entry close(f: file); 
begin files(.f.).close end; 

procedure entry get(f: file; p: integer; vat block: page); 
begin files(.f.).read(p, block) end; 

Chap. 5 
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procedure entry put(f: file; p: integer; vat block: page); 
begin files(.f.).write(p, block) end; 

function entry length(f: file): integer; 
begin length:= files(.f.).length end; 

procedure entry mark(vat top: integer); 
begin top: = attribute(heaptop) end; 

procedure entry release(top: integer); 
begin setheap(top) end; 

procedure entry identify(header: text); 
begin opstream.reset(header) end; 

procedure entry accept(vat c: char); 
begin opstream.read(c) end; 

procedure entry display(c: char); 
begin opstream.write(c) end; 

procedure entry readpage(var block: page; vat eof: boolean); 
begin inbuffer.read(block, eof) end; 

procedure entry writepage(block: page; eof: boolean); 
begin outbuffer.write(block, eof) end; 

procedure entry readline(var text: line); 
begin end; 

procedure entry writeline(text: line); 
begin end; 

procedure entry readarg(s: argseq; vat arg: argtype); 
begin 

if s = inp then inresponse.read(arg) 
else outresponse.read(arg); 

end; 

procedure entry writearg(s: argseq; arg: argtype); 
begin 

if s = inp then inrequest.write(arg) 
else outrequest.write(arg); 

end; 
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procedure entry lookup(id: identifier; vat attr: fileattr; 
var found: boolean); 

begin catalog.lookup(id, attr, found) end; 

procedure entry iotransfer(device: iodevice; 
vat param: ioparam; vat block: page); 

begin 
if device = diskdevice then 
begin 

diskuse.request; 
io(block, param, device); 
diskuse.release; 

end else 
io(block, param, device); 

end; 

procedure entry iomove(device: iodevice; vat param: ioparam); 
begin io(param, param, device) end; 

function entry task: taskkind; 
begin task: = jobtask end; 

procedure entry run(id: identifier; vat param: arglist; 
vat line: integer; vat result: resulttype); 

begin call(id, param, line, result) end; 

procedure initialize; 
vat i: integer; param: arglist; 

line: integer; result: resulttype; 
begin 

init operator(typeuse), opstream(operator), 
instream(inbuffer), outstream(outbuffer); 

instream.initread; outstream.initwrite; 
for  i: = 1 to maxfile do 

init files(.i.)(typeuse, diskuse, catalog); 
init code(typeuse, diskuse, catalog); 
with param(.2.) do 
begin tag: = idtype; arg: = 'console ' end; 
call('do ', param, line, result); 

• , *  operator.write( jobprocess:(:lO:), 'terminated (:10:)'); 
end; 

Chap. 5 

begin initialize end; 
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I0 Process 

An io process executes Sequential Pascal programs that  produce or 
consume data for a job process. It also implements the interface between 
these programs and the Solo operating system. 

type ioprocess = 
process( typeuse : typeresource ; diskuse : resource; 

catalog: diskcatalog; slowio: linebuffer; 
buffer: pagebuffer; request, response: argbuffer; 
stack: progstack; iotask: taskkind); 

"program data space = "÷2000 
An io process needs access to the operator, the disk, and the catalog. It is 
connected to a card reader (or a line printer) by a line buffer and to a job 
process by a page buffer and two argument buffers. It uses a program stack 
to handle nested calls of sequential programs. 

It requires a data space of 2000 bytes for input /output  programs and a 
code space of 4000 bytes. 

Initially, it executes a program called io. 

IMPLEMENTATION: 

The implementation details are similar to a job process. 

type ioprocess = 
process(typeuse: typeresource; diskuse: resource; 

catalog: diskcatalog; slowio: linebuffer; 
buffer: pagebuffer; request, response: argbuffer; 
stack: progstack; iotask: taskkind); 

"program data space = " + 2 0 0 0  

type file = 1..1; 

vat operator: terminal; opstream: terminalstream; 

iostream: charstream; iofile: datafile; 

code: progfile " ( s m a l l ) " ;  
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program driver(vat param: arglist; store: progstore); 
entry read, write, open, close, get, put, length, 

mark, release, identify, accept, display, readpage, 
writepage, readline, writeline, readarg, writearg, 
lookup, iotransfer, iomove, task, run; 

procedure call(id: identifier; vat param: arglist; 
vat line: integer; var result: resulttype); 

vat state: progstate; lastid: identifier; 
begin 

with code, stack do 
begin 

line := 0; 
open(id, state); 
ff (state = ready) & space then 
begin 

push(id); 
driver(param, store); 
pop(line, result); 

end else 
if state = toobig then result: = codelimit 

else result:= callerror; 
if any then 
begin get(lastid); open(lastid, state) end; 

end; 
end; 

procedure entry read(vat c: char); 
begin iostream.read(c) end; 

procedure entry write(c: char); 
begin iostream.write(c) end; 

procedure entry open(f: file; id: identifier; 
vat found: boolean); 

begin iofile.open(id, found) end; 

procedure entry close(f: file); 
begin iofile.close end; 

procedure entry get(f: file; p: integer; vat block: page); 
begin iofile.read(p, block) end; 

Chap. 5 
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procedure entry put(f: file; p: integer; vat block: page); 
begin iofile.write(p, block) end; 

function entry length(f: file): integer; 
begin length:= iofile.length end; 

procedure entry mark(vat top: integer); 
begin top:= attribute(heaptop) end; 

procedure entry release(top: integer); 
begin setheap(top) end; 

procedure entry identify(header: line); 
begin opstream.reset(header) end; 

procedure entry accept(vat c: char); 
begin opstream.read(c) end; 

procedure entry display(c: char); 
begin opstream.write(c) end; 

procedure entry readpage(var block: page; vat eof: boolean); 
begin buffer.read(block, eof) end; 

procedure entry writepage(block: page; eof: boolean); 
begin buffer.write(block, eof) end; 

procedure entry readline(var text: line); 
begin slowio.read(text) end; 

procedure entry writeline(text: line); 
begin slowio.write(text) end; 

procedure entry readarg(s: argseq; vat arg: argtype); 
begin request.read(arg) end; 

procedure entry writearg(s: argseq; arg: argtype); 
begin response.write(arg) end; 

procedure entry lookup(id: identifier; vat attr: fileattr; 
vat found: boolean); 

begin catalog.lookup(id, attr, found) end; 

135 
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procedure entry iotransfer(device: iodevice; 
var param: ioparam; var block: page); 

begin 
if device = diskdevice then 
begin 

diskuse.request; 
io(block, param, device); 
diskuse.release; 

end else 
io(block, param, device); 

end; 

procedure entry iomove(device: iodevice; var param: ioparam); 
begin io(param, param, device) end; 

function entry task: taskkind; 
begin task:= iotask end; 

procedure entry run(id: identifier; vat param: arglist; 
vat line: integer; vat result: resulttype); 

begin call(id, parara, line, result) end; 

procedure initialize; 
vat param: arglist; line: integer; result: resulttype; 
begin 

init operator(typeuse), opstream(operator), 
iostream(buffer), 
iofile(typeuse, diskuse, catalog), 
code(typeuse, diskuse, catalog); 

if iotask = inputtask then iostream.initwrite 
else iostream.initread; 

call('io ', param, line, result); 
operator, write ('ioprocess: (: 10: )', 'terminated (: 10: )'); 

end; 

begin initialize end; 

Card Process 

A card process transmits cards from a card reader through a line buffer 
to an input process. 
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type cardprocess = 
process(typeuse: typeresource; buffer: linebuffer) 
A card process can access the operator to report device failure and a line 
buffer to transmit data. It is assumed that  the card reader is controlled 
only by a single card process. As long as the card reader is turned off  or is 
empty the card process waits. It begins to read cards as soon as they are 
available in the reader. After a transmission error the card process writes 
a message to the operator and continues the input of cards. 

IMPLEMENTATION: 

The standard procedure 

wait 

delays the card process for I sec. This reduces the processor time spent wait- 
ing for operation intervention. 

type cardprocess = 
process(typeuse: typeresource; buffer: linebuffer); 

var operator: terminal; text:  line; 
param: ioparam; ok: boolean; 
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begin 
init operator( typeuse);  
param.operation: = input; 
cycle 

repeat  
io(text,  param, carddevice); 
case param.status of  

complete:  
ok:= true; 

intervention: 
begin ok:= false; wait end; 

transmission, failure: 
begin 

operator.write( 'cards: (: 10 :)', 'error(: 10: )'); 
ok:= false; 

end 
end 

until ok; 
buffer.write(text);  

end; 
end; 

Printer Process 

A printer process transmits lines from an ou tpu t  process to a line print- 
er. 

type prin terprocess = 
process(typeuse: typeresource; buffer: linebuffer) 
A printer process can access the operator  to report  device failure and a line 
buffer to receive data. It is assumed that  the line printer is controlled only 
by a single printer process. After a printer failure the printer writes a message 
to the operator and repeats the ou tpu t  of  the current line until it is success- 
ful. 

IMPLEMENTATION: 

type printerprocess = 
process(typeuse:  typeresource;  buffer:  linebuffer); 

vat operator:  terminal; param: ioparam; text:  line; 
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begin 
init operator( typeuse);  
param.operation:= output ;  
cycle 

buffer.read(text);  
io(text,  param, printdevice); 
if param.status < >  complete  then 
begin 

operator.write( 'printer:  (: 10:)' ,  'inspect( :10: )'); 
repeat 

wait; 
io(text, param, printdevice); 

until param.status = complete;  
end; 

end; 
end; 

Loader Process 

A loader process preempts the operating system and reinitializes it when 
the operator pushes the BEL key ( 'control g') on the console. 

type loaderprocess = 
process(diskuse : resource) 
A loader process needs access to the disk to be able to reload the system. 

IMPLEMENTATION: 

A control operation on the typewriter delays the calling process until 
the operator pushes the BEL key (Chapter 8). 

The Solo operating system is stored on consecutive disk pages starting 
at the Solo address. It is loaded by means of  a control operation on the 
disk as defined in the Concurrent Pascal report  (Chapter 8). Consecutive 
disk pages are used to make the system kernel unaware of the structure of  
a particular filing system (such as the one used by Solo). The disk contains 
a sequential program start that  can copy the Solo system from a concurrent 
code file into the consecutive disk segment defined above. 

type  loaderprocess = 
process(diskuse: resource); 

const soloaddr = 24; 
vat param: ioparam; 
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procedure initialize(pageno: univ ioarg); 
begin 

with param do 
begin 

operation: = control; 
arg: = pageno; 

end; 
end; 

begin 
initialize(soloaddr); 
"await  bel signal" 
io(param, param, typedevice);  
"reload solo sys tem" 
diskuse.request; 
io(param, param, diskdevice); 
diskuse.release; 

end; 

Initial Process 

The initial process initializes all other processes and monitors and de- 
fines their access rights to one another. After initialization the operating sys- 
tem consists of  a fixed set of  components:  a card process, an input  process, 
a job process, an ou tpu t  process, a printer process, and a loader process. They 
have access to an operator,  a disk, and a catalog of  files. Process communica- 
tion takes place by  means of two page buffers, two line buffers, and four 
argument buffers (see Fig. 5.1). 

When a process, such as the initial process, terminates its execution,  its 
variables continue to exist (because they may be used by other processes). 

IMPLEMENTATION: 

v a t  typeuse:  typeresource;  
diskuse: resource; catalog: diskcatalog; 
inbuffer, outbuffer :  pagebuffer; 
cardbuffer,  printerbuffer:  linebuffer; 
inrequest, inresponse, outrequest ,  outresponse: argbuffer; 
instack, outstack, jobstack:  progstack; 
reader: cardprocess; writer: printerprocess; 
producer, consumer: ioprocess; master: jobprocess;  
watchdog: loaderprocess; 
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begin 
init typeuse,  diskuse, 

catalog(typeuse, diskuse, cataddr), 
inbuffer, outbuffer ,  
cardbuffer,  printerbuffer,  
inrequest, inresponse, outrequest,  outresponse, 
instack, outstack, jobstack, 
reader(typeuse, cardbuffer),  
writer(typeuse, printerbuffer),  
producer(typeuse,  diskuse, catalog, cardbuffer, 

inbuffer, inrequest, inresponse, instack, inputtask), 
consumer(typeuse,  diskuse, catalog, printerbuffer,  

outbuffer ,  outrequest ,  outresponse, outstack, outputtask),  
master(typeuse, diskuse, catalog, inbuffer, outbuffer ,  

inrequest, inresponse, outrequest,  outresponse, 
jobstack),  

watchdog(diskuse); 

end. 

Conclusion 

The Solo system consists of 22 line printer pages of  Concurrent Pascal 
text  divided into 23 component  types (10 classes, 7 monitors,  and 6 pro- 
cesses). A typical component  type is less than one page long and can be 
studied in isolation as an (almost) independent  piece of  program. All pro- 
gram components  called by a given component  are explicitly declared 
within that component  (either as permanent  variables or as parameters 
to it). To understand a component  it is only necessary to know what other 
components  called by it do, but  how they do it in detail is irrelevant. 

The entire system can be studied component  by component  as one 
would read a book.  In that  sense, Concurrent Pascal supports abstraction 
and hierarchical structuring of concurrent  programs very nicely. 

It took  4 compilations to remove the formal programming errors from 
the Solo system. It was then tested systematically from the bo t tom up by 
adding one component  type  at a time and trying it by means of short test 
processes. The whole program was tested in 27 runs (or about  1 run per 
component  type). This revealed 7 errors in the test processes and 2 trivial 
ones in the system itself. Later, about  one third of  it was rewritten to speed 
up program loading. This took  about  1 week. It was then compiled and put  
into operation in 1 day and has worked ever since. 

I can only suggest two plausible explanations for this unusual testing 
experience. It seems to be vital that  the compiler prevents new components  
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from destroying old ones (since old components cannot call new ones, 
and new ones can only call old ones through routines that  have already 
been tested). This strict checking of hierarchical access rights makes it 
possible for a large system to evolve gradually through a sequence of inter- 
mediate, stable subsystems. 

I am also convinced now that  the use of abstract data types which hide 
implementation details within a fixed set  of routines encourages a clarity of 
design that  makes programs practically correct before they are even tested. 
The slight inconvenience of strict type checking is of minor importance 
compared to the advantages of instant program reliability. 

Although Solo is a concurrent program of only 1300 lines it does imple- 
ment  a virtual machine that  is very convenient to use for program develop- 
ment. The availability of cheap microprocessors will put  increasing pressure 
on software designers to develop special-purpose operating systems at very 
low cost. Concurrent Pascal is one example of a programming tool that  may 
make this possible. 

5.4 DISK SCHEDULING 

In allocating program files on a slow disk an operating system designer is 
faced with a dilemma: He can place a program on consecutive disk pages and 
make loading of it fast. But at the same time file allocation (or deletion) 
becomes painfully slow (since files must  be compacted from time to time). 

Or he can place a program on scattered pages (linked in some way) and 
make file allocation fast. But program loading will now be slowed down 
considerably (because random references to the disk require more disk revo- 
lutions than sequential references do). 

This section describes an algorithm that  combines the best features of 
consecutive and nonconsecutive disk allocation: fast sequential access and 
fast allocation. The algorithm tries to place a file on consecutive pages (but 
will scatter them somewhat if necessary). It then z'earranges these pages to 
minimize rotational delay during a sequential sc~a of the file. Since this 
is done once and for all before a program is compiled and stored in a file 
it is called disk scheduling at compile time. 

A Numerical Example 

The Solo system for the PDP 11/45 computer  uses a disk with 200 
cylinders each holding 24 pages (distributed on two surfaces). The disk is 
slow 
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r 
disk revolution 
head movement  
page transfer 

45 msec 
10 - 90 msec 

4 msec 

During a compilation of a Pascal program, 20 system programs of alto- 
gether 300 pages are loaded from disk. If a file is allocated on consecutive 
pages program loading will take about  3 sec per compilation. But file alloca- 
tion can take up to 3 min. 

If the pages of a file are scattered randomly over the disk, file alloca- 
t ion will only take a second or so, but compiler loading will now last 16 sec. 

The algorithm suggested here is a compromise between these extremes: 
It makes it possible to allocate a file in a few seconds and load the com- 
piler in 5 sec. 

Disk Allocation 

In the Solo system, the pages allocated to a single file are addressed 
indirectly through a page map (Fig. 5.6). This map makes the pages appear 
to  be consecutive to the user but  allows the operating system to place them 
anywhere on disk. 

The disk allocation algorithm takes advantage of the following knowl- 
edge about program files 

(1) A program file consists of a fixed set of disk pages throughout  its 
lifetime (that is, until recompilation). 

(2) It is always loaded sequentially in a single operation (since demand 
paging is not  used). 

PAGE MAP PAGES 

PAGE 1 

PAG E N 

Fig. 5.6 A disk file 

Sec. 5.4 
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These assumptions make it possible to simulate program loading at 
compile time and schedule a fast sequence of page transfers once and for 
all. The algorithm tries to place a file consecutively ,on neighboring cylinders 
(but will make gaps between page segments whenever this is necessary to 
skip existing files). It then rearranges the page addresses within the page 
map to minimize the number of disk revolutions and head movements need- 
ed to load the file. 

Since one cannot always place a file on consecutive pages the problem 
cannot be solved by formatt ing the entire disk once. It must  be done piece- 
meal each time a file is allocated because only then the set of available pages 
is known. 

Figure 5.7 illustrates the scheduling algorithm for the simple case of  a 
file placed on 16 consecutive pages, A to P, on two neighboring cylinders. 

The algorithm selects page A as the page map of the new file. Now the 
rotational gap between two neighboring pages is only 0.5 msec. This is too 
little to allow the Solo system to start another page transfer. To avoid losing 
a complete disk revolution the algorithm therefore skips page B and makes 
C the first page of the file. It continues to select every second page and put  
it in the page map. After two (simulated) disk revolutions all pages on the 
first cylinder have been placed in the page map. (It takes four revolutions if 
one considers that  a cylinder is placed on two surfaces). 

The disk head is now positioned after page H on cylinder 1 (correspond- 
ing to page P on cylinder 2). The algorithm knows that  a cylinder shift takes 
enough time to move the disk head to page L. So this becomes the next  
page in the map, and the scheduling now proceeds as before, selecting every 

Fig. 5.7 Disk scheduling 

) 
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second page during two (or four) simulated revolutions. Figure 5.8 shows 
the final page map. 

When a file does not consist of  consecutive pages the algorithm will 
allocate a page and search for the nearest page following the next one on the 
same cylinder until that cylinder is exhausted. 

It is, of  course, essential in a multiprogramming system to give a process 
exclusive access to the disk during program loading. Otherwise, competing 
processes could interrupt the fast loading sequence by disk arm movement. 
Since program loading is an indivisible operation of finite duration, there is 
no danger of processes monopolizing the disk (provided program loading is 
handled by the operating system). 

The Multiscan Algorithm 

The following is an abstract version of  the disk scheduling algorithm: It 
scans the original page map cylinder by cylinder and rearranges it. In doing 
so it keeps track of the set of  pages allocated within the current cylinder 
and the current position of the disk head. 

Initially the disk head is positioned at the page map itself. When the 
algorithm switches to another cylinder it uses a function distance to cylinder 
to compute how far the disk turns while the head moves to that cylinder. 
It then removes one page at a time from the cylinder, puts it in the new page 
map, and searches for the nearest page following the next one. 

The algorithm performs quite well even when a file consists of many 
disjoint page segments scattered over a number of  cylinders. In one extreme 
case, a file of  255 pages (11 cylinders} was broken into 47 pieces scattered 
over a distance of  50 cylinders (due to a flaw in the initial allocation algo- 
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rithm). The scheduling algorithm nevertheless made it possible to load 
this file in 82 disk revolutions (which is 50 per cent of the best performance 
obtainable on the given disk). 

const cylinder length = 24 "pages"; 
sector_increment = 2 "pages"; 

type page index = 0..23; 

vat pages: set of page_index; 
size: 0..cylinder length; 
position: page index; 

begin 
position := initial_position; 
for every_cylinder of file do 
begin 

pages:= a l lpageson_cyl inder ;  
size:= number of pages on_cylinder; 
position:= position + distance_to_cylinder; 
for size downto 1 do 
begin 

while not (position in pages) do 
position:= (position + 1) rood cylinder length; 

pages:= pages - (.position.); 
put_position_in_page_map; 
position:= 

(position + sector_increment) rood cylinder_length; 
end; 

end; 
end; 

Conclusion 

The use of a special disk scheduling algorithm for a frequent case (pro- 
gram loading) illustrates a sound principle of operating system design: The 
best operating systems are always highly specialized programs that take full 
advantage of  the expected usage of the computer resources [Brinch Hansen, 
1973b]. 

By comparison, a more "general" disk scheduling algorithm, such as 
the scan algorithm [Hoare, 1974], will have negligible effect in this case 
simply because its only assumption about disk usage is the worst possible 
one of unrestricted competition among concurrent processes. 
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The problem also illustrates a common temptat ion for software de- 
signers: to make a theory of optimization out  of a complicated device 
instead of suggesting a simpler one. (The generation of excellent code for 
computers with complicated instruction sets is another example of this). 

5.5 LIST OF SOLO COMPONENTS 

Arglist type, 81 
Argseq type, 128 
Argtag type, 81 
Argtype, 81 
Attrindex type, 123 

Cardprocess, 136 
Catentry type, 115 
Catpage type, 115 
Charstream class, 126 
Copy program, 93 

Datafile class, 118 
Diskcatalog monitor, 117 
Disk class, 111 
Diskfile class, 113 
Disktable class, 116 

Fifo class, 102 
Fileattr type, 115 
Filekind type, 115 
Filemap type, 114 

Identifier type, 115 
Initial process, 140 
Ioarg type, 101 
Iodevice type, 101 
Iooperation type, 101 
Ioparam type, 101 

Ioprocess, 133 
Ioresult type, 101 

Jobprocess, 128 

Line type, 102 
Loaderprocess, 139 

Multiscan algorithm, 145 

Pagebuffer monitor, 125 
Page type, 102 
Prefix, 90 
Printerprocess, 138 
Processqueue type, 104 
Progfile class, 121 
Progresult type, 87 
Progstack monitor, 122 
Progstate type, 121 
Progstore type, 121 

Resource monitor, 103 
Resulttype, 123 

Taskkind type, 127 
Terminal class, 108 
Terminalstream class, 110 
Typeresource monitor, 105 
Typewriter class, 106 



THE JOB STREAM SYSTEM 

The operating system called job stream compiles and executes a stream 
of  user programs input  from a card reader and ou tpu t  on a line printer.  Job 
stream is writ ten in Concurrent  Pascal and user programs are writ ten in 
Sequential Pascal. 

This chapter  has another  theme besides describing a particular kind of  
operating system. It illustrates how one can build a system to achieve the 
best possible performance on a given machine and predict  its speed before 
constructing it. 

6.1 FUNCTION AND PERFORMANCE 

The system gives informal access and fast response to short  jobs such as 
the ones writ ten by students in an in t roduc tory  course on programming. 

A job is a card deck consisting of a Sequential Pascal program and its 
input  data terminated by an end of file card. The lat ter  is a card containing 
the character # fol lowed by 79 blanks. 

The system is run by the users themselves. To run a job a user places 
a card deck in the reader and pushes a but ton.  When the cards have been 
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read the user removes them and proceeds to a printer where the ou tpu t  
appears shortly. 

The ou tpu t  of  a job  consists of a program listing followed by  compiler 
error messages or program results. 

To avoid confusion at the printer, jobs are processed in their order of  
arrival (first-come, first-served). 

To ensure fast response, a user is limited to at most  1 min of  compila- 
tion and execution time per job. 

The interface between a user program and the operating system is de- 
fined by a piece of  text  called the job prefix (Section 5.2). 

const  nl = ' ( :10:) ' ;  f f  = ' ( :12:) ' ;  em = ' ( :25:) ' ;  

const linelength = 132; 
type  line = array (.1..linelength.) o f  char; 

procedure read(vat c: char); 
procedure write(c: char); 
procedure readint(var value: integer); 
procedure writeint(value, length: integer); 
procedure wri tetext( text :  line); 

program job;  

The prefix lists the operating system procedures that  user programs 
may call 

read(c) 

write(c) 

readint(value) 

writeint(value, length) 

wri tetext( text)  

Inputs a character c (if any). Returns 
the character EM if a job  has no more 
input  data. 

Outputs  a character c. After an EM 
further ou tpu t  of  a job  is ignored. 

Inputs an integer value (if any). Returns 
the value 0 if a job has no more numeric 
input. 

Outputs  an integer with a given length 
(in characters). 

Outputs  a text  string terminated by the 
character #. The latter is no t  output .  



150 THE JOB STREAM SYSTEM Chap. 6 

PREFIX ~ f ~  PREFIX SOURCE I SINK 

CARD LINE READER PRINTER 
Fig. 6.1 Job input/output 

The system automatically puts the prefix in front  of a user program 
before it is compiled and removes it again before it is printed (Fig. 6.1). 

The system is designed for one purpose only: to execute short  jobs 
as fast as possible. The decision to emphasize performance rather than func- 
tional scope is, of  course, meaningless unless one can estimate in advance 
how fast a proposed system will be. The following describes how the system 
structure evolved from performance estimates. 

Most s tudent  jobs have few input data and produce little or no ou tpu t  
during testing. So the system will mainly be reading, compiling, and printing 
program text. For the purpose of  predicting performance we will assume 
that  a typical s tudent  program consists of  100 lines of  25 characters each. 

The card reader and line printer can transfer 1000 and 600 lines/min 
(corresponding to 60 and 100 msec/line). The user needs about  10 sec to 
insert a card deck and remove a printer listing. 

The compiler speed is 240 char/sec (or about  100 msec/line) (Chap- 
ter 9). Compiler loading from disk takes 5 sec (Chapter 5). The compiler 
needs another 2 sec to scan a job  prefix of  say 20 lines. 

So a job  must  be processed in turn by  three system components  with 
the following service times 

card reader: 
compiler: 
line printer: 

10 sec/job + 0.06 sec/line 
7 sec/job + 0.1 sec/line 

10 sec/job + 0.1 sec/line 

The simplest (and slowest) system would be one in which input, com- 
pilation, and ou tpu t  of  a job  take place strictly one at a time. In such a 
system the total service time would be 

sequential system: 27 sec/job + 0.26 sec/line 

or 53 sec for a program of 100 lines. 
To reduce service time below this upper  bound we must  let input, 

compilation, and ou tpu t  take place simultaneously (Fig. 6.2). In a con- 
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BUFFERS 

INPUT JOB OUTPUT 
PROCESS PROCESS PROCESS 

Fig. 6.2 Concurrent system 

current  system the line printer  sets a lower limit on service time. 

concurrent  system: 10 sec/job + 0.1 sec/line 
J 

or 20 sec for 100 lines. 
Let us assume that  a user needs 5 min after a compilation to correct  

trivial program errors before resubmitting a job. Now if a single user only 
needs 20 sec of service time every 300 sec there will be practically no waiting 
time as long as the system is shared by no more than (300 + 20)/20 = 16 
people at a time. If more people use it simultaneously each additional user 
will delay the others by 20 sec. So with 31 active users the response time 
at the machine will be about  5 min. 

So far we have derived the main process structure by examining the 
desired average behavior of the system. To achieve the predicted perfor- 
mance it is essential that  the line printer can operate cont inuously at top 
speed. The main problem of doing this is that  the compiler produces its 
ou tpu t  tex t  in short  bursts followed by long pauses.  

So we must  now look at the buffers connecting the processes and make 
sure that  they are able to absorb temporary  speed variations within the 
system. 

The compiler scans 100 lines of  program tex t  and outputs  it in 4 sec. It 
then uses another  13 sec to check the program tex t  before output t ing error 
messages or code. Since it takes t h e  printer 10 sec to ou tpu t  the program 
text;  the buffer  connecting the job and ou tpu t  processes must  be large and 
fast enough to absorb 100 lines (or 2500 characters) in 4 sec. 

Similarly, to use the card reader continuously we need a large buffei: 
between the input  and job processes. 

Since user jobs may vary in length both  buffers should be large enough 
to absorb up to one minute of tex t  input /output .  A buffer  of 600 lines 
(15,000 characters) is too large to keep in the core store of the available 
computer .  So we must  use the dish to buffer input/output .  
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CA R D I NPUT JOB OUTPUT PRINTE R 
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Fig. 6.3 Final process structure 

Each disk transfer (of  about  20 lines) made by the ou tpu t  process will 
delay it by about  100 msec. This will slow the line printer down by 5 msec/ 
line (or 5 per cent). To reduce rotational delay, the job  process has exclusive 
access to the disk while it is loading the compiler (Section 5.4). These long 
disk transfers will occasionally slow the ou tpu t  process and the printer 
down even more. 

To enable the card reader and line printer to continue at full speed 
during disk transfers we will introduce two more processes (Fig. 6.3). 

The card process reads cards and transmits them through a buffer  in 
core store to an input  process. 

The input process puts a prefix in front  of  each job, packs the text  
into blocks, and sends it through a disk buffer to a job  process. 

The job process compiles and executes programs sending their ou tpu t  
through another disk buffer  to an ou tpu t  process. 

The output process removes the prefix from each job, splits the rest of  
the text  into lines, and transmits them through another buffer in core 
store to a printer process. 

The printer process receives lines and prints them. 
Each core buffer must  be large enough to absorb text  inpu t /ou tpu t  

while a program is being loaded from the disk. Since this takes at most  1 
sec, a buffer capacity of  10 lines (250 characters) is sufficient. 

This completes the design of  the system structure from performance 
considerations. However crude this performance estimate may seem it 
turned out  to be accurate. When the system was finished it ran short  jobs 
continuously at the speed of  the line printer. 

To choose a system structure that  makes performance prediction trivial 
is one of  the main goals of  engineering design. In the job  stream system the 
use of  suitable buffers made it possible to ignore the detailed dynamic 
behavior of  concurrent  processes and describe them in terms of  their average 
properties only. 
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6.2 SEQUENTIAL PROGRAMS AND FILES 

The job stream system uses the disk to store its own system programs 
and the temporary data of user jobs. Since users cannot store programs 
and data permanently on the disk, the job stream system can consider 
itself the owner of the disk. It can therefore use the file system developed 
for the Solo operating system (Chapter 5). 

The disk files used by job stream are called 

jobstream 
jobinput 
]observice 
joboutput  
jobprefix 
lob 
]obbuffer l  
jobbuffer2 

Job stream is a concurrent program that  is started by giving the com- 
mand 

start(jobstream) 

to the Solo system (Section 5.1). Job stream returns to the Solo system 
when the BEL key is pushed on the teletype. 

The input, job, and output  processes of job stream execute three se- 
quential programs called job input, lob service, and job output. 

The job prefix is a text  file described earlier. The generated code is 
stored temporarily in the job file. 

Job buffers 1 and 2 are the disk buffers used for input /output  of 
user text. 

In addition, the job process uses the Sequential Pascal compiler. It con- 
sists of seven programs (spassl to spass7) which use two scratch files (templ 
and temp2). The compiler is described in Chapter 9. 

We will now look at each of the job stream programs mentioned above. 

Job Input 

Job input is a Sequential Pascal program that  adds the prefix to user 
programs and copies them from cards to disk 
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begin 
initprefix; initblank; 
repeat 

copyprefix;  
copycards; 

until false; 
end. 

The input program can call four operating system routines (defined in its 
own prefix) 

~refixlength 

readprefix(pageno, block) 

readline(text) 

writestream(block) 

Defines the length of  the job  pre- 
fix (in disk pages). 

Reads a given disk page from the 
job prefix. 

Receives a line from the card pro- 
cess. 

Sends a disk page to the job pro- 
cess. 

The variables used to ou tpu t  text  to the disk are the current disk page 
and its length as well as the length of  the last page of  the prefix file (both in 
characters) 

vat block: page; blocklength, initlength: integer; 

Initially, the input program scans the last page of  the job  prefix to 
define its length (excluding the final EM character) 

procedure initprefix; 
begin 

readprefix(prefixlength, block); 
initlength: = O; 
while block(.initlength + 1.) < >  em do 

initlength: = initlength + 1; 
end 
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The following procedure puts the prefix in front of a job 

procedure copyprefix; 
vat pageno: integer; 
begin 

for pageno:= 1 to prefixlength - 1 do 
begin 

readprefix(pageno, block); 
writestream(block); 

end; 
readprefix(prefixlength, block); 
blocklength:= initlength; 

end 

The beginning of the job text will be copied from cards into the last page 
of the prefix before it is transmitted to the job process. 

The variables used to input text from the card reader are the current 
input line and its length (in characters) 

vat card: line; cardlength: integer; 

The program packs input lines into disk pages and sends them to the 
job process 

r 

I 



156 THE JOB STREAM SYSTEM Chap. 6 

procedure copycards; 
vat blockspace, i: integer; 
begin 

repeat 
readcard; 
blockspace: = pagelength - blocklength; 
if blockspace < cardlength then 
begin 

for i:= 1 to blockspace do 
block(.blocklength + i. } := card(.i. ); 

writestream(block); 
blocklength := cardlength - blockspace; 
for i:= 1 to blocklength do 

block(.i.):= card(.blockspace + i.); 
end else 
begin 

for i:= 1 to cardlength do 
block(.blocklength + i. ):= card(.i.); 

blocklength: = blocklength + cardlength; 
end 

until block(.blocklength.) = em; 
writestream(block); 
blocklength:= O; 

end 

After receiving a line from the card process the input  process eliminates 
trailing blanks from it and terminates it with a NL character. 

A job  deck is terminated by  a card consisting of the character # only. 
It is converted into an EM character 
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procedure readcard ;  
begin 

readl ine(card) ;  
cardlength:  = cardl imit (card,  blank);  
ff card length  > 0 then 

while card( .cardlength . )  = ' ' do 
cardlength  := cardlength  - 1; 

if  (cardlength  = 1) & (card( .1.)  = ' # ' )  
then card( .1 . ) :=  em else 
begin 

cardlength:=  cardlength  + 1; 
card( .cardlength . )  := nl; 

end; 
end 

The  p rogram uses a b lank line to  e l iminate  trailing blanks fast  

var blank:  line; 

p rocedu re  ini tblank;  
var charno:  integer;  
begin 

for  charno  := I to  l inelength do 
blank( .charno . )  := ' ' ;  

end 

where  a line is def ined  as 

cons t  l inelength = 132;  
t ype  line = array ( .1. . l inelength.)  o f  char;  

A b o u t  55 characters  o f  each line are trailing blanks [Har tmann ,  1 9 7 5 ] .  
T h e y  can be scanned charac te r  by  charac te r  by  a simple loop  

while (card( .cardlength. )  = ' ') & (cardlength > 1) do  
cardlength:  = c a r d l e n g t h -  1; 

But  this takes a b o u t  10 per  cen t  of  the  processor  t ime  (10 msec/ l ine) .  
This overhead  can be r educed  by  an order  o f  magn i tude  by  compar ing  
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longer strings of  input  text  directly with blanks. The input program tries 
to eliminate first 40 blanks at once, then 20, and finally 10. 

To be able to access character strings within a line directly, the program 
uses an alternative type  definition of  a line 

type headtype = array (.1..2, 1..2, 1..2, 1..10.) of  char; 
tail type = array (.1..52.) o f  char; 
image = record head: headtype;  taft: tail type end;  

The first 80 characters of  a line image (the line head) are now accessible as 
an array of  strings of  lengths 40, 20, and 10. An image is scanned as follows 

funct ion cardlimit(card, blank: univ image): integer; 
vat i, j, k: integer; 
begin 

ff card.head(.2.) < >  blank.head(.2.) 
then i:= 2 else i:= 1; 

if card.head(.i, 2.) < >  blank.head(.i ,  2.) 
t h e n  j:= 2 else j:= 1; 

ff card.head(.i, j, 2.) < >  blank.head(.i, j, 2.) 
then k := 2 else 

if card.head(.i, j, 1.) < >  blank.head(.i, j, 1.) 
then k: = 1 else k := 0; 

cardlimit:= (((i - 1 ) ' 2  + (j - 1 ) ) ' 2  + k)*10; 
end 

The rest of  the input program must  still be able to do fast scanning, charac- 
ter by character, of  the beginning of  a line to be able to copy it into a disk 
page. The use of the key word univ makes it possible to call the function 
card limit with arguments that are declared elsewhere to be of type  line (and 
not  of type  image) (Section 3.7) 

cardlength:= cardlimit(card, blank) 

Job Service 

Job service is a Sequential Pascal program that compiles and executes 
user jobs. The service program calls seven compiler passes one at a time and 
executes the generated code (if it is correct) 
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begin 
initialize; 
if ok then callpass(passl); 
if ok then callpass(pass2); 
if ok then callpass(pass3); 
if ok then callpass(pass4); 
if ok then callpass(pass5); 
if ok then callpass(pass6); 
if ok then open(2, job, ok); 
if ok then callpass(pass7); 
if ok then calljob; 
terminate; 

end. 

The service program can call the following operating system routines 
(defined in its own prefix) 

read(c) 
write(c) 
writeint(value, length) 
writetext(text)  

open(fileno, identifier, found) 
close(fileno) 
get(fileno, pageno, block) 
put(fileno, pageno, block) 
length(fileno) 

runpass(identifier, param, 
lineno, result) 

runjob(lineno, result) 

Input  and ou tpu t  of text  buffered on 
disk as defined in Section 6.1. 

Input  and ou tpu t  of compiler scratch 
files as defined in Section 5.2. 

Calls a compiler pass with a given identi- 
fier and a parameter list. Defines where 
and how the pass terminated. 

Calls a compiled job and defines where 
and how it terminated. 

The types of  the parameters and results of programs are defined in Chapter 5. 
The service program uses the following file identifiers 

const t e m p l  = ' t emp l  '; t emp2 = ' temp2 '; 
passl  = 'spassl '; pass2 = 'spass2 '; 
pass3 = 'spass3 '; pass4 = 'spass4 '; 
pass5 = 'spass5 '; pass6 = 'spass6 '; 
pass7 = 'spass7 ' ;  job = 'job '; 
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and two variables 

var ok: boolean; list: arglist; 

One is a boolean defining whether  compilation was successful; the other  is a 
parameter  list for the compiler passes. 

The compiler uses three parameters: a boolean defining whether  com- 
pilation was successful, a pointer  to a symbol table constructed by one pass 
for another,  and an integer defining the length of the generated code (if 
any). 

The service program starts compilation by opening the scratch files and 
initializing the compiler parameters 

procedure initialize; 
begin 

open( l ,  t empl ,  ok); 
if  ok then open(2, temp2, ok); 
with list(.1.) do 
begin tag: = booltype; bool:= false end; 
with list(.2.) do 
begin tag:= ptr type;  ptr: = nfl end; 
with list(.3.) do 
begin tag:= inttype; int:= 0 end; 

end 

It then calls the seven passes one at a time using the following procedure 

procedure callpass(id: identifier); 
vat lineno: integer; result: progresult; 
begin 

runpass(id, list, lineno, result); 
if result < >  terminated 

then writeerror(id, lineno, result) 
else ok: = list(.1.).bool; 

end 

After  a successful compilation the user program is executed 
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procedure  calljob; 
vat lineno: integer; result: progresult;  
begin 

runjob(l ineno,  result); 
if result < >  terminated then  

writeerror(job, lineno, result); 
end 

The service program terminates a job by closing the scratch files 

procedure terminate;  
begin close(l);  close(2) end 

If the compiler  or user program fails or exceeds the t ime limit of I min 
the service program writes a message of the form 

spass3: line 1215 stack limit 

O r  

job: line 58 pointer  error 

procedure writeerror(id: identifier; 
lineno: integer; result: progresult); 

begin 
write(nl); 
writeid(id); 
writetext( ' :  line # ') ;  
writeint(l ineno, 4); 
write( '  '); 
writeresult(result); 
write(nl); 
ok:= (result = terminated);  

end; 
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procedure writeresult(result: progresult); 
begin 

case result of  
terminated: 
overflow: 
pointererror: 
rangeerror: 
varianterror: 
heaplimit: 
stacklimit: 
eodelimit: 
timelimit: 
callerror: 

end; 
end; 

writetext( ' terminated #'); 
writetext('overflow #'); 
writetext( 'pointer error#'); 
writetext('range error#'); 
writetext('variant error#'); 
writetext( 'heap limit #'); 
writetext('stack limit#'); 
wntetext( 'code limit #'); 
writetext( ' t ime limit #'); 
writetext( 'system error #') 

procedure writeid(id: identifier); 
vat charno: integer; 
begin 

for charno:= 1 to idlength do 
if id(.charno.) < >  ' ' then 

write(id(.charno.)); 
end; 

Job Output 

Job output  is a Sequential Pascal program that removes the prefix from 
user jobs and copies them from the disk to the printer 

The output  program can 
its own prefix) 

prefixlength 

begin 
initprefix; initline; 
repeat 

skipprefix; 
print file; 

until false; 
end. 

call four operating system routines (defined by 

Defines the length of the job prefix 
file (in disk pages). 
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readprefix(pageno, block) 

readstream(block) 

writeline(text) 

Reads a given disk page from the job 
prefix file. 

Receives a disk page from the job pro- 
cess. 

Sends a line to the printer process. 

The variables used to input text  from the disk are the current  disk page 
and its length (in characters) 

var block: page; blocklength: integer; 

The compiler adds a line number  of 5 characters to each line of the 
program text  (including the prefix). The prefix (as output  by the compiler) 
is defined by its length (in disk pages) and the length of its last disk page (in 
characters) 

vat prefixpages, initlength: integer; 

Initially, the output  program scans the prefix file (as stored on the 
disk) to define its length (as output  by the compiler) 
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procedure initprefix; 
vat c: char; 

pageno, charno, chars: integer; 
begin 

chars: = 0; 
for pageno:= 1 to prefixlength do 
begin 

readprefix(pageno, block); 
charno:= 0; 
repeat 

charno: = charno + 1; 
c: = block(.charno.);  
if c = nl then 

chars:= chars + 5; 
until (charno = pagelength) 

or (c = era); 
chars:= chars + charno; 

end; 
prefixpages: = 

(chars + pagelength - 1) div pagelength; 
initlength:= (chars -  1) rood pagelength; 

end 

The following procedure skips the prefix in front  of  a job  

procedure skipprefix; 
vat pageno: integer; 
begin 

for pageno:= 1 to prefixpages do 
readstream(block);  

blocklength := initlength; 
end 

The job text  begins on the last disk page of  the prefix. 
A job file is printed as follows 

procedure printfile; 
vat endfile: boolean; 
begin 

endfile:= false; 
repeat printpage(endfile) 
until endfile; 

end 
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A printed page consists of a blank line followed by at most  60 lines of 
text  

const firstline = 2; lastline = 61; 

procedure printpage(var endfile: boolean); 
vat lineno: integer; endpage: boolean; 
begin 

endpage:= false; 
for lineno := 1 to firstline - 1 do 

printchar(nl); 
lineno := firstline - 1; 
repeat 

lineno:= lineno + 1; 
printline(endpage, endfile); 

until  (lineno = lastline) 
or endpage; 

printchar(ff); 
end 

A printed line consists of a left margin of 23 blanks followed by at most  
86 characters and terminated by a control character (CR, NL, or FF) 

const firstchar = 24; lastchar = 109; 

var image: line; controlchar: set of  char; 

The line image is initialized as follows 

procedure initline; 
vat charno: integer; 
begin 

for charno:= 1 to firstchar - 1 do 
image( charno ):= ' ' "  

image(.lastchar + 1.) := nl; 
controlchar:= (.cr, nl, ff, em.); 

end 
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and output  as shown below 

procedure,printline(var endpage, endfile: boolean); 
vat charno: integer; c: char; 
begin 

charno:= f i rs tchar-  1; 
repeat 

ff blocklength = pagelength t h e n  
begin 

readstream(block); 
blocklength:= 0; 

end; 
blocklength:= blocklength + 1; 
c: = block(.blocklength.); 
charno:= charno + 1; 
image(.chamo.):= c; 

until (c in controlchar) 
or (charno = lastchar); 

if c = ff  then 
begin writeline(image); endpage:= true end 
else 
i f  c = em then 
begin endpage:= true; endfile:= true end 
else 

writeline(image); 
end 

The following procedure outputs a blank line terminated by a NL or 
FF character 

procedure printchar(c: char); 
begin 

image(, firstchar.): = c; 
writeline(image); 

end 

6.3 CONCURRENT PROGRAM 

Job stream is a Concurrent Pascal program consisting of 24 abstract data 
types 
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class fifo 
monitor  resource 
monitor  typeresource 
class typewriter 
class terminal 
class disk 
class diskfile 
class disktable 
monitor  diskcatalog 
process loaderprocess 
class datafile 
monitor  pagebuffer 
class inputstream 
class outputstream 
class progfile 
monitor  progtimer 
process clockprocess 
monitor  linebuffer 
process cardprocess 
process inputprocess 
process jobprocess 
process outputprocess 
process printerprocess 
process initial process 

Of these components,  14 are taken from the Solo system (Section 5.3). The 
other 10(marked  *) are new and will be described in the sequel. 

The job stream uses two line buffers (in core store) and two page buffers 
(on disk) as shown in Fig. 6.3. The following defines the function and imple- 
mentat ion of these buffers. 

Page Buffer 

A page buffer transmits data pages from one process to another. It is 
stored on disk as a data file. 

type page buffer = 
monitor(typeuse: typeresource; diskuse: resource; catalog: diskcatalog) 
A page buffer needs access to a teletype, a disk, and a catalog. Initially, 
the buffer is inaccessible (closed). 

procedure read(vat block: page) 
Receives a page from the buffer. It has no effect if the buffer is closed. 
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procedure write(block: page) 
Sends a page through the buffer. It has no effect  if the buffer is closed. 

procedure open(id: identifier) 
Makes a disk file with a given identifier accessible as a page buffer (if it is 
found in the disk catalog). It has no effect  if the buffer  already has been 
opened. 

IMPLEMENTATION: 

A page buffer is represented by two data structures: a data file on disk 
and a fifo that  keeps track of  the indices of  its first and last pages. The 
buffer delays receiving and sending processes as long as it is empty  and 
full, respectively. 

type  pagebuffer = 
monitor( typeuse:  typeresource;  diskuse: resource; 

catalog: diskcatalog); 

var opened: boolean; 
buffer:  datafile; next:  fifo; 
sender, receiver: queue; 

procedure entry read(var block: page); 
begin 

with buffer, next  do 
ff opened then 
begin 

if  empty  then delay(receiver); 
read(departure,  block); 
continue(sender);  

end; 
end; 

procedure entry write(vat block: page); 
begin 

with buffer, next  do 
if opened then 
begin 

ff full then delay(sender); 
write(arrival, block); 
continue(receiver); 

end; 
end; 
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procedure entry open(id: identifier); 
begin 

with buffer do 
if not  opened then 
begin 

open(id, opened); 
init next(length); 

end; 
end; 

begin 
init buffer(typeuse, diskuse, catalog); 
opened: = false; 

end; 

Input Stream 

An input stream enables a process to receive text  sequences character 
by character from another process. Each sequence is terminated by an EM 
character. 

type inputstrearn = class(buffer: pagebuffer) 
An input stream uses a page buffer to transmit one page of characters at a 
time from one process to another. Initially, the stream is inaccessible. 

procedure read(var c: char) 
Gets the next  character from the present sequence (if any). After an EM 
character the stream becomes inaccessible. Further reads will return EMs 
until the stream is made accessible for input of the next  sequence. 

procedure nex t  
Makes the stream accessible for input of the next  sequence. 

IMPLEMENTATION: 

type inputstream = 
class(buffer: pagebuffer); 

vat text:  page; count:  integer; 
more: boolean; 
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procedure  entry  read(vat c: char); 
begin 

if more then 
begin 

if count  = pagelength then 
begin 

buffer . read(text) ;  
count := 0; 

end; 
count := count  + 1; 
c: = text( .count . ) ;  
more:= (c < >  era); 

end else 
c: = em; 

end; 

procedure  entry  next;  
begin 

more:= true; 
buffer . read(text) ;  
count := 0; 

end; 

begin more:= false end; 

Output Stream 

An output  stream enables a process to  send tex t  sequences character 
by character to another  process. Each sequence is terminated by an EM 
character. 

type outputstream = class(buffer: pagebuffer) 
An ou tpu t  stream uses a page buffer  to transmit one page of  characters at 
a time from one process to another.  Initially, the stream is inaccessible. 

procedure write(c: char) 
Puts the next  character  into the present  sequence. After  an EM character  
the stream becomes inaccessible. Fur ther  writes have no effect  until the 
stream is made accessible again for ou tpu t  of  the next  sequence. 

procedure next 
Makes the stream accessible for  ou tpu t  of  the next  sequence. 
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IMPLEMENTATION: 

type outputstream = 
class(buffer: pagebuffer); 

var text:  page; count:  integer; 
more: boolean; 

procedure entry write(c: char); 
begin 

if more then 
begin 

count:  = count + 1; 
text( .count.)  := c; 
if (count = pagelength) or (c = em) then 
begin 

buffer, write (text); 
count:= 0; 
more:= (c < >  em) 

end; 
end; 

end; 

procedure entry next; 
begin more:= true; count:= 0 end; 

begin more:= false end; 

Line Buffer 

A line buffer has the same function as in the Solo system (Section 5.3), 
but is implemented differently in the job stream system. 

IMPLEMENTATION: 

The buffer is represented by an array of lines and a fifo that  keeps 
track of the indices of its first and last lines. 

type linebuffer = 
monitor  
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const  maxline = 20; 
type  lines = array (.1..maxline.) o f  line; 

vat buffer:  lines; next:  fifo; 
sender, receiver: queue; 

procedure entry read(var text:  line); 
begin 

with next  do 
begin 

if empty  then delay(receiver); 
text:  = buffer(.departure.  ); 
continue(sender);  

end; 
end; 

procedure entry  write(text:  line); 
begin 

with next  do 
begin 

if full then delay(sender); 
buffer(.arrival.) := text;  
continue(receiver); 

end; 
end; 

begin init next(maxline) end; 

Preemption 

A user job  is preempted if its compilation and execution time exceeds a 
certain limit. In the Solo system, which only serves a single user at a time, a 
job  is preempted simply by restarting the whole operating system (Sec- 
tion 5.3). 

The job stream system, however, is serving several users at the same 
time by output t ing one job  while another job  is being compiled and a third 
one is being input. So one must  take care that  preemption of  one job  does 
not  interrupt the input and ou tpu t  of  other jobs; otherwise, data stored 
temporarily in core store could be lost. Figure 6.4 shows how this is done. 

At the beginning of  a job  the job process calls a moni tor  (called a 
program timer) and defines its time limit. The job  process also calls the 
program timer before and after executing a compiler pass or user program. 
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PROGTIMER 

CLOCK JOB 
PROCESS PROCESS 

Fig. 6.4 Program preemption 

A clock process calls the program timer every second to check whether 
the job process is executing a program that  should be preempted. In that  
case, the program timer forces the program to terminate and return to the 
point where it was called by the job process. 

Program Timer 

A program timer enables a job process to limit the real time during 
which a user job is being compiled and executed. (Notice that  it limits the 
real time of the service phase and not  the processor time. This is accurate 
enough as long as the rest of the operating system activities consume a 
reasonably small and constant  fraction of processor time.) 

type progtimer = monitor 
Initially the job process is not  executing a preemptible program. 

procedure l imit(maxtime: integer) 
Defines the time limit of a job in seconds. 

procedure tick 
Assumes that  1 sec has passed and checks whether the job process is execut- 
ing a program that  should be preempted. 

procedure enterprog 
Marks the beginning of a preemptible program executed as part of the pres- 
ent job. 

procedure endprog 
Marks the end of a preemptible program executed as part of the present 
job. 
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IMPLEMENTATION: 

The identity of the job process is defined by the standard function 

attribute(caller) 

type progtimer = 
monitor 

vat who, timeleft: integer; running: boolean; 

procedure entry limit(maxtime: integer); 
begin 

who: = attribute(caller); 
timeleft: = maxtime; 

end; 

procedure entry tick; 
begin 

timeleft: = timeleft - 1; 
ff (timeleft <= 0) & running then 
begin 

stop(who, timelimit); 
running: = false; 

end; 
end; 

procedure entry enterprog; 
begin running:= true end; 

procedure entry endprog; 
begin running:-- false; start end; 

begin timeleft: = 0; running: = false end; 

The standard procedure 

stop(who, timelimit) 

causes the virtual machine to terminate the sequential program executed by 
the job process with the result timelimit. If stop is called while a sequential 
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program is executing an operating system routine then preemption is de- 
layed until the routine call has been completed.  

The standard procedure 

start 

prevents preemption of  the next  sequential program to be called by the 
job  process (until another s top operation is executed). 

These standard procedures are defined precisely in the Concurrent 
Pascal report  (Chapter 8). 

Clock Process 

A clock process calls a program timer every second to check whether a 
sequential program should be preempted.  

type clockprocess = process(timer: progtimer) 
A clock process must  have access to a program timer. 

IMPLEMENTATION: 

The standard procedure 

wait 

delays the clock process until the next  second signal is produced by the 
machine. 

type  clockprocess = 
process(timer: progtimer); 

begin 
cycle 

wait; timer.tick; 
end; 

end; 

Input Process 

An input process executes a sequential program job input which pro- 
duces data for a job process. 
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type inputprocess = 
process(typeuse: typeresource; disleuse: resource; 

catalog: diskcatalog; inbuffer: linebuffer; 
outbuffer:  pagebuffer); 

"program data space = " ÷  1000 
An input process needs access to a teletype, a disk, and a catalog. It is con- 
nected to a card reader by a line buffer and to a job process by a page 
buffer. 

It uses a data space of 1000 bytes for the job input program and a code 
space of 2000 bytes. 

IMPLEMENTATION: 

Initially, the process opens the job prefix file and calls the job input 
program. 

type inputprocess = 
process(typeuse: typeresource; diskuse: resource; 

catalog: diskcatalog; inbuffer: linebuffer; 
outbuffer: pagebuffer); 

"program data space = " + 1000 

vat operator: terminal; prefix: datafile; 

code: progfile "(small)"; 

program driver(store: progstore); 
entry prefixlength, readprefix, 

readline, writestream; 

function entry prefixlength: integer; 
begin prefixlength: = prefix.length end; 

procedure entry readprefix(pageno: integer; 
var block: page); 

begin prefix.read(pageno, block) end; 

procedure entry readline(var text: line); 
begin inbuffer.read(text) end; 

procedure entry writestream (vat block: page); 
begin outbuffer.write(block) end; 
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procedure initialize; 
var found: boolean; state: progstate; 
begin 

init operator( typeuse),  
prefix(typeuse, diskuse, catalog), 
code(typeuse,  diskuse, catalog); 

prefix.open(jobprefix,  found);  
code.open(jobinput ,  state); 
if state = ready then driver(code.store); 
operator.write( ' job input: (:10:) ' ,  

' terminated (: 10: )'); 
end; 

begin initialize end; 

Job Process 

A job process executes a sequential program job service which in turn 
compiles and executes user programs. 

type jo bprocess = 
process(typeuse: typeresource; diskuse: resource; 

catalog: diskcatalog; inbuffer, outbuffer: pagebuffer; 
timer: progtimer) ; 

"program data space = "" + 16000 
A job process needs access to a teletype, a disk, and a catalog. It is con- 
nected to an input and an ou tpu t  process by two page buffers. It uses a 
program timer to preempt  user jobs that exceed their time limit. 

It uses a data space of 16000 bytes and a code space of  20000 bytes 
for Sequential Pascal programs. 

IMPLEMENTATION: 

A user job is processed as follows: First, its input and ou tpu t  sequences 
are made accessible. (This delays the job process until input  data are avail- 
able.) Then the time limit of  the job is set to 60 sec and the job service pro- 
gram is called. 

The job service program compiles and executes the user program before 
returning to the job process. (If the user program fails to terminate the 
program timer stops it.) 

Finally, the job  process skips the rest of the job input  data (if any) and 
completes its ou tpu t  by  an EM character (unless that  has already been done). 
The job process is now ready to process the next  job. 
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Notice the use o f  dif ferent program declarations and prefixes to give 
different access rights to different sequential programs executed by the same 
process (in this case, the job service program, the compiler passes, and the 
user programs). 

Notice also that compiler passes and user programs are made preempti- 
ble by calling the program timer before and after their execution. The job 
service program, however, is not  preemptible since it must  be able to output  
a termination message to the user. 

type jobprocess = 
process(typeuse: typeresource; diskuse: resource; 

catalog: diskcatalog; inbuffer, outbuffer:  
pagebuffer; timer: progtimer); 

"program data space = " +  16000 

const maxfile = 2; 
type file = 1..maxfile; 

var instream: inputstream; outstream: outputstream; 

files: array (.file.) of  datafile; 

code: progfile "(large)"; 

digits, sign, numeric: set of  char; 
mininteger: integer; 

program pascal(store: progstore); 
entry read, write, writeint, writetext,  

open, close, get, put, length, 
runpass, runjob; 

program pass(vat param: arglist; store: progstore); 
entry read, write, open, close, get, put, length, 

mark, release; 

program user(store: progstore); 
entry read, write, readint, writeint, writetext;  

procedure ent ry  read(vat c: char); 
begin instream.read(c) end; 
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p r ocedu re  en t ry  wri te(c :  char) ;  
begin ou t s t r eam.wr i t e (c )  end;  

p rocedu re  en t ry  readin t (var  value: integer);  
var posit ive,  overf low:  boo lean ;  

c: char;  digit:  integer;  
begin 

with ins t ream do 
begin 

r epea t  read(c)  unt i l  c in numer ic ;  
if  c in sign t hen  
begin posit ive:  = (c = '+');  read (c) end 
else posit ive := t rue ;  
overf low:  = false; value: = O; 
while no t  over f low & (c in digits) do  
begin 

digit: = ord(c)  - ord( 'O') ;  
if  value < (minin teger  + digit) div 10 

t hen  overf low:  = t rue  
else value: = lO*value  - digit;  

read(c) ;  
end;  
while c in digits do  read(c) ;  
if  posi t ive t h e n  

if  value = min in teger  t hen  overf low:  = t rue  
else value: = - value;  

end;  
if over f low then  s top(a t t r ibu te(ca l le r ) ,  rangeerror) ;  

end;  
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procedure entry writeint(value, length: integer); 
var number:  array (.1..6.) of  char; 

digits, remainder, i: integer; 
begin 

with outstream do 
begin 

remainder:= value; digits:= O; 
repeat 

digits:= digits + 1; 
number(.digits. ) := 

chr(abs(remainder rood 10) + ord('O')); 
remainder: = remainder div 10; 

until remainder = O; 
for i:= 1 to length - digits - 1 do 

write( '  '); 
if  value < 0 then write( '- ' )  else write( '  '); 
for i: = digits downto  1 do 

write(number(J.)) ;  
end; 

end; 

procedure ent ry  writetext( text:  line); 
vat charno: integer; c: char; 
begin 

with outstream do 
begin 

charno: = 1; c := text(. 1.); 
while (c < >  '# ')  & (charno < linelength) do 
begin 

write(c); charno: = charno + 1; 
c: = text(.charno.);  

end; 
end; 

end; 

procedure ent ry  open(fileno: file; id: identifier; 
vat found: boolean); 

begin files(.fileno.).open(id, found) end; 

procedure entry close(fileno: file); 
begin files(.fileno.).close end; 

Chap. 6 
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procedure entry get(fileno: file; pageno: integer; 
vat block: page); 

begin files(.fileno.).read(pageno, block) end; 

procedure entry put(fileno: file; pageno: integer; 
vat block: page); 

begin files(.fileno.).write(pageno, block) end; 

function entry length(fileno: file): integer; 
begin length: = files(.fileno.).length end; 

procedure entry mark(vat top: integer); 
begin top: = attribute(heaptop) end; 

procedure entry release(top: integer); 
begin setheap(top) end; 

procedure entry runpass(id: identifier; vat param: arglist; 
vat line, result: univ integer); 

const terminated = O; 
vat state: progstate; heapaddr: integer; 
begin 

with code, timer do 
begin 

open(id, state); 
enterprog; 
heapaddr:= attribute(heaptop); 
pass(param, store); 
line:= attribute(progline); 
result: = attribute(progresult); 
if result <>  terminated then setheap(heapaddr); 
endprog; 
open(jobservice, state); 

end; 
end; 
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procedure entry runjob(var line, result: univ integer); 
vat state: progstate; heapaddr: integer; 
begin 

with code, timer do 
begin 

open(job, state); 
enterprog; 
heapaddr:= attribute(heaptop); 
user(store); 
line := attribute(progline); 
result:= attribute(progresult); 
setheap (heapaddr); 
endprog; 
open(jobservice, state); 

end; 
end; 

procedure nextjob; 
const maxtime = 60 "seconds"; 
vat state: progstate; heapaddr: integer; c: char; 
begin 

with code, timer do 
begin 

instream.next; outstream.next; 
limit(maxtime); 
open(jobservice, state); 
heapaddr: = attribute(heaptop); 
pascal(store); 
setheap(heapaddr); 
repeat instream.read(c) until c = em; 
with outstream do 
begin write(nl); write(em) end; 

end; 
end; 
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procedure initialize; 
vat f: file; 
begin 

init instream(inbuffer), outstream(outbuffer);  
for f:= 1 to maxfile do 

init files(.f.)(typeuse, diskuse, catalog); 
init code(typeuse, diskuse, catalog); 
digits:= (.'0', '1', '2', '3', '4', 

• '5' ,  '6' ,  '7' ,  '8' ,  '9 ' . ) ;  
sign:= (.'+', '- ' .); 
numeric:= digits or sign or (.em.); 
mininteger:= -32767 - 1; 

end; 

begin 
initialize; 
cycle nextjob end; 

end; 

Output Process 

An output  process executes a sequential program job output  that  con- 
sumes data for a job process. 

type outputprocess = 
process(typeuse: typeresource; diskuse: resource; 

catalog: diskcatalog; in buffer: pagebuffer; 
outbuffer: linebuffer); 

"program data space = " +1000 
An output  process needs access to a teletype, a disk, and a catalog. It is con- 

• nected to a job process by a page buffer and to a line printer by a line buffer. 
It uses a data space of  1000 bytes for the job output  program and a 

code space of 2000 bytes. 

IMPLEMENTATION: 

Initially, the process opens 
program. 

the job prefix file and calls the job output  
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type outputprocess = 
process(typeuse: typeresource; diskuse: resource; 

catalog: diskcatalog; inbuffer: pagebuffer; 
outbuffer: linebuffer); 

"program data space = "+1000 

vat operator: terminal; prefix: datafile; 

code: progfile "(small)"; 

program driver(store: progstore); 
entry prefixlength, readprefix, 

readstream, writeline; 

function entry prefixlength: integer; 
begin prefixlength:= prefix.length end; 

procedure entry readprefix(pageno: integer; 
vat block: page); 

begin prefix.read(pageno, block) end; 

procedure entry readstream(var block: page); 
begin inbuffer.read(block) end; 

procedure entry writeline(text: line); 
begin outbuffer.write(text) end; 

procedure initialize; 
var found: boolean; state: progstate; 
begin 

init operator(typeuse), 
prefix(typeuse, diskuse, catalog), 
code(typeuse, diskuse, catalog); 

prefix.open(jobprefix, found); 
code.open(joboutput, state); 
if state = ready then driver(code.store); 
operator, write( 'j ob output: (: 10: ) ', 

'terminated (: 10:)'); 
end; 

begin initialize end; 
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Initial Process 

The initial process checks whether the disk contains all the job stream 
files. It then initializes the other processes and monitors defining their 
access rights to one another. 

IMPLEMENTATION: 

v a r  diskuse: resource; 
typeuse: typeresource; 
operator: terminal; 
catalog: diskcatalog; 
watchdog: loaderprocess; 
inbuffer, outbuffer: pagebuffer; 
timer: progtimer; 
clock: clockprocess; 
cardbuffer, printerbuffer: linebuffer; 
reader: cardprocess; 
producer: inputprocess; 
master: jobprocess; 
consumer: outputprocess; 
writer: printerprocess; 

function exists(file: identifier; 
kind: filekind): boolean; 

vat attr: fileattr; found: boolean; 
begin 

catalog.lookup(file, attr, found); 
exists: = found & (attr.kind = kind); 

end; 
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begin 
init diskuse, typeuse, operator(typeuse), 

catalog(typeuse, diskuse, cataddr), 
watchdog(diskuse); 

if exists(jobprefix, ascii) & 
exlsts(jobinput, seqcode) & 
exists(jobservice, seqcode) & 
exlsts(joboutput, seqcode) & 
exists(job, seqcode) & 
exists(jobbufferl, scratch) & 
exists(jobbuffer2, scratch) & 
exists(tempi, scratch) & 
exists(temp2, scratch) then 

begin 
init inbuffer(typeuse, diskuse, catalog), 

outbuffer(typeuse, diskuse, catalog); 
inbuffer.open(jobbufferl); 
outbuffer.open(jobbuffer2); 
init timer, clock(timer), 

cardbuffer, printerbuffer, 
reader(typeuse, cardbuffer), 
producer(typeuse, diskuse, catalog, 

cardbuffer, inbuffer), 
master(typeuse, diskuse, catalog, 

inbuffer, outbuffer, timer), 
consumer(typeuse, diskuse, catalog, 

outbuffer, printerbuffer), 
writer(typeuse, printerbuffer); 

end else 
operator, write ('job stream: (: 10: ) ', 

'files missing(: 10:)'); 
end. 

Chap. 6 

6.4 FINAL REMARKS 

The job stream system consists of 1800 lines of program text 

Program Lines K Words 

job stream 1360 4 
job input 130 1 
job service 160 1 
job output 150 1 

1800 7 



Sec. 6.5 LIST OF JOB STREAM COMPONENTS 187 

700 lines of the job stream system were taken directly from the Solo system. 
So the total programming effort  was only 1100 lines. 

The job stream system requires 38 K words of core store for programs 
and data 

kernel 4 K words 
operating system 16 K words 
user program 18 K words 

core store 38 K words 

I designed, programmed, and tested the job stream system in 10 days. 
It was tested in the following steps 

(1) The job input, service, and output  programs were tested under 
the Solo system (using a slight modification of the interface routines). 

(2) The job stream program was derived from the Solo program (using 
page buffers in the core store) and tested by compiling small programs. 

(3) 
program. 

(4) 

(5) 

Job preemption was turned on and tested on an endless user 

Page buffers were moved from the core store to the disk. 

Line buffers were changed from a single to several line slots. 

In summary, the Solo and job stream systems have shown that  it is possible 
to design operating system components  that can be used in different operat- 
ing systems. Testing is, of course, simplified considerably when one oper- 
ating system is derived from another by gradual replacement of program 
components.  

6.5 LIST OF JOB STREAM COMPONENTS 

Arglist type, 81 
Attrindex type, 123 

Cardprocess, 136 
Clockprocess, 175 

Datafile class, 118 
Diskcatalog monitor, 117 
Disk class, 111 
Diskfile class, 113 
Disktable class, 116 

Fifo class, 102 
Fileattr type, 115 
Filekind type, 115 

Identifier type, 115 
Image type, 158 
Initial process, 185 
Inputprocess, 175 
Inputstream class, 169 

Jobinput prefix, 154 
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Jobinput program, 153 
Joboutput prefix, 162 
Joboutput program, 162 
Job prefix, 149 
Jobprocess, 177 
Jobservice prefix, 159 
Jobservice program, 158 

Linebuffer monitor, 171 
Line type, 149 
Loaderprocess, 139 

Outputprocess, 183 
Outputstream class, 170 

Pagebuffer monitor, 167 
Page type, 102 
Printerprocess, 138 
Progfile class, 121 
Progresult type, 87 
Progstate type, 121 
Progstore type, 121 
Progtimer monitor, 173 

Resource monitor, 103 

Terminal class, 108 
Typeresource monitor, 105 
Typewriter class, 106 



7 
A REAL-TIME SCHEDULER 

This chapter describes a simple real-time scheduler for process control 
applications in which a fixed number of concurrent tasks are carried out  
periodically with frequencies chosen by a human operator. 

The real-time scheduler is inspired by an existing process control system 
[Brinch Hansen, 1967]. It is written in Concurrent Pascal. 

The design of any nontrivial program begins with an a t tempt  to define 
the purpose of the program and its gross structure. It is then written as a 
sequence of program components which can be tested systematically, one 
at a time. This is a description of each of these development phases: design, 
programming, and testing. 

7.1 PURPOSE AND DESIGN 

A creative programmer will try to use a particular application as an 
inspiration to look for program structures that  can be used in a class of simi- 
lar applications. And that  is what we will try to do here. 
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A Process Control Application 

The application that inspired this concurrent program was a small 
process control system built by Peter Kraft and myself  in 1967 for an 
ammonia nitrate plant. 

The plant is operated manually under supervision of an RC4000 com- 
puter with 4 K words of core store (Fig. 7.1). The computer  uses an analog 
to digital converter to measure more than 500 temperatures, pressures, and 
flow rates. About  150 digital inputs register single pulses from kilowatt-hour 
meters and bag filling devices as well as the state of alarm contacts in the 
plant. A digital output  register controls a light panel that  shows the operator 
in which part of the plant alarm conditions exist. 

Regular alarm and data logging reports are printed on two typewriters. 
The operator uses a third typewriter to communicate with the computer.  
During normal operation, digital pulses are input every second and accumu- 
lated in a table. Analog flow values are measured every 5 min and accu- 
mulated in another table. 

The state of all alarm contacts is examined every 5 min also. At the 
same time analog values are scanned and checked against alarm limits. 

Every hour, a log report is printed as a snapshot of how the plant 
operates. Every 8 hours another report is printed showing the consump- 
tion of electricity and production of ammonia nitrate during this period. 
It also includes the total flow of materials, such as natural gas, steam, am- 
monia, and nitric acid. 

When a section of the plant is being started up after repair the operator 
may want some of these tasks carried out more frequently. So the com- 
puter system makes it possible to specify for each task when it should be 
started and how often it should be repeated. 
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Fig. 7.1 Process control application 
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Task Scheduling 

From this specific description of a single application we can now start 
looking for a more general characterization of the real-time scheduling 
required. 

We have a single computer  that must  perform a number of more or less 
independent  tasks, each having its own real-time requirements. The tasks are 
executed cyclically with periods chosen by an operator. This means that  
one task cannot make assumptions about  the relative speed of other tasks. 
So conceptually we must regard them as concurrent  processes coordinated 
by a real-time scheduler  (Fig. 7.2). 

Now the task processes will clearly be different in each application, but 
we can try to write a real-time scheduler that  can be used in many applica- 
tions of this kind. This scheduler should enable the operator to do three 
things 

(1) Tell the system what time it is 

t ime(16:27:18) 

in hours, minutes, and seconds. 

(2) Say when a task should be executed for the first time 

start(log, 18:35:00)  

and how often it should be repeated 

period(log, 1:00:00) 

OPERATOR CONSOLE 

REAL-TIME SCHEDULER 

TASK PROCESSES 

Fig. 7.2 Task scheduling 
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(3) Stop further execution of  a task 

stop(log) 

The scheduler must  know the names and real-time requirements of the 
tasks, but need not  know what they do. 

Program Structure 

Having extracted the essence of the problem, we must then break the 
real-time scheduler down into components that  are so small that  they can 
be programmed and tested separately. 

How does one invent program structure? I do it by drawing pictures 
of  it from different viewpoints over and over again until a simple and con- 
vincing pattern emerges. Perhaps, there are more systematic ways of invent- 
ing s t r u c t u r e -  I don ' t  know. But I do recognize a good program when I find 
one. 

A good program can be read like a book, from the beginning to the end 
without  turning pages back and forth looking elsewhere for an explanation 
of what is going on. Its parts are no more than a page long so they can be 
comprehended at a glance. And each part only interacts with a very small 
number of other parts. It can therefore be studied in isolation from the rest 
of the system. 

To discover a program structure that comes close to this ideal, I ask 
myself  three questions 

(1) Which activities must  take place simultaneously to handle this 
application? 

(2) What are the major data structures needed to solve the problem 
on a computer? 

(3) Can these data structures be split into smaller ones by introducing 
the known requirements one at a time? 

The real-time system must be able to do the following things at the 
same time 

keep track of the time 
talk to the operator 
execute tasks 

So we can start by recognizing three kinds of program components:  a c lock  
process ,  an o p e r a t o r  process ,  and some task processes  (Fig. 7.3). 



Sec. 7.1 PURPOSE AND DESIGN 193 
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Fig. 7.3 Concurrent processes 

Whenever a process uses a peripheral device or cooperates with another  
process (by exchanging data or timing signals) we need a data structure to 
control  this interaction. It is fairly easy to identify the following kinds of  
interactions in the real-time system 

(1) The operator  process needs access to a console to be able to input 
commands. 

(2) The operator  process needs access to a time schedule of  all tasks, 
so that  it can change it. The tasks must  use this table to await their turn. 
And the clock process must  examine it regularly (say, every second) to  
resume tasks that  are due. 

We can therefore  extend the picture with a console class and a time 
schedule moni tor  (Fig. 7.4). This kind of picture shows which data struc- 
tures can be used by each process. It is an access graph (Section 2.5). 

We must now try to find simpler aspects of the problems solved by 
these main data structures. Let  us take the operator 's  console first. At the 
lowest level of programming in Concurrent  Pascal this dev ice i s  seen as a 
combinat ion of a typewriter that  can input  and ou tpu t  one character at a 
t ime and a bell key used by the operator  when he needs the a t tent ion of 
the operator  process. To make the typewri ter  a little easier to use at higher 
levels of programming, we will add a terminal componen t  on top of the 
typewri ter  component .  It can ou tpu t  textstrings and integers as well as 
single characters (Fig. 7.5). 

So the operator  process waits for  the operator  to push the bell key, 

TIME SCHEDULE CONSOLE 

TASK CLOCK OPERATOR 
PROCESS P R O C E S S  PROCESS 

Fig. 7.4 Major data structures 
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Fig. 7.5 Console components 

inputs a command  from the terminal, executes it, and responds with a 
short  message on the terminal. It then waits for  the bell again and repeats 
the cycle. 

At this point  it seems useful to make it possible for  several processes 
to  share a single console. So we will add a resource moni tor  that  process- 
es must  call to get exclusive access to the console. Waiting processes will be 
served in their order  of requesting console access. (But this policy will 
be hidden inside the resource componen t  and will be easy to modify . )  

Figure 7.6 shows this arrangement that  gives each process the illusion of 
having its own private console. This is a useful programming technique 
for implementing virtual peripherals by means of  a single, shared device. 

Breaking the time schedule down into smaller parts is a little harder. 
First, we may notice that  task processes only need to know that  they will 
be asked to go through a single processing cycle every now and then. But 
there is no reason why they should worry  about  how often they are exe- 
cuted. (The operator  may indeed change that.)  

This insight makes it natural to introduce a simple task queue  in which 
a task process can await its turn until it is signalled by another  part  of the 
scheduler (Fig. 7.7). In implementing the task queue, we will assume that  
an a t tempt  to resume a task process before it has completed its last turn 
will have no effect. (But that  too  could be changed wi thout  influencing the 
rest of  the program.) What we are trying to do is to hide a small number  of  
design decisions within each program component .  

Somewhere in the system there is a counter  representing the present  
time. This counter  is incremented by one every second thanks to the clock 
process. The time schedule must  know what time it is when it decides to 
resume a task process. The task processes, however,  may also need to know 
what time it is and print  it on the various reports  produced by them. The 
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Fig. 7.7 Scheduler components 

TASK SET 

most  practical thing then is to separate a clock componen t  defining what 
t ime it is from the components  that  use it. These other  components  are: 
The operator  process that  initializes the clock, the clock process that  up- 
dates it, and the tasks which print  it on their reports. A t imetable  defines 
the start times and periods of  all tasks. 

Finally, we may realize that  although the operator  prefers to identify 
task processes by names, it may be more  convenient  elsewhere to  represent 
them by numbers that  can be used to look up the t imetable and the task 
queue. This means that  the operator  process needs a task set  to convert  
names to numbers. 

Let  me summarize what this system does: 
A task process is a cyclical process that  waits in the task queue  until 
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Fig. 7.8 Program structure 

it is resumed by a signal f rom the timetable. It then performs its task and 
waits again. (Although Fig. 7.7 only shows one task process there will be 
several of  them in practice. But they will all use the same task queue.) 

The clock process is a cyclical process that  waits for  1 sec, updates 
the clock, and examines the t imetable looking for tasks waiting in t h e  
queue to be resumed. 

The operator process is a cyclical process that  waits for  a bell key signal, 
inputs a command from the terminal, and executes it. The command either 
sets the clock or changes the time schedule of  a task. In the latter case, the 
operator  process looks up its name in the task set to see if it exists and 
what number  it has in the t imetable and task queue. 

This completes the rough definit ion of  program structure.  For  demon- 
stration purposes, a task process will just print  its name and the present  
t ime on the console each t ime it runs. A task therefore  needs access both  
to  the clock and the task set. 

If we put  all program components  and their access rights together  we get 
a rather  confusing picture (Fig. 7.8). Evidently one should no t  insist on 
seeing the whole t ruth in one picture. Pictures (like program components)  
are useful only if they show a small part  of  a hierarchical system. 
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7,2 PROGRAMMING 

So far we have only outlined the purpose Of the abstract data structures 
in a suggestive manner. We will now go through them one at  a time and de- 
fine first what  operations one can perform on each data structure and then 
program them in detail. 

Starting with the requirements of the application itself, we outlined a 
program structure from the top down (by first identifying the major data 
structures and then splitting them into minor ones). We will now work from 
the bot tom up to write an executable program for a computer (starting with 
those program components that  do not  depend on others). 

I nput /Output  Types 

The data types used in elementary input /output  operations define the 
identifiers of  peripheral devices, input /output  operations, and their results 
as well as the data types to be transferred (text lines). 

type iodevice = (typedevice); 

type iooperation = (input, output,  move, control); 

type ioresult = (complete, intervention, transmission, 
failure); 

type ioparam = record 
operation: iooperation; 
status: ioresult; 
arg: integer 

end; 

const bel = '(:7:) ' ;  nl = '(:10:) ' ;  

const linelength = 72; 
type line = array (.1..linelength.) of  char; 

Similar types are used in the Solo operat ingsystem (Chapter 5). The details 
of input /output  operations are explained in Chapters 4 and 8 but  are not  
essential for understanding the following. 
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Typewriter 

A typewriter can transfer a single character to or from a typewriter 
device. It does not  give the calling process exclusive access to the device. 

type typewriter = class 

procedure write(c: char) 
Writes a character on the typewriter. 

procedure read(var c: char) 
Reads a character from the typewriter. 

IMPLEMENTATION: 

type typewriter = 
class 

procedure entry write(c: char); 
var param: ioparam; x: char; 
begin 

x: = c; param.operation:= output;  
io(x, param, typedevice); 

end; 

procedure entry read(var c: char); 
vat param: ioparam; 
begin 

param.operation: = input; 
io(c, param, typedevice); 

end; 

begin end; 

Terminal 

A terminal can write characters, text  strings, and unsigned integers 
on a typewriter and read characters from it. It does not  give the calling 
process exclusive access to the device. 
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type terminal = class 

procedure write(c: char) 
Writes a character on the typewriter.  

procedure wri te rex t(tex t: line) 
Writes a text string (terminated by the character #) on the typewriter.  The 
terminating character is not  output.  

procedure writeint(int: univ integer) 
Writes an unsigned integer on the typewriter.  (The integer is of universal 
type  to make it possible during testing to ou tpu t  boolean values, false and 
true, as 0 and 1.) 

procedure read(vat c: char) 
Reads a character from the typewriter.  

IMPLEMENTATION: 

type  terminal = 
class 

var device: typewriter;  

procedure entry write(c: char); 
begin device.write(c) end; 

procedure entry wri tetext( text:  line); 
var i: integer; c: char; 
begin 

i:= 1; c: = text(.1.); 
w h i l e  c < >  '# '  d o  
begin 

device.write(c); 
i: = i + 1; 
c:= text(.i.); 

end; 
end; 
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procedure ent ry  writeint(int: univ integer); 
var digits: array (.1..6.) of  char; 

rem, length: integer; 
begin 

rem:= int; length: = 0; 
repeat 

length := length + 1; 
digits(.length.) := chr(rem rood 10 + ord('0'));  
rem:= rem div 10; 

until rem = 0; 
for length: = length downto 1 do 

device, write (digits(. length. ) ); 
end; 

procedure ent ry  read(vat c: char); 
begin device.read(c) end; 

begin init device end; 

Bell Key 

A bell key enables a process to wait until the operator types a BEL 
character on the typewriter.  

t ype  be l lkey  = class 

p rocedure  awai t  
Delays the calling process until the BEL character is pushed. 

IMPLEMENTATION: 

type bellkey = 
class 

var param: ioparam; 

procedure entry await; 
begin io(param, param, typedevice) end; 

begin param.operation: = control end; 



Fifo Queue 

I 

A fifo keeps track of the length and the head and tail indices of an array 
used as a first-in, first-out queue (but does not  contain the queue elements 
themselves). 

The fifo queue was also used in the Solo system (see Section 5.3). It 
is used to implement a resource scheduler. 

R esou rce 

A resource gives processes exclusive access to a computer  resource (but 
does not  perform any operations on the resource itself). 

The resource component  was taken from the Solo system (Section 5.3) 
and used with a somewhat larger number of processes 

const processcount = 10; 
type processindex = 1..processcount; 

processqueue = array (.processindex.) of  queue; 

Task Queue 

A task queue enables task processes to preempt themselves until re- 
sumed again. An a t tempt  to resume a task process when it is not  waiting 
in the task queue has no effect. 

type taskqueue = monitor 
Initially, the task queue is empty. 

procedure preempt 
Delays the calling process until it is resumed again. 

procedure resume(task: processindex ) 
Continues a given task process if it is waiting in the queue. 

IMPLEMENTATION: 

Processes are identified by unique integers 1, 2, 3 . . . .  assigned by the 
virtual machine. A standard function 

attribute(caller) 
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defines the index of the calling process. So task processes need not  be 
aware of their indices. 

const caller = 0; 

type taskqueue = 
monitor  

vat waiting: processqueue; 

procedure entry preempt; 
begin delay(waiting(.attribute(caller).)) end; 

procedure entry resume(task: processindex); 
begin continue(waiting(.task.)) end; 

begin end; 

Task Set 

A task set associates the names of task processes with their process 
indices. 

type taskset = monitor 
Initially, the task set is empty.  

procedure include(id: identifier; task: processindex) 
Includes a task with a given identifier and process index in the set. 

function member(id: identifier): boolean 
Defines whether the set includes a task with a given identifier. 

function task(id: identifier): processindex 
Defines the process index of a task with a given identifier. (Undefined if 
the task is not  in the set.) 

procedure me(var id: identifier) 
Defines the identifier of the calling process. (Undefined if that  process is 
not  in the set). 
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IMPLEMENTATION: 

The task set is represented by an array of  identifiers that  is looked up 
by means of the corresponding process indices. 

const  idlength = 12; 
type  identifier = array (.1..idlength.) of  char; 

type  taskset = 
moni tor  

vat table: array (.processindex.) of  identifier; 

procedure initialize; 
vat task: processindex; 
begin 

for task:= 1 to processcount  do 
table(.task.) := ' " 

end; 

function index(id: identifier): processindex; 
var i, j: processindex; 
begin 

i:= 1; j := processcount; 
whi le  i < j do  

if table(.i.) = id then j := i 
else i : - - i + 1 ;  

index := i; 
end; 

procedure entry include(id: identifier; task: processindex); 
begin table(.task.):= id end; 

function entry member(id: identifier): boolean; 
begin member:  = (table(.index(id).) = id) end; 

function entry task(id: identifier): processindex; 
begin task: = index(id) end; 

procedure entry me(var id: identifier); 
begin id := table(.attribute(caller).) end; 

begin initialize end; 
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Clock 

A clock keeps track of real-time. 

type clock -- moni tor  
Initially, the time is zero (midnight). 

function value: real 
Defines the present value of time (in seconds elapsed since midnight). 

procedure correct(time: real) 
Sets the time to a given value. 

procedure tick 
Increments time by 1 sec (modulo 24 hours). 

IMPLEMENTATION: 

Integers on the given machine are not  large enough to represent the 
number of seconds in 24 hours, so time is represented by real values. 

const onemin = 60.0 "seconds";  
onehour  = 3600.0 "seconds";  
halfday = 43200.0 "seconds";  
oneday = 86400.0 "seconds";  

type Clock = 
monitor  

vat seconds: real; 

funct ion entry value: real; 
begin value:= seconds end; 

procedure entry correct(time: real); 
begin seconds: = time end; 

procedure entry tick; 
begin 

seconds: = seconds + 1.0; 
if seconds >= oneday then 

seconds: = seconds - oneday; 
end; 

begin seconds:= 0.0 end; 
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Task Process 

A task process performs its task every time it is resumed by the real- 
time scheduler. 

For demonstration purposes, at most  three processes should be used. 
Each task process writes its name and the current time in a separate column 
on the operator's console when it runs. These task processes can be replaced 
by others in particular applications. 

type taskprocess = 
process( typeuse : resource; waiting: taskqueue; 

tasklist: taskset; watch: clock) 
A task process needs access to a typewriter resource, a task queue, a task 
set, and a clock. 

IMPLEMENTATION: 

type taskprocess = 
process(typeuse: resource; waiting: taskqueue; 

tasklist: taskset; watch: clock); 

vat operator: terminal; id: identifier; 

procedure writeid(id: identifier); 
vat i: integer; 
begin 

with tasklist, operator do 
begin 

for i:= 1 to (task(id) - 2)*24 do write(' '); 
for i: = 1 to idlength do write(id(.i.)); 
write(' '); write(bel); 

end; 
end; 
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procedure writetime(time: real); 
var hour, min, sec: integer; rem: real; 
begin 

hour:-- t runc(t ime/onehour) ;  
rem:= time - conv(hour) * onehour;  
min:= trunc(rem/onemin);  
sec:= t r u n c ( r e m -  conv(min) * onemin); 
with operator  do 
begin 

writeint(hour);  write(':  '); 
writeint(min); write(':  '); 
writeint(sec); write(nl); 

end; 
end; 

begin 
init operator;  tasklist.me(id); 
cycle 

waiting.preempt; 
typeuse.request;  
writeid(id); 
writetime(watch.value); 
typeuse.release; 

end; 
end; 

Timetable 

A timetable holds the start time and period of  all tasks. It also schedules 
the execution of all active tasks. The period of  a task cannot  exceed 12 
hours. An a t tempt  to start a task process before it has completed its last 
cycle has no effect. 

type timetable -- monitor(waiting: taskqueue) 
A timetable needs access to the task queue in which task processes are wait- 
ing to be resumed. Initially, all tasks are inactive. 

procedure start(task: processindex; time: real) 
Makes a task active and defines its start time. 

procedure period(task: processindex; time: real) 
Defines the period of a task. 
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procedure stop(task: processindex ) 
Makes a task inactive. 

procedure examine(time: real) 
Examines all active tasks and resumes them if the current time equals or 
exceeds their start times. When a task is resumed its start time is incre- 
mented by its period (modulo midnight). 

IMPLEMENTATION: 

type  taskschedule = record 
active: boolean; 
start, period: real 

end; 

type  timetable = 
monitor(waiting: taskqueue); 

vat table: array (.processindex.) of  taskschedule; 

procedure initialize; 
var task: processindex; 
begin 

for task:= 1 to processcount do 
table (.task.).active: = false; 

end; 

function reached(time, start: real): boolean; 
vat diff: real; 
begin 

diff: = time - start; 
if abs(diff) >= halfday 

then reached: = (diff < 0.0) 
else reached: = (diff >= 0.0); 

end; 

procedure entry start(task: processindex; time: real); 
begin 

with table(.task.) do 
begin active:= true; start:= time end; 

end; 
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procedure entry period ( task: processindex; time: real); 
begin table(.task.).period := time end; 

procedure entry stop(task: processindex); 
begin table(.task.).active:= false end; 

procedure entry examine(time: real); 
vat task: processindex; 
begin 

for task:= 1 to processcount  do 
with table(.task.) do 
if active then 

if reached(time, start) do 
begin 

waiting.resume(task); 
start:= start + period; 
if start > = oneday then 

start:= start - oneday; 
end; 

end; 

begin initialize end; 

Chap. 7 

Clock Process 

A clock process increments a clock every second and examines a time- 
table of  task processes waiting to be resumed. 

type clockprocess = 
process(watch: clock; schedule: timetable) 
A clock process needs access to a clock and a timetable. 

IMPLEMENTATION: 

The standard procedure 

wait 

delays the calling process for 1 sec. 

type  clockprocess = 
process(watch: clock; schedule: t imetable); 
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begin 
with watch, schedule do 
cycle wait; tick; examine(value) end; 

end; 

Operator Process 

An operator process executes commands input from a typewriter. The 
human operator must push the BEL key on the typewriter before typing 
a command. The commands are 

start(task, hour:min:sec) 
Defines the start time of a task and makes it active. 

period(task, hour:min:sec) 
Defines the period of a task. 

stop(task) 
Makes a task inactive. 

time(hour : min :sec ) 
Sets the current time. 

The arguments of these commands are of the following types 

task: identifier; hour: 0..23; min, sec: 0..59; 

type operatorprocess = 
process(typeuse: resource; tasklist: taskset; 

watch: clock; schedule: timetable) 
An operator process needs access to a typewriter resource, a task set, a 
clock, and a timetable. 

IMPLEMENTATION: 

type operatorprocess = 
process(typeuse: resource; tasklist: taskset; 

watch: clock; schedule: timetable); 

var operator: terminal; bell: bellkey; 
letters, digits: set of  char; 
ok: boolean; ch: char; command: identifier; 
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procedure help; 
begin 

if ok then 
with operator do 
begin 

write(nl); 
wri tetext( ' t ry  again ( : 10: )#'); 
writetext( '  
writetext( '  
writetext( '  
writetext( '  
ok: = false; 

end; 
end; 

start(task, hour:min:sec) ( :10:)# ') ;  
period(task, hour:min:sec) ( :10:)# ') ;  
stop(task) ( :10:)# ') ;  
t ime(hour:min:sec)  ( :10:)# ') ;  

procedure nextchar;  
begin 

if ok then 
repeat operator.read(ch) until ch < >  ' '; 

end; 

procedure skipchar(delim: char); 
begin 

if ch = delim then nextchar  else help; 
end; 

procedure readint(var int: integer); 
const maxint  = 32767; 
var digit: integer; 
begin 

int: = O; 
if not  (ch in digits) then  help else 
while (ch in digits) & ok do 
begin 

digit:= ord(ch) - ord('O'); 
if int > (maxint - digit) div 10 

then help 
else int:= 10 * int + digit; 

nextchar;  
end; 

end; 

Chap. 7 
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procedure readid(var id: identifier); 
vat length: integer; 
begin 

id := ,  ,. 
if not  (ch in letters) then help else 
begin 

length := O; 
while (ch in (letters or digits)) & 

(length < idlength) do 
begin 

length := length + 1; 
id(.length.) := ch; 
nextchar; 

end; 
end; 

end; 

procedure readtime(var time: real); 
vat hour, min, sec: integer; 
begin 

readint(hour); skipchar(': '); 
readint(min); skipchar (': '); 
readint(sec); 
if (hour > 23) or (min > 59) or (sec > 59) 

then help; 
if ok then time:= onehour*conv(hour) + 

onemin*conv(min) + conv(sec); 
end; 

procedure start; 
var id: identifier; time: real; 
begin 

skipchar('('); readid(id); 
skipchar(', '); readtime(time); 
skipchar(')'); 
if ok then 
with tasklist, schedule, operator do 
if member(id) then start(task(id), time) 

else writetext('  task unknown (:10:)#');  
end; 
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procedure period; 
vat id: identifier; time: real; 
begin 

skipchar('('); readid(id); 
skipchar(', '); readtime(time); 
skipchar(')'); 
if ok then 
with tasklist, schedule, operator do 
if member(id) then period(task(id), time) 

else writetext(' task unknown (: 10 :) #'); 
end; 

procedure stop; 
vat id: identifier; 
begin 

skipchar('('); readid(id); 
skipchar(')'); 
if ok then 
with tasklist, schedule, operator do 
if member(id) then stop(task(id)) 

else writetext(' task unknown (: 10:)#'); 
end; 

procedure correct; 
vat time: real; 
begin 

skipchar('('); readtime(time); 
skipchar(')'); 
if ok then watch.correct(time); 

end; 
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begin 
init  opera to r ,  bell; 
let ters:= (. 'a ' ,  'b ' ,  'c', 'd ' ,  'e', 'f ' , 'g', 'h ' ,  'i', 

'j', 'k ' ,  '1', 'm ' , ' n ' ,  'o ' ,  'p ' ,  'q ' ,  'r', 
's', ' t ' ,  'u ' ,  'v', 'w ' , ' x ' , ' y ' ,  'z', '_'.); 

digits:= (. '0 ' ,  '1 ' ,  '2 ' ,  '3 ' ,  '4 ' ,  
'5 ' ,  '6 ' ,  '7 ' ,  '8 ' ,  '9 ' .);  

wi th  typeuse ,  opera tor ,  bell do  
cycle 

await;  
reques t ;  
ok :=  t rue;  
wr i t e t ex t ( ' t ype  c o m m a n d  (: 7: ) (: 10: ) # ' ) ;  
nex tchar ;  
r e a d i d ( c o m m a n d ) ;  
if c o m m a n d  = 's tart  
if c o m m a n d  = 'per iod  
if c o m m a n d  = ' s top 
if c o m m a n d  = ' t ime 

wri te(nl) ;  
release; 

end ;  
end;  

' t h e n  start  else 
' t h e n  per iod  else 
' t h e n  s top  else 
' t h e n  correc t  

else help;  

Initial Process 

The initial process initializes all o the r  processes and  m o n i t o r s  and  
defines  their  access rights to  one  another .  

Fo r  d e m o n s t r a t i o n  purposes ,  th ree  task processes (called scan, flow, 
and  log) are used.  

I M P L E M E N T A T I O N :  

vat  typeuse :  resource;  wait ing:  t a skqueue ;  
tasklist:  taskset ;  watch :  c lock;  
scan, f low, log: taskprocess ;  
schedule:  t imetab le ;  
c lockpulse :  c lockprocess ;  
opera to r :  opera torprocess ;  



214 A REAL-TIME SCHEDULER Chap. 7 

De,J1 
init typeuse,  waiting, tasklist, watch; 
with tasklist do 
begin 

include('scan ', 2); 
init scan(typeuse, waiting, tasklist, watch); 
include( 'f low ', 3); 
init f low(typeuse,  waiting, tasklist, watch); 
include('log ', 4); 
init log(typeuse, waiting, tasklist, watch); 

end; 
init schedule(waiting), 

clockpulse(watch, schedule), 
operator( typeuse,  tasklist, watch, schedule); 

end. 

7.3 TESTING 

In my experience it is not  difficult to make a large program very reliable 
by testing it. But you  must  know before writing the program how you  
intend to test it. Otherwise, there is no guarantee that  the structure of the 
program will make stepwise testing possible and easy. 

The least one can do is to make sure that  all statements of  a program 
are executed at least once. In addition, one can use insight into the nature 
of  the problem to select certain extreme test cases. 

Since a program may be modified later one should be able to repeat  test 
cases to see if the rest of  it still works. So test cases must  be well document-  
ed and reproducible. 

If a program is writ ten in an abstract language it should be possible also 
to understand its behavior during testing in machine-independent terms. 

This at t i tude to program testing clearly rules out  spontaneous key- 
board artistry and octal dumping. It also makes a special "debugging" 
program completely unnecessary. During 12 years of  programming in indus- 
try and universities I have never used these traditional techniques for testing 
compilers and operating systems. 

Systematic techniques for testing compilers and system kernels are 
described in Naur [1963] and Brinch Hansen [1973a] .  The following 
describes a simple method  for testing an operating system consisting of  a 
hierarchy of abstract data types (classes, monitors,  and processes). The 
real-time scheduler is used as an example. It was tested from the bo t tom up 
by adding one component  at a time and replacing the initial process by a 
test process that  calls the top component  and prints test results. The same 
method  was used to test the Solo operating system. 
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During testing the Concurrent Pascal compiler checks that  new (un- 
tested) components  do not  make old (tested) components  fail. The con- 
trolled access to existing components  makes the source of  most  programming 
errors obvious. 

The following is a list of all test cases used for the real-time scheduler 
and of  the ou tpu t  produced by them. 

Typewriter Test 

The typewri ter  is tested by an initial process that  reads characters and 
writes them back. 

vat device: typewriter;  c: char; 
begin 

init device; 
with device do 
cycle read(c); write(c) end; 

end. 

TEST OUTPUT ~. 

aabbcc ... 

Terminal Test 

The terminal is tested by an initial process that outputs  a text  string, 
copies a character, and writes the smallest and largest unsigned integers. 

vat operator:  terminal; c: char; 
begin 

init operator;  
with operator  do 
begin 

wri te text ( ' type  a character # ' ) ;  
read(c); write(c); write(nl); 
writeint(O); write(nl); 
writeint(32767);  write(nl); 

end; 
end. 
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TEST OUTPUT: 

type  a character xx 
0 
32767 

Bell Key Test 

The bell key is tested by a cyclical process that  prints a message every 
time the BEL key is pushed on the typewriter.  

var operator:  terminal; bell: bellkey; 
begin 

init operator,  bell; 
with operator,  bell do 
cycle await; writetext  ('here i am (: 10 :) # ' )  end; 

end. 

TEST OUTPUT: 

here i am 
here i am 

Fifo Queue Test 

A fifo queue with a limit of  two elements is tested by a cyclical process 
that  fills the queue with arrivals and empties it again by departures. After 
each operation three integers are printed. They define the queue index of 
the arrival (or departure) and specify whether  the queue is empty  or full. 
(The latter two are boolean values represented by false = 0 and true = 1.) 

vat next: fifo; operator:  terminal; 
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procedure writestate(index: integer); 
begin 

with next, operator do 
begin 

writeint(index); write('  '); 
writeint(empty);  write('  '); 
writeint(full); write(nl); 

end; 
end; 

begin 
init next(2), operator; 
writestate(0); 
with next, operator do 
cycle 

writestate(arrival); 
writestate(arrival); 
writestate(departure ); 
writestate(departure); 

end; 
end. 

TEST OUTPUT: 

Queue index Empty  Full 

0 1 0 
1 0 0 
2 0 1 
1 0 0 
2 1 0 
. . .  

Resource Test 

An initial process requests a resource, writes a message, and releases it 
again. This tests the case in which the resource is free when requested and 
becomes free again upon release. 

Afterwards three cyclical processes a, b, and c compete for the resource. 
This tests the case in which the resource is busy when requested and be- 
comes busy again upon release. 
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type userprocess = 
process(me: char; typeuse: resource); 

vat operator: terminal; 

begin 
init operator; 
with typeuse, operator do 
cycle 

request; 
write(me); write(nl); 
release; 
wait; 

end; 
end; 

vat typeuse: resource; operator: terminal; 
user: userprocess; 

begin 
init typeuse, operator; 
with typeuse, operator do 
begin 

request; 
writetext( 'ready (: 10: ) #'); 
release; 

end; 
init user('a', typeuse), 

user('b', typeuse), user('c', typeuse); 
end. 

TEST OUTPUT: 

ready 
• a 

L C 

Task Queue Test 

The task queue is tested by means of three task processes a, b, and c, 
scheduled alternately in alphabetic and reverse order by an initial process. 
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type userprocess = 
process(me: char; typeuse: resource; 

waiting: taskqueue); 

vat operator: terminal; 

begin 
init operator; 
with typeuse, waiting, operator do 
cycle 

preempt; 
request; write(me); write(nl); release; 

end; 
end; 

vat typeuse: resource; waiting: taskqueue; 
user: userprocess; task: processindex; 

begin 
init typeuse, waiting, 

user('a', typeuse, waiting), 
user('b', typeuse, waiting), 
user('c', typeuse, waiting); 

with waiting do 
cycle 

for task:= 2 to 4 do 
begin wait; resume(task) end; 
for task: = 4 downto 2 do 
begin wait; resume(task) end; 

end; 
end. 

TEST OUTPUT: 

a 

b 
c 

c 

b 
a 

• • • 
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Task Set Test 

A task set is tested by an initial process that  enters three process names 
in the set. It prints for each name whether  it is in the set before and after 
its inclusion. It also prints its task index. Finally, the initial process tests 
whether  it can retrieve its own name from the set. 

var operator: terminal; tasklist: taskset; 
id: identifier; 

procedure test(id: identifier; who: processindex); 
begin 

with operator,  tasklist do 
begin 

w ri teint(member(id));  write('  '); 
include(id, who); 
writeint(member(id));  write( '  '); 
writeint(task(id)); write(nl); 

end; 
end; 

begin 
init operator, tasklist; 
test( 'initial ', 1); 
test( 'scan ', 2); 
test( ' f low ', 3); 
with operator, tasklist do 
begin 

me(id); 
if id = 'initial ' 

then writetext( 'ok(:  1 O: )#') 
else writetext( ' t rouble (: 10:)#') ;  

end; 
end. 

TEST OUTPUT: 

Member before 

0 
0 
0 
ok 

Mere ber after 

1 
1 
1 

Task index 

1 
2 
3 
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Clock Test 

The clock is tested by an initial process that prints its initial value, sets it 
to 1 min before midnight, and makes it tick for 2 min. (This is also a test of  
the procedure writetime used by  a task process.) 

vat operator:  terminal; watch: clock; sec: integer; 

procedure writetime(time: real); 
vat hour, min, sec: integer; rem: real; 
begin 

hour: = t runc(t ime/onehour);  
rem:= time - cony(hour) * onehour;  
min: = trunc(rem/onemin);  
sec: = trunc(rem - conv(min) * onemin); 
with operator  do 
begin 

writeint(hour); write( '  :'); 
writeint(min); write(':  '); 
writeint(sec); write(nl); 

end; 
end; 

begin 
init operator,  watch; 
with watch do 
begin 

writetime(value); 
correct(onehour*23.0 + onemin*59.0 + 0.0); 
writetime(value); 
for sec: = 1 to 120 do 
begin tick; writetime(value) end; 

end; 
end. 
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TEST OUTPUT: 
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0:0:0 
23:59:0 
23:59:1 
. , .  

23:59:59 
0:0:0 
0:0:1 
. . .  

0:0:59 
0:1:0 

Task Process Test 

A task process is tested by an initial process that resumes the task every 
second. 

var bell: bellkey; typeuse: resource; 
waiting: taskqueue; tasklist: taskset; 
watch: clock; task: taskprocess; 

begin 
init bell, typeuse, waiting, tasklist, watch; 
tasklist.include('task ', 2); 
init task(typeuse, watch, waiting, tasklist); 
with watch, waiting, bell do 
cycle await; tick; resume(2) end; 

end. 

TEST OUTPUT: 

task 
task 
task 
° . ° 

0:0:1 
0:0:2 
0:0:3 
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Timetable and Clock Process Test 

The timetable and clock process are tested by means of three task 
processes a, b, and c, which start after 10, 15, and 20 sec and run every 5, 
9, and 13 sec. Process a stops after 25, b after 30, and c after 35 sec. 

vat typeuse: resource waiting: taskqueue; 
tasklist: taskset; watch: clock; 
a, b, c: taskprocess; schedule: timetable; 
clockpulse: clockprocess; 

begin 
init typeuse, waiting, tasklist, watch, 

schedule(waiting); 
with tasklist do 
begin 

include('a 2); 
include('b 3); 
include('c 4); 
init a(typeuse, watch, waiting, tasklist), 

b(typeuse, watch, waiting, tasklist), 
c (typeuse, watch, waiting, tasklist), 
clockpulse(watch, schedule); 

end; 
with watch, schedule do 
begin 

start(2, 10.0); period(2, 5.0); 
start(3, 15.0); period(3, 9.0); 
start(4, 20.0); period(4, 13.0); 
while value < 25.0 do wait; stop(2); 
while value < 30.0 do wait; stop(3); 
while value < 35.0 do wait; stop(4); 

end; 
end. 
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TEST OUTPUT: 

a 0:0:10 
b 0:0:15 
a 0:0:15 
c 0:0,'.20 
a 0:0:20 
b 0:0:24 
a 0:0:25 
c 0:0:33 

Operator Process Test 

The operator process is tested by giving commands to the complete 
system. These commands contain all possible syntactic and semantic errors. 
Finally, the system is tested under normal operation. 
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type the following commands: 

blah 
time 
time( 
time(zero 
time(23 
time(23:one 
time(23:59 
time(23:59 :two 
time(23:59:59 
time(24: 59: 59) 
time(23:60:59) 
time( 23: 59: 60) 
time(123456789) 
stop 
stop( 
stop(scan 
stop(thisistoomuch 
stop(alb2c3d4) 
start 
start( 
start(scan 
start(scan, 
start(scan, 23:59: 59 
start(what, 23:59:59) 
... similar commands for period ... 
time(23: 58: 00) 
start(scan, 23:59:50) 
period(scan, 0:0:1) 
start(flow, 0:0:5) 
period(flow, 0:0: 5) 
start(log, 0:1:0) 
period(log, 0: 0:1 O) 
... wait a few minutes ... 
stop(scan) 
stop(flow) 
stop(log) 

225 
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TEST OUTPUT: 

A command error makes the operator  process print  the message 

t ry  again 
start(task, hour:min:sec)  
period(task, hour:min:sec)  
stop(task) 
t ime(hour:min:  sec) 

Under normal operation,  a task process prints its name and the t ime 
each time it runs, for example 

scan 16:20:38  

7.4 FINAL REMARKS 

The real-time scheduler and its test cases were writ ten by me in 3 days. 
It t ook  3 hours of  machine time to test it systematically. Two initial com- 
pilations revealed 12 errors. After  that  3 more  errors were found in 21 test 
runs (plus 6 errors in the test cases). Writing this description took  another  
couple of  days. So the whole program was developed in less than a week. 
The compiled program is about  4 K words long. 

The original real-time scheduler for  the ammonia  nitrate plant was 
writ ten in assembly language. It was only half as long, but  took  half a year 
to make. 

It is interesting to compare the following figures for  the Concurrent  
Pascal program 

program 400 lines 
test cases 200 lines 
manual 600 lines 

The test cases are half as long as the program, but  for tunate ly  they are 
trivial to write down. 

It is more significant that  the description of the program is longer than 
the program itself. I have come to regard this as normal and would like to 
make the following suggestion to professional programmers:  One way to 
improve the quality o f  programs drastically is to take the view that the main 
purpose o f  a programming project is to write a highly readable manual 
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describing a program. The program itself is merely a useful byproduct  o f  
this effort. 

7.5 LIST OF REAL-TIME COMPONENTS 

Bellkey class, 200 
Bellkey test, 216 

Clock monitor, 204 
Clockprocess, 208 
Clockprocess test, 223 
Clock test, 221 

Operatorprocess test, 224 

Processindex type, 201 
Processqueue type, 201 

Resource monitor, 103 
Resource test, 217 

Fifo class, 102 
Fifo test, 216 

Identifier type, 203 
Initial process, 213 
Iodevice type, 197 
Iooperation type, 197 
Ioparam type, 197 
Ioresult type, 197 

Line type, 197 

Operatorprocess, 209 

Taskprocess, 205 
Taskprocess test, 222 
Taskqueue monitor, 201 
Taskqueue test, 218 
Taskset monitor, 202 
Taskset test, 220 
Terminal class, 198 
Terminal test, 215 
Timetable monitor, 206 
Timetable test, 223 
Typewriter class, 198 
Typewriter test, 215 
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8 
CONCURRENT PASCAL REPORT 

8.1 INTRODUCTION 

This report  defines Concurrent Pascal--an abstract programming lan- 
guage for structured programming of  computer  operating systems. It extends 
the sequential programming language Pascal with concurrent processes, 
monitors, and classes. 

The central part of this report  is a section on data types. It is based on 
the assumption that data and operations on them are inseparable aspects 
of computing that should not  be dealt with separately. For each data type  I 
define the constants that  represent its values and the operators and state- 
ments that apply to these values. 

Concurrent Pascal has been implemented for the PDP 11/45 computer.  
Section 8.15 defines the additional restrictions and extensions of this imple- 
mentation. 

Chapters 3-7 contain examples of the language constructs of Concurrent 
Pascal. 

231 
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8.2 S Y N T A X  G R A P H S  

The language syntax is defined by means of  syntax graphs of  the form 

while statement 

--'-'l='-- WH I LE ~ ex p r ' ~ - Ib ' - -  D 0 -'---lID- statem en t - ' -~1~ ' -  

A syntax graph defines the name and syntax of  a language construct. Basic 
s y m b o l s  are represented by capitals and special characters, for example 

W H I L E  D O  + ; 

Construc ts  defined by other graphs are represented by their names written 
in small letters, for example 

Correct sequences  of basic 
a r r o w s .  

expr s ta tement  

symbols and constructs are represented by 

8.3 CHARACTER SET 

Concurrent programs are written in a subset  of the ASCII character set 

character 

graphic character 

~ control character 

graphic character 

special character 

letter 

digit 

space 

+ 

:1 



Sec. 8.4 BASIC SYMBOLS 233 

A graphic character is a printable character. 
The special characters are 

v , ,  # $ % & , ( ) * + 

, - / : ; < = > ? @ 

The letters are 

A B C D E F G 
L M N O P Q R 
W X Y Z 

The digits are 

H I J K 
S T U V 

0 1 2 3 4 5 6 7 8 9 

control character 

-..---.1~--(: ~ digits ~ :)-~!~,- 

A control character is an unprintable character. It is represented by an 
integer constant  called the ordinal value of the character (Section 8.16). The 
ordinal value must  be in the range 0..127. 

digits 

~ digit I = 

8 . 4  B A S I C  S Y M B O L S  

A program consists of  symbols and separators. 

symbol 

I ~ special symbol ~ 
i ~ word symbol 

identifier I 
I = constant - - I  
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The special symbols are 

+ - * I & = < >  < > < =  > =  
( ) ( .  . )  := , ; : , . .  

They have fixed meanings (except within string constants and comments).  
The word symbols are 

ARRAY BEGIN CASE CLASS CONST 
CYCLE DIV DO DOWNTO ELSE 
END ENTRY FOR FUNCTION IF 
IN INIT MOD MONITOR NOT 
OF OR PROCEDURE PROCESS PROGRAM 
RECORD REPEAT SET THEN TO 
TYPE UNIV UNTIL VAR WHILE 
WITH 

They have fixed meanings (except within string constants and comments).  
Word symbols cannot be used as identifiers. 

identifier 

.~,l~.--letter 

k - - l e t t e r  ~ 

digit 

An identifier is introduced by a programmer as the name of  a constant, 
type, variable, or routine. 

identifiers 

identifier 

Two constants, identifiers, or word symbols must be separated by at 
least one separator or special symbol. There may be an arbitrary number of 
separators between two symbols, but separators may not  occur within 
symbols. 

separator 

space 

I ~ new line ~ ' t  
1~ -~ , - - , , - ~ -  comment ~ ,, 
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A c o m m e n t  is a n y  sequence  of  graphic  charac te rs  ( excep t  ")  enc losed  
in quotes .  I t  has no  e f fec t  o n  the  e x e c u t i o n  of  a p rog ram.  

8.5 BLOCKS 

The basic p r o g r a m  uni t  is a block.  

block 

declarations compound statement 

I t  consists  o f  dec la ra t ions  o f  c o m p u t a t i o n a l  objec ts  and  a c o m p o u n d  state-  
m e n t  t h a t  opera tes  on  them.  

declarations 

I const definitions ~ I ~ var declarations 

type definitions ~ I 

'~ routines 

A declaration def ines  a cons t an t ,  type ,  variable,  or  rou t ine  and  intro-  
duces an ident i f ie r  as its name.  

compound statement 

~-ID,-- B EG I N '~ statement ~ END 

A c o m p o u n d  s t a t e m e n t  defines  a sequence  of  s t a t e m e n t s  to  be  exe- 
cu t ed  one  at  a t ime  f r o m  lef t  to  right.  

8.6 CONSTANTS 

A cons tan t  represen ts  a value t ha t  can be used as an o p e r a n d  in an ex- 
pression.  

const definitions 

~ identifier ~ = ~ constant ~ ; - - 7  
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A constant definition in t roduces  an ident i f ier  as the  name of  a cons tan t .  

constant 

identifier 

I = enumeration constant ~ +  

I ~ real constant 

I ~ string constant 

8.7 TYPES 

A data  type defines a set  of  values which m a y  be assumed by  a variable 
or  an expression.  

type definitions 

TYPE ~ identifier ~ = ~ type 

A type definition in t roduces  an ident i f ier  as the  name  o f  a data  type .  
A da ta  t ype  c a n n o t  re fe r  to  its own  t y p e  identif ier .  

type 

identifier 

I ~ enumeration type I 
REAL 

I ~ array type 
record type 

set type 
system type 

QUEUE 

r 

E n u m e r a t i o n  types ,  reals, and  queues  can only  be ope ra t ed  u p o n  as a 
whole.  T h e y  are simple types. 

Arrays,  records,  sets, and sys tem types  are de f ined  in te rms of  o the r  
types.  T h e y  are structured types conta in ing  component types. 

A data  t ype  tha t  ne i ther  conta ins  sys tem types  n o r  queues is a passive 
type. All o the r  types  are active types. 

An opera t ion  can on ly  be  p e r f o r m e d  on  two  operands  if the i r  da ta  
types  are compatible (in the  sense de f ined  in Sec t ion  8.9).  
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8.7.1 Enumeration Types 

An enumeration type consists of a finite, ordered set of values. 

enumeration type 

CHAR 

INTEGER I 

' ~  ( ~ identifiers ~ ) ~ 1  

I constant ~ .. ~ constant 

r 

The types char, boolean, and integer are standard enumeration types. 
A nonstandard enumeration type is defined by listing the identifiers 

that  denote its values in increasing order. 
An enumeration type can also be defined as a subrange of another 

enumeration type by specifying its min and max values (separated by a 
double period). The min value must not  exceed the max value, and they 
must be compatible enumeration constants (Section 8.9). 

enumeration constant 

identifier 

I ~ char constant ~ 
I -[ i ~ boolean constant 

integer constant 

The basic operators for enumerations are 

:= (assignment) 
< (less) 
= (equal) 
> (greater) 
<= (less or equal) 
< >  (not equal) 
>= (greater or equal) 

The result of a relation (such as <)  is a boolean value. 
An enumeration value can be used to select one of several statements 

for execution 

case  statement 

CASE ---.ll,- expr ~ OF ~ labeled statements END 
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A case s t a t e m e n t  defines an enumerat ion expression and a set of  state- 
ments. Each s ta tement  is labeled by one or more constants of the same 
type  as the expression. A case s ta tement  executes the s ta tement  which is 
labeled with the current  value of  the expression. (If no such label exists, 
the effect  is unknown.)  

labeled statements 

~ enumeration constant I : .~ statement 

The case expression and the labels must  be of  compatible enumerat ion 
types, and the labels must  be unique. 

The following standard func t ions  apply to enumerations 

succ(x) The result is the successor value of  x (if it exists). 

pred(x) The result is the predecessor value of  x (if it exists). 

An enumerat ion type  can be used to execute  a s ta tement  repeatedly 
for  all the enumerat ion values 

for statement 

FOR '~ identif ier I~ : = ~  expr ~ TO 

I statement ~ DO ~ expr 

A for s t a t emen t  consists of  an identifier of  a control  variable, two ex- 
pressions defining a subrange, and a s ta tement  to be executed repeatedly 
for successive values in the subrange. 

The control  variable can either be incremented from its min value to 
its max  value or be decremented from its max  value d o w n t o  its min value. If 
the min value is greater than the max value, the s ta tement  is no t  executed.  
The value of  the control  variable is undefined after  complet ion of the for 
statement.  

The control  variable and the expressions must  be of  compatible enumer- 
ation types. The control  variable may no t  be a constant  parameter,  a record 
field, a funct ion identifier, or a variable entry referenced by selection (Sec- 
tions 8.7.4, 8.8.2, and 8.11). The repeated s ta tement  may no t  change the 
value of  the control  variable. 



Sec. 8.7 TYPES 239 

8.7.1.1 Characters 

The type char is a standard enumeration type. Its values are the set of 
ASCII  characters represented by char constants 

char constant 

' ~ character ..~ ' 

The following standard function applies to characters 

ord(x) The result (of type integer) is the ordinal value of  the 
character x. 

The ordering of characters is defined by their ordinal values (Section 8.16). 

8.7.1.2 Booleans 

The type boolean is a standard enumerat ion type.  Its values are repre- 
sented by boolean constants 

boolean constant 

I FALSE----C-- 
TRUE 

where false < true. 
The fo l lowing operators are defined for booleans 

& (and) 
o r  

not  

The result is a boolean value. 
A boolean value can be used to select one of two statements for execu- 

tion. It can also be used to repeat the execut ion of a s ta tement  while a 
condit ion is true (or until it becomes true). 

if statement 

IF ~ expr ~ THEN ~ statement i ~ ELSE ~- statement T 

An if statement defines a boolean expression and two statements. If 
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the expression is true then the first s tatement  is executed, else the second 
statement is executed. The second statement may be omit ted in which case 
it has no effect. 

The expression value must be a boolean. 

while statement 

WHI LE ~ expr ~ DO ~ statement 

A while statement defines a boolean expression and a statement. If the 
expression is false the statement is not  executed; otherwise, it is executed 
repeatedly until the expression becomes false. 

The expression value must  be a boolean. 

repeat statement 

• ~iD,.--REPEAT ~ statement ~ UNTIL-.-..--Im,..-expr 

,f ; _  I 

A repeat statement defines a sequence of statements and a boolean 
expression. The statements are executed at least once. If the expression is 
false, they are executed repeatedly until it becomes true. 

The expression value must be a boolean. 

8.7.1.3 Integers 

The type integer is a standard enumeration type. Its values are a finite 
set of successive, whole numbers represented by integer constants 

integer constant 

digits 

The following operators are defined for integers 

+ (plus sign or add) 
- (minus sign or subtract) 
* (multiply) 
div (divide) 
rood (modulo) 

The result is an integer value. 
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The following standard functions apply to integers 

abs(x) The result (of type  integer) is the 
absolute value o f  the integer x. 

chr(x) The result (of  type  char) is the charac- 
ter with the ordinal value x. 

conv(x) The result is the real value correspond- 
ing to the integer x. 

8.7.2 Reals 

The standard type  real consists of  a finite subset  of  the real numbers 
represented by real constants 

real constant 

• ~-lP-digits- I~..,~-IP-- digits i '~''~ E _ _ ~  

The letter e represents the scale factor 10. 
The following operators are defined for reals 

:= (assignment) 
< (less) 
= (equal) 
> (greater) 
<= (less or equal) 
< >  (not equal) 
>= (greater or equal) 
+ (plus sign or add) 

- (minus sign or subtract) 
* (multiply) 
/ (divide) 

The result of  a relation (such as <)  is a boolean value. The result of an 
arithmetic operation (such as +) is a real value. 

The following standard functions apply to reals 
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abs(x) 

trunc(x) 

The result (of type real) is the abso- 
lute value of the real x. 

The result is the truncated integer 
value corresponding to the real x. 

8.7.3 Array Types 

An array consists of a fixed number of components of the same type. 
An array component  is selected by one or more index expressions. 

array type 

• --.ll.'- A R RAY --I~-- ( . ~ enumeration type 

- I 
. ) ~ OF ~ type 

The index types must be enumeration types. The componen t  type can 
be any type. The number of index types is called the dimension of the array. 

array component 

variable ~ {. ~ ~-- expr, ~' I ~ ') "~ 

A componen t  of an n-dimensional array variable is selected by means 
of its variable identifier followed by n index expressions (enclosed in brack- 
ets and separated by commas). 

The number of  index expressions must equal the number of index types 
in the array type definition, and the expressions must be compatible with 
the corresponding index types. 

The basic operators for arrays are 

:= (assignment) 
= (equal) 
< >  (not equal) 

The operands must be passive, compatible arrays. The result of a relation 
(such as =) is a boolean value. 

A one-dimensional array of m characters is called a string type of length 
m. Its values are the string constants of length m 

string constant 

' ~ character ~.~ 
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The ordering of characters defines the ordering of strings. 
The following operators are defined for strings (in addition to those 

defined for all array types) 

< (less) 
> (greater) 
<= (less or equal) 
>= (greater or equal) 

The operands must be strings of the same length. The result of a relation 
(such as <)  is a boolean value. 

8.7.4 Record Types 

A record consists of a fixed number of components of (possibly) differ- 
ent types 

record type 

RECORD ~ identifiers ; 4 ~  : ~ type - - - - - 7 -  END 

The components  of a record type are called its fields. A field of a 
record variable is selected by means of its variable identifier followed by 
the field identifier (separated by a period). 

record component 

variable ~ . ~ identifier 

The basic operators for records are 

:= (assignment) 
= (equal) 
< >  (not equal) 

The operands must be passive, compatible records. The result of a relation 
(such as =) is a boolean value. 

A with s tatement  can be used to operate on the fields of a record 
variable 

with statement 

WITH ~ variable ~ DO ~ statement 
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A wi th  s t a t e m e n t  consists  o f  one  or m o r e  r ecord  variables and  a state-  
men t .  This s t a t e m e n t  can refer  to  the  r eco rd  fields by  the i r  ident i f iers  
on ly  ( w i t h o u t  qua l i fy ing  t h e m  wi th  the  ident i f iers  o f  the  r eco rd  variables) .  

The  s t a t e m e n t  

wi th  v l ,  v2, ... , vn d o  $ 

is equ iva len t  to  

wi th  v l  do  
wi th  v2 . . . .  , vn do  S 

8.7.5 Set Types 

The  set t y p e  o f  an e n u m e r a t i o n  t y p e  consis ts  o f  all the  subsets  t ha t  
can be f o r m e d  of  the  e n u m e r a t i o n  values 

set type 

S E T - - D -  OF ~ type 

The  component  t y p e  of  a se t  t y p e  is cal led its base type. I t  m u s t  be an 
e n u m e r a t i o n  type .  

Set  values are c o n s t r u c t e d  as fo l lows 

set constructor 

--~-(. I ~ r~ .)---~- ,.~ expr 

A set constructor consis ts  o f  zero or  m o r e  express ions  enc losed  in b racke t s  
and  sepa ra ted  b y  c o m m a s .  I t  c o m p u t e s  the  set  o f  these  express ion  values. 
The  set expressions m u s t  be  of  c o m p a t i b l e  e n u m e r a t i o n  types .  

The  empty  set is d e n o t e d  

(..) 
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The basic operators for  sets are 

:= (assignment) 
= (equal) 
< >  (not  equal) 
<= (contained in) 
>= (contains) 
- (difference) 
& (intersection) 
or (union) 

The operands must  be compatible sets. The result of a relation (such 
as =) is a boolean value. The result of  the other  operators is a set value that  
is compatible with the operands. 

in (membership) 

The first operand must  be an enumerat ion type and the second one must  
be its set type. The result is a boolean value. 

8.7.6 System Types 

A concurrent  program consists of  three kinds of  system types 

system type 

PR°cESS 

ONITOR ' ~ I ~ parameters ~ ; ~ block 

LASS '~ 

(1) A process type defines a data structure and a sequential s ta tement  
that  can operate on it. 

(2) A monitor type defines a data structure and the operations that  
can be performed on it by concurrent  processes. These operations can 
synchronize processes and exchange data among them. 

(3) A class type defines a data structure and the operations that  can 
be performed on it by a single process or monitor .  These operations provide 
control led access to the data. 
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A system type consists of  the following components : 
Parameters that  represent constants and other system types on which 

the system type can operate. They are called the access rights of the system 
type. 

Constants, data types, variables, and routines defined within a system 
type are accessible within it (but generally not  outside it). (The variable en- 
tries defined in Section 8.8.2 are the only exception to this rule.) 

Routine entries defined within a system type are accessible outside it 
(but not  within it). These routines define meaningful operations on the 
system type that  can be performed by other  system types. 

The initial statement of a system type is to be executed when a variable 
of that  type is initialized. 

In general, a system type parameter must  be a constant  parameter of 
type enumeration, real, set, or monitor  (Section 8.11). In addition, a class 
type can be a parameter of another class type. 

A system type can only be defined within another system type (but not  
within a record type or routine). 

A process type can repeat the execution of a set of  statements forever 
by means of a cycle statement 

cycle statement 

• ---It"CYCLE ,~ ;statement I ~ END'~- ' I~ ' -  

8.8 VARIABLES 

A variable is a named abstract store location that  can assume values of a 
single type. The basic operations on a variable are assignment of a new 
value to it and a reference to its current value. 

var declarations 

'm'l~ VA R l i ~  E N T R Y ~  identifiers : .~lb-.- type ---]~-- ; -~T - -~ -  

A variable declaration defines the identifier and type of  a variable. 
The meaning of a variable entry is defined in Section 8.8.2. 
The declaration 

vat v l ,  v2, . . . .  vn: T; 
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is equivalent to 

vat vl: T; v2: T; ... ; vn: T; 

var iable 

i den t i f i e r  
J 

array c o m p o n e n t  v 

record componen t  r 

class componen t  

r 

A variable is referenced by means of its identifier. A variable component 
is selected by means of index expressions or field identifiers (Sections 8.7.3, 
8.7.4, and 8.8.2). 

assignment 

var iable : = --.-1~.-- ex p r -~--I1.-.- 

An assignment defines the assignment of an expression value to a vari- 
able. The variable and the expression must  be compatible.  The variable must  
be of passive type. It may no t  be a constant  parameter  or a variable entry 
referenced by selection (Sections 8.7, 8.8.2, and 8.11). 

8.8.1 System Components 

A variable of system type is called a system component. It is either a 
process, a monitor, or a class. 

System components  are initialized by means of  init statements. 

init statement 

INIT ~ variable ~ arguments 

An init s ta tement  defines the access rights of a system componen t  (by means 
of arguments), allocates space for its variables, and executes its initial state- 
ment.  

The s ta tement  

init v l ,  v2 . . . .  , vn 
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is equ iva len t  to  

init  v l  ; ini t  v2 . . . .  , vn 

The  initial s tatement  of  a class or  m o n i t o r  is e x e c u t e d  as a nameless  
rou t ine .  T h e  initial s t a t e m e n t  of  a process  is e x e c u t e d  as a sequent ia l  pro-  
cess. This process  is e x e c u t e d  c o n c u r r e n t l y  wi th  all o the r  processes  ( includ- 
ing the  one  t h a t  ini t ial ized it). 

The  p a r a m e t e r s  and  variables o f  a sys t em c o m p o n e n t  exis t  fo reve r  
a f t e r  ini t ia l izat ion.  T h e y  are permanent  variables. A s y s t e m  c o m p o n e n t  m u s t  
be dec lared  as a p e r m a n e n t  var iable  wi th in  a sy s t em type .  I t  c a n n o t  be  
dec lared  as a t e m p o r a r y  var iable  wi th in  a rou t ine .  

A s y s t e m  c o m p o n e n t  can  on ly  be  ini t ial ized once.  This m u s t  be  done  
in the  initial s t a t e m e n t  o f  the  s y s t e m  t y p e  in which  it  is declared.  

8.8.2 Variable Entries 

A var iable  p r e f i xed  wi th  the  w o r d  entry is a variable entry 

va t  e n t r y  f:  T 

I t  m u s t  be  dec lared  as a p e r m a n e n t  var iable  o f  passive t y p e  wi th in  a class 
type .  

A class t y p e  can re fe r  to  one  o f  its o w n  var iable  entr ies  b y  m e a n s  o f  its 
ident i f ie r  f 

Outs ide  the  class type ,  a var iable  e n t r y  f o f  a class var iable  v can  be selected 
e i ther  b y  m e a n s  o f  the  class ident i f ie r  v fo l l owed  b y  the  e n t r y  ident i f ie r  f 
( separa ted  b y  a pe r iod )  

v . f  

or  b y  means  o f  a with s tatement  

with  v do  begin  ... f ... end  
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A class type can make assignment to its variable entries, but outside it 
they can only be referenced (but not changed) by selection. So a variable 
entry is similar to a function entry (Section 8.11). 

8.9 EXPRESSIONS 

An expression defines a computation of a value by application of 
operators to operands. It is evaluated from left to right using the following 
priority rules: 

First, factors are evaluated; second, terms are evaluated; third, simple 
expressions are evaluated; fourth, complete expressions are evaluated. 

expr 

simple expr 

= < > < < = > > = IN simple expr 

simple expr 

~ term " ~ ~r ~t ~r 

term + - OR 

÷ I 
term 

.~-I~,'-factor ÷ ~ + + + += 
factor * / DIV MOD & 

+ t 'f t t I 
factor 

constant 

variable ~ l  

routine call 

• ~ - -  ( -~'1~- ex p r "---I~-- ) ~ 1  : 1  

NOT ~ factor 
/ set constructor ~ 
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Type Compatibility 

An operation can only be performed on two operands if their data types 
are compatible. They are compatible if one of  the following conditions is 
satisfied 

(1) Both types are defined by the same type definition or variable 
declaration (Sections 8.7 and 8.8). 

(2) Both types are subranges of a single enumeration type  (Section 
8.7.1). 

(3) Both types are strings of the same length (Section 8.7.3). 
(4) Both types are sets of compatible base types. The empty  set is 

compatible with any set (Section 8.7.5). 

8.10 STATEMENTS 

Statements define operations on constants and variables. 

statement 

compound statement 

case statement 

for  statement 

i f  statement r 

,.~ while statement r 

repeat statement 

with statement 

~.~ cycle statement 

assignment 

init statement 

routine call 

Section 

8.5 

8.7.1 

8.7.1 

8.7.1.2 

8.7.1.2 

8.7.1.2 

8.7.4 

8.7.6 

8.8 

8.8.1 

8.11 

Empty  statements,  assignments, and routine calls cannot  be divided into 
smaller statements. They are simple statements. All other  statements are 
structured statements formed by combinations of  statements. 

An empty statement has no effect. 
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8.11 ROUTINES 

A routine defines a set of parameters and a compound statement that  
operates on them. 

routines 

' I '1 procedure ~' I ~ 
function 

• ~ ~ T~ sequential program 

A routine can only be defined within a system type (but not  within 
another routine). 

A system component  cannot refer to the variables of another system 
component  (except if they are variable entries of a class as defined in Sec- 
tion 8.8.2). 

A system component  can, however, call routine entries defined within 
other system types. There are four kinds of routine entries 

(1) A process entry is a routine entry defined within a process type. It 
can only be called by sequential programs executed by processes of that  
type (but it cannot be called by system components).  

(2) A moni tor  entry is a routine entry defined within a monitor  type. 
It can be called by one or more system components that  wish to operate 
on a monitor  of that  type. A monitor  entry has exclusive access to perma- 
nent  monitor  variables while it is being executed. If concurrent processes 
simultaneously call monitor  routines which operate on the same permanent 
variables, the calls will be executed strictly one at a time. 

(3) A class entry  is a routine entry defined within a class type. It can 
only be called by one system component.  So a class entry also has exclusive 
access to permanent class variables while it is being executed. But, in con- 
trast to a monitor  entry, the exclusive access of a class entry call can be 
ensured during compilation (and not  during execution). 

(4) An initial s t a t emen t  of a system type is a nameless routine entry 
called by means of the init s tatement (Section 8.8.1). 

There are three kinds of routines: procedures, functions, and sequential 
programs. 

procedure 

--IP'-PROCEDURE J ~ ENTRY t identifier ~ parameters [ 
I block ~ ; 
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A procedure consists of a procedure identifier,  a parameter list, and a 
block to be executed when the procedure is called. 

function 

FUNCTION I ~ ENTRY ~' ~ identifier ~ parameters I 

.-'91"m-block ~ ; ~. identifier 4 • ~, 

A function consists of  a function identifier, a parameter list, a function 
type identifier, and a block to be executed when the function is called. 

A function computes a value. The value e of a function f is defined by 
an assignment 

f :=  e 

within the function block. 
The funct ion and its value must be of compatible enumeration types 

or of type real. 
A process that  controls the execution of a compiled sequential program 

is called a lob process. The process type must include a declaration of the 
sequential program. 

sequential program 

PROGRAM identifier 

t 

parameters 

identifiers ~ ENTRY ~ ;  

A program declaration consists of a program identifier, a parameter list, 
and a set of access rights. 

Program parameters must be of passive types. The rightmost parameter 
represents the variable in which the code of the sequential program is stored. 
It cannot be referenced by the sequential program during its execution. 

The access rights of a program are a list of identifiers of routine entries 
defined within the job process in which the program is declared. The sequen- 
tial program may call these routines during its execution. 

parameters 

identifiers .m..lb,- : - - L ~  U N I V - - L ~ -  identifier ~ ) r 
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A parameter list defines the type Of parameters on which a routine can 
operate. Each parameter is specified by its parameter and type identifiers 
(separated by a colon). 

A variable parameter represents a variable to which the routine may 
assign a value. It is prefixed by the word var. The parameter declaration 

var  v l ,  v2 ,  ... , vn :  T 

is equivalent to 

var v l :  T; var v2, . . . .  vn: T 

A constant parameter represents an expression that  is evaluated when 
the routine is called. Its value cannot be changed by the routine. A constant  
parameter is not prefixed with the word var. 

The parameter declaration 

vl ,  v2, . . . ,  vn : T 

is equivalent to 

v l :  T; v2, . . . ,  vn: T 

A parameter is of universal type if its type identifier is prefixed by the 
word univ. The meaning of universal types will be defined later. 

The parameters and variables declared within a routine exist only while 
it is being executed. They are temporary variables. 

The permanent parameters of a system type define all other system 
types with which it can interact. A system type interacts with another sys- 
tem type when it calls a routine entry defined within the other system type. 

Permanent parameters of system types must be constant  parameters 
of type enumeration, real, set, or monitor. In addition, a class type can be 
a parameter of another class type. 

Parameters of routine entries may not  contain queues as components.  
Function parameters must be constant. 
Program parameters and parameters of universal type must be passive 

(Section 8.7). 
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Universal Parameters 

The prefix univ suppresses compatibil i ty checking of parameter  and 
argument types in rout ine calls (Section 8.9). 

An argument of  type  T1 is compatible with a parameter  of universal 
type  T2 if both types are passive and represented by the same number  of 
store locations. 

The type checking is only suppressed in routine calls. Inside the given 
routine the parameter  is considered to be of nonuniversal type  T2, and 
outside the rout ine call the argument is considered to be of  nonun~versal 
type  T1. 

routine call 

I ~ variable ~-~ • ~' ~ identifier ~-- arguments 

A rout ine  call specifies the execut ion of a rout ine with a set of  argu- 
ments. It can be either a f unc t ion  call, a p rocedure  call, or a program call. 

A rout ine that  is not  prefixed by the word en t ry  is a s imple  routine.  
A system type can call one of  its own simple routines by means of  its identi- 
fier P followed by a list of arguments al  . . . .  , an 

P(al ,  ... , an) 

A system type  can call a rout ine  en t ry  defined within another  system 
type  T by qualifying the call with the identifier v of a variable of type  T 

v.P(al ,  ... , an) 

or by using a wi th  s t a t e m e n t  

with v do begin ... P(a l  . . . .  , an) ... end 

A routine may not  call itself, and a system type  may no t  call its own 
routine entries. 

A routine call used as a fac tor  in an expression must  be a funct ion call. 
A rout ine call used as a s t a t e m e n t  must be a procedure call (Sections 8.9 
and 8.10). 
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arguments 

'~ expr 

An argument list defines the arguments used in a routine call. The 
number  of arguments must  equal the number  of parameters specified in the 
routine. The arguments are substi tuted for the parameters before the routine 
is executed. 

Arguments corresponding to variable and constant  parameters must be 
variables and expressions, respectively. The selection of variable arguments 
and the evaluation of  constant  arguments are done once only (before the 
routine is executed).  

The argument t ypes  must  be compatible with the corresponding para- 
meter  types with the following exceptions:  

An argument corresponding to a constant string parameter may be a 
string of any length. 

An argument corresponding to a universal parameter may be of any 
passive type  that occupies the same number  of store locations as the para- 
meter  type. 

8.12 QUEUES 

The standard type queue may be used within a monitor type  to delay 
and resume the execution of a calling process within a rout ine entry (Sec- 
tions 8.7.6 and 8.11). 

At any t ime no more than one process can wait in a single queue. A 
queue is either empty  or nonempty .  Initially, it is empty.  

A variable of type queue can only be declared as a permanent variable 
within a moni tor  type. 

The following standard function applies to queues 

empty(x)  The result is a boolean value defining 
whether  or no t  the queue is empty.  

The following standard procedures are defined for queues 
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delay(x) 

cont inue(x)  

CONCURRENT PASCAL REPORT 

The calling process is delayed in the 
queue x and loses its exclusive access 
to  the given moni tor  variables. The 
moni tor  can now be called by other  pro- 
cesses. 

The calling process returns from the 
moni tor  rout ine that  performs the con- 
t inue operation. If another  process is 
waiting in the queue x that  process 
will immediately resume its execut ion 
of  the moni tor  rout ine that  delayed it. 
The resumed process now again has ex- 
clusive access to the moni tor  variables. 

Chap. 8 

8.13 SCOPE RULES 

A scope is a region of  program text  in which an identifier is used with a 
single meaning. An identifier must be introduced before it is used. (The only 
except ion to this rule is a sequential program declaration within a process 
type: It may refer to rout ine entries defined later in the same process type. 
This allows one to call sequential programs recursively.) 

A scope is either a system type,  a routine,  or a with statement.  A system 
type or routine introduces identifiers by declaration; a with s tatement  does 
it by selection (Sections 8.5, 8.7.4, 8.7.6, 8.8.2, and 8.11). 

When a scope is defined within another  scope, we have an outer scope 
and an inner scope tha t  are nested. An identifier can only be int roduced with 
one meaning in a scope. It can, however, be int roduced with another  mean- 
ing in an inner scope. In that  case, the inner meaning applies in the inner 
scope and the outer  meaning applies in the outer  scope. 

System types can be nested, but  routines can not.  Within a routine,  with 
statements can be nested. This leads to the following hierarchy o f  scopes 

(nested system types 
(nonnested routines 

(nested with statements)))  

A system type can use 

(1) all constant  and type  identifiers introduced in its outer  scopes. 

(2) all identifiers in t roduced within the system type  itself (except  its 
rout ine entry  identifiers). 



Sec. 8.15 PDP 11/45 SYSTEM 257 

A rout ine  can use 

(1), (2) defined above and 

(3) all identifiers introduced within the routine itself (except the 
routine identifier). 

A wi th  s t a t e m e n t  can use 

(1), (2), (3) defined above and 

(4) all identifiers introduced by the with statement itself and by its 
outer with statements. 

The phrase "all identifiers introduced in its outer scopes" should be 
qualified with the phrase "unless these identifiers are used with different 
meanings in these scopes. In that  case, the innermost meaning of each 
identifier applies in the given scope." 

8.14 CONCURRENT PROGRAMS 

The outermost  scope of  a concurrent program is an anonymous,  para- 
meterless process type, called the initial process.  

concurrent program 

block ~ .  

An instance of this process is automatically initialized after program 
loading. Its purpose is to initialize other system components.  

8.15 PDP 11/45 SYSTEM 

This section defines the additional restrictions and extensions of Con- 
current Pascal for the PDP 11/45 computer. 

8.15.1 Language Restrictions 

A nonstandard enumera t ion  t ype  cannot consist of more than 128 
constant identifiers. 

The range of integers is -32768..32767. 
Integer case labels must be in the range 0..127. 
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The range of  reals is approximately  -103s ..1038 . The smallest absolute 
real value that  is nonzero is approximately  10 -38 . The relative precision of  a 
real is approximately 10 -16 . 

A string must contain an even number  of  characters. 
Enumerat ion types and system types cannot  be defined within record 

types. 
A set of  integers can only include members in the range 0..127. 
A process componen t  can only be declared within the initial process. 
The standard procedure continue can only be called within a rout ine 

entry  of a moni tor  type.  

8.15.2 Store Allocation 

The compiler  determines the store requirements of system components  
under  the assumption that  rout ine calls are no t  recursive. The scope rules 
prevent  recursion within concurrent  programs, but  no t  within sequential 
programs. 

The programmer must  estimate an additional data space needed to 
execute sequential programs within a job process. The data space of  a se- 
quential program (in bytes) is defined by an integer constant  after  the 
process parameters. 

process type 

PROCESS I ~-~ parameters.HIP--; ~ I ~  + ~ integer constant t 

block ~ I 

8.15.3 Process Attributes 

The standard function 

at t r ibute(x)  

defines an at t r ibute x of  the calling process. The index and value of the 
at t r ibute are universal enumerations.  

The attribute index x is of the following type  

type  at t r index = 
(caller, heaptop,  progline, progresult, runtime) 
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The meaning of these attributes is defined in the sequel. 
The attribute function can be used to identify the calling process 

attribute(caller) The result is an integer that  identifies 
the calling process. The machine asso- 
ciates consecutive integers 1, 2, ... with 
processes during their initialization start- 
ing with the initial process. 

8.15.4 Heap Control 

Associated with every process is a heap in which Sequential Pascal pro- 
grams can allocate semipermanent data structures (by means of a standard 
procedure new that  is not  available in Concurrent Pascal). 

A process can measure the extent  of its heap by means of the standard 
function attribute 

attribute(heaptop) The result is an integer defining 
the top address of the heap. 

The heap top can be reset to a previous value by means of the standard 
procedure 

setheap(x) The top address of the heap is set 
equal to the integer x (defined by 
a previous call of attribute) 

x := attribute(heaptop) 

This crude mechanism is intended mainly to enable a job process to 
measure the initial extent of its heap before it executes a sequential program, 
and to reset the heap when the program terminates. 

8.15.5 Program Termination 

When a sequential program terminates, its job process can call the 
standard function attribute to determine the number of the line on which 
the program terminated, and its result 

attribute(progline) 
attribute(progresult ) 
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The line attr ibute is an integer and the program result is of  the following 
type  

type  result type = (terminated, overflow, pointererror, 
rangeerror, varianterror, heaplimit, 
stacklimit) 

The result values have the following meaning 

terminated Correct termination. 

overflow An integer or real is out  of  range. 

pointererror A variable is referred to by means of a pointer 
with the value nil. 

rangeerror An enumeration value is ou t  of  range. 

varianterror A reference to a field of  a variant record is in- 
compatible with its tag value. 

heaplimit The heap capacity is exceeded. 

stacklimit The stack capacity is exceeded. 

These are the standard results of Sequential Pascal programs generated 
by the machine. A concurrent  program may, however, extend the result type  
with nonstandard values, for example 

type  result type = (terminated, overflow, pointererror, 
rangeerror, varianterror, heaplimit, 
stacklimit, codelimit, timelimit, 
callerror) 

Nonstandard program results can be used as arguments to the standard pro- 
cedure stop (defined below). 

The following standard procedures control  program preempt ion 

start Prevents preemption of  a sequential program to be 
executed by the calling process. 
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stop(x, y) Preempts a sequential program called by process 
x with the result y. The process identity x must  have 
been defined earlier by a call of attribute 

x := attribute(caller) 

Start  should be called before a sequential program is executed. If stop 
is called while a sequential program is executing a routine entry within its 
job process, preemption is delayed until the routine call has been com- 
pleted. 

8.15.6 Real-Time Control 

The standard routines for real-time control are 

wait The calling process, is delayed until the machine 
produces the next 1-sec signal. (If the waiting is done 
within a monitor  this will delay other calls of the 
same monitor.) 

realtime The result is an integer defining the real time (in sec- 
onds) since system initialization. 

The standard function attr ibute  can be used to define the run t ime of 
the calling process 

attribute(runtime) The result is an integer defining the proces- 
sor time (in seconds) used by the calling 
process since its initialization. (This is only 
accurate on a machine with a readable 
clock.) 

8.15.7 Input/Output 

Input /ou tput  is handled by means of the following standard procedure  

io(x, y, z) Peripheral device z performs the operat ion y on 
variable x. The calling process is delayed until the 
operation is completed. (If the io is done within a 
monitor,  it will delay other calls of the same moni- 
tor.) x and y are variable parameters of arbitrary 
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passive types, z is a constant  parameter of  arbitrary 
enumeration type. 

The machine assumes that the io device z and the io p a r a m e t e r  y are 
of the following types 

type  iodevice = (typedevice, diskdevice, tapedevice, 
printdevice, carddevice) 

type  ioparam = record 
operation: iooperation; 
status: ioresult; 
arg: ioarg 

end 

where 

The io resutts  have the 

complete  

intervention 

type  iooperation = (input, output ,  move, control) 

type  ioresult = (complete, intervention, transmission, 
failure, endfile, endmedium, startmedium) 

following meaning 

The operation succeeded. 

The operation failed, but  can be re- 
peated after manual intervention. 

transmission The operation failed due to a transmis- 
sion error, but  can be repeated imme- 
diately. 

failure The operation failed and cannot  be 
repeated until the device has been re- 
paired. 

endfile An end of  file mark was reached. 

endmedium An end of medium mark was reached. 

startmedium A start of  medium mark was reached. 
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The types of the data block x and the io argument within the io para- 
meter  y vary from device to device. 

A concurrent  program must  ensure that  a device is used by no more 
than one process at a time (wherever this rule applies). 

8.15.7.1 Terminal 

device name typedevice 

block type  char 

input  Inputs a single character and echoes it back as 
output .  The character CR is input  as LF and 
echoed as CR, LF. The character BEL cannot  
be input  (see below). 

ou tpu t  Outputs  a single character. The character LF is 
ou tpu t  as CR, LF. 

control Delays the calling process until the BEL key is 
depressed. The BEL key can be depressed at 
any time (whether the terminal is passive, in- 
putting, or outputt ing);  it has no effect  unless 
one or more  processes are waiting for it. 

result complete  

One or more control  operations can be executed simultaneously with 
a single inpu t /ou tpu t  operation. A B E L  signal continues the execution of all 
processes waiting for it. 

8.15.7.2 Disk 

device name diskdevice 

block type  univ array (.1..512.) o f  char (called a disk 
page) 

argument type  0..4799 (called a page index) 

input  Inputs a disk page with a given page index. 

ou tpu t  Outputs a disk page with a given page index. 
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control Starts the execution of a concurrent program 
stored on consecutive disk pages identified 
by the first page index. 

result complete, intervention, transmission, or failure 

A disk can only perform one operation at a time. 
The system uses the following algorithm to convert a page index to 

a physical disk address consisting of a surface number, cylinder number,  
and sector number 

8.15.7.3 

device name 

block type 

surface:= pageno div 12 mod 2; 
cylinder:= pageno div 24; 
sector:= pageno mod 12; 

Magnetic tape 

tapedevice 

univ array (.1..512.) of  char (called a tape 
block ) 

argument type (writeeof, rewind, upspace, backspace) The 
argument defines four possible move opera- 
tions. 

input Inputs the next  block from tape (if any). 

output  Outputs the next  block on tape (if there is 
room for it). 

move Moves the tape as defined by the argument: 

writeeof: outputs an end of  file mark (if 
there is room for it). 

rewind: rewinds the tape. 

upspace: moves the tape forward one block 
(or file mark), whichever occurs first. 

backspace: moves the tape backwards one 
block (or file mark), whichever occurs first. 
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result complete, intervention, transmission, 
endfile, endmedium, or startmedium 

A tape station can only perform one operation at a time. 

8.15.7.4 Line printer 

device name printdevice 

block type array (.1..132.) of  char (called a 

output  Outputs a line of 132 characters (or 
line of less than 132 characters must 
minated by a CR, LF, or FF character. 

result complete or intervention 

A line printer can only perform one operation at a time. 

8.15.7.5 Card reader 

device name carddevice 

block type 

input 

failure, 

printer line) 

less). A 
be ter- 

array (.1..80.) of  char (called a punched card) 

Inputs a card of 80 characters. Characters that  
have no graphic representation on a key punch 
are input as SUB characters. 

result 

A card reader can only perform one operation at a time. 

complete, intervention, transmission, or failure 

265 

8.15.8 Compiler Characteristics 

The compiler consists of 7 passes. It requires a code space of 9 K words 
and a data space of 7 K words. After an initial time of 7 sec the compilation 
speed is 240 char/sec (or about  9-10 lines/sec). 

The programmer may prefix a program with compiler options enclosed 
in parentheses and separated by commas 

(number, check, test) 
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The opt ions  have the fol lowing effec t  

n u m b e r  The generated code  will only  ident i fy  line 
numbers  of  the program tex t  at  the be- 
ginning of  routines.  (This reduces the code 
by a b o u t  25 per  cent ,  bu t  makes error  
loca t ion  more  difficult .)  

check  The code  will n o t  make  range checks of  
cons tan t  enumera t ion  arguments .  

test  The compi ler  will pr in t  the  in te rmedia te  
o u t p u t  o f  all passes. (This facili ty is used as 
a diagnostic aid to locate  compi le r  errors.) 

8.15.9  Program Characteristics 

Table 8.1 gives the execution times of  operand  references,  
opera tors ,  and s ta tements  in psec (measured on a PDP 11 /45  c o m p u t e r  
with 850 nsec core store).  They  exceed the figures s ta ted in the c o m p u t e r  
p rog ramming  manua l  by  25 per  cent.  

TABLE 8.1 

Set Structure 
Enumeration Real (n members) (n words) 

7 39 53 + 32 n 17 
10 32 46 10 
27 40 54 18 
4 0 + e  5 3 + e  6 7 + e  31+ e 

8 0 0 10+ 5n  
12 32 67 16 + 6 n 
12 32 74 16 + 11 n 

31 

constant c 
variable v 
field v.f 
indexed v(.e.) 
: =  

= < >  
< > < =  >= 
in 
succ pred 
& 
o r  

not 
+ -  

$ 

div rnod / 
abs 
C O n Y  

trunc 

7 
10 

8 
10 

9 
16 
20 

7 
21 

38 
45 
46 
17 

22 

82 
58 

58 
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(n iterations) 

case e of. . .  c: S; ... end 28 
for v: = 1 to n do S 82 
if B then S else S 16 
while B do S (20 
repeat S until B (13 
with v do S 16 
cycle S end (7 
simple routine call (no parameters) 58 
process entry call (no parameters) 75 
class entry call (no parameters) 80 
monitor  entry call (no parameters) 200 
empty  10 
delay, continue (processor switching) 600 
clock interrupt (every 17 msec) 900 
io 1500 

+ e + S  
+ (69 + S) n 
+ B + S  
+ B + S )  n 
+ B + S ) n  
+ S  
+S)  n 

The compiler generates about  5 words of  code per 
ing line numbers and range checks). 

The store requirements of  data types are 

program line (includ- 

enumeration 
real 
set 
string (m characters) 

1 word(s) 
4 
8 

m/2 

8.16 ASCII CHARACTER SET 
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TABLE 8.2 

0 nul  
1 soh 
2 stx 
3 e tx  
4 eo t  
5 enq  
6 ack 
7 bel 
8 bs  
9 h t  

10 If 
11 v t  
12 ff  
13 cr 
14 so 
15 si 
16 dle 
17 d c l  
18 dc2 
19 dc3 
20 dc4 
21 nak  
22 syn  
23 e tb  
24 can  
25 em 
26 sub  
27 esc 
28 fs 
29 gs 
30 rs 
31 us 

32 64 @ 
33 t 65 A 
34 " 66 B 
35 # 67 C 
36 $ 68 D 
37 % 69 E 
38 & 70 F 
39 ' 71 G 
40 ( 72 H 
41 ) 73 I 
42 * 74 J 
43 + 75 K 
44 , 76 L 
45 - 77 M 
46 78 N 
47 / 79 O 
48 0 80 P 
49 1 81 Q 
50 2 82 R 
51 3 83 S 
52 4 84 T 
53 5 85 U 
54 6 86 V 
55 7 87 W 
56 8 88 X 
57 9 89 Y 
58 : 90  Z 
59 ; 91 [ 
60 < 92 \ 
61 = 93  ] 
62 > 94 
63 ? 95 

96 
97  
98  
99  

100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111 
112 
113  
114  
115  
116  
117 
118 
119 
120  
121 
122  
123  
124  
125  
126  
127 

a 

b 
c 

d 
e 

f 
g 
h 
i 

i 
k 
1 
m 
n 

o 

p 
q 
r 

s 

t 
u 

v 

W 

X 

y 
z 

{ 
I 
} 

7 
del 
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Abs,  2 4 1 - 4 1  
Access r ights ,  246,  252  
Act ive  t ype ,  236  
And ,  2 3 9 , 2 4 5  
A r g u m e n t ,  2 4 7 , 2 5 5  
A r i t h m e t i c ,  2 4 0 - 4 1  
Array  c o m p o n e n t ,  242  

Array  type ,  2 4 2 - 4 3  
Ascii cha rac t e r  set ,  268  
Ass ignmen t ,  2 3 7 - 4 7 , 2 5 2  
A t t r i b u t e ,  2 5 8 - 6 1  

Base t y p e ,  244  
Basic s y m b o l ,  2 3 2 - 3 4  
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Block, 235 
Boolean, 239-40 

Card reader, 265 
Case statement, 237-38 
Character, 232,239 
Chr, 241 
Class, 247 
Class entry, 251 
Class parameter, 253 
Class type, 245,248 
Comment, 235 
Comparison, 237-45 
Compatible types, 250,255 
Compiler, 265-66 
Component type, 236,242-.44 
Compound statement, 235 
Concurrent program, 257 
Constant, 235-42 
Constant parameter, 253,255 
Const definition, 236 
Continue, 256,258 
Control character, 233 
Cony, 241 
Cycle statement, 246 

Declarations, 235 
Delay, 256 
Digit, 233 
Dimension, 242 
Disk, 263 
Div, 240 

Empty, 255 
Empty set, 244,250 
Empty statement, 250 
Enumeration constant, 237 
Enumeration type, 237-41,257 
Exclusive access, 251 
Execution time, 266-67 
Expression, 249 

Factor, 249,254 
False, 239 
Field, 243 
For statement, 238 
Function, 252-55 

Function call, 254-55 

Graphic character, 233 

Heap, 259 

Identifier, 234 
If statement, 239-40 
In, 245 
Index expression, 242 
Index type, 242 
Initial process, 257-58 
Initial statement, 246,248 
Init statement, 247 
Input/output, 261-65 
Integer, 240--41,257 
Interaction, 253 
Io, 261-62 

Job process, 252,258-61 

Label, 238,257 
Letter, 233 
Line printer, 265 

Magnetic tape, 264 
Mod, 240 
Monitor, 247 
Monitor entry, 251 
Monitor parameter, 253 
Monitor type, 245,255 

Nested scopes, 256 
New line, 234 
Not, 239 

Operator priority, 249 
Options, 265 
Or, 239,245 
Ord, 239 
Ordinal value, 233 

Parameter, 246,252-54 
Passive type, 236 
Permanent parameter, 253 
Permanent variable, 248,253 
Pred, 238 
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Procedure, 251-55 
Procedure call, 254-55 
Process, 247,258 
Process attribute, 258-59 
Process entry, 251 
Process parameter, 253 
Process type, 245 
Program, 251-52,258-61 
Program call, 254-55 
Program loading, 252,264 
Program parameter, 252-53 
Program preemption, 260-61 
Program termination, 259-60 

Queue, 253,255-56 

Real, 241-42,258 
Realtime, 261 ' 
Record component, 243 
Record type, 243-44,258 
Repeat statement, 240 
Routine, 251-55,257 
Routine call, 254-55 
Routine entry, 246,251,254 

Scale factor, 241 
Scope rules, 256-57 
Selection, 242-44 
Separator, 234 
Sequential program, 251-52,258-61 
Set constructor, 244 
Set expression, 244 
Setheap, 259 
Set type, 244-45,250,258 
Simple expression, 249 
Simple routine, 254 
Simple statement, 250 
Simple type, 236 
Space, 234 
Special character, 233 
Special symbol, 234 

Standard function, 238-42,255-61 
Standard procedure, 256-65 
Standard type, 237-41,255 
Start, 260 
Statement, 250 
Stop, 261 
Store allocation, 258 
String type, 242-43,250,255,258 
Structured statement, 250 
Structured type, 236 
Subrange type, 237-38,250 
Succ, 238 
Symbol, 233 
Syntax graph, 232 
System component, 247-48 
System type, 245-46,251-56 

Temporary variable, 253 
Term, 249 
Terminal, 263 
Test output, 214-26 
True, 239 
Trunc, 242 
Type, 236-46 
Type compatibility, 250,255 
Type conversion, 241-42,254 
Type definition, 236 

Universal parameter, 254-55 

Var declaration, 246 
Variable, 246-49 
Variable component, 247 
Variable entry, 248-49 
Variable parameter, 253,255 

Wait, 261 
While statement, 240 
With statement, 243-44,248,254,257 
Word symbol, 234 



9 
CONCURRENT PASCAL MACHINE 

The Concurrent  Pascal compiler generates code for a virtual machine 
that  can be simulated by microprogram or machine code on different  com- 
puters. This chapter describes the implementat ion of Concurrent  Pascal 
on the PDP 11/45 computer.  

9.1 STORE ALLOCATION 

We will begin by looking at the allocation of core store among the 
processes of a concurrent  program. 

Core Store 

A Concurrent  Pascal program defines a fixed number  of processes. 
Figure 9.1 shows the core store during the execution of  a program. It con- 
tains code and data segments. The lengths of  these are fixed during compila- 
tion. 

The code segments consist of virtual code generated by the Concurrent  

271 
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[ CODE SEGMENTS 

DATA SEGMENTS 

Fig. 9.1 Core store 

KERNEL 

INTERPRETER 

VIRTUAL CODE 

Fig. 9.2 Code segments 

Pascal compiler, an interpreter that  executes the virtual code, and a kernel 
that  schedules the execution of  concurrent processes (Fig. 9.2). 

The interpreter and kernel are assembly language programs which im- 
plement the virtual machine. These two programs of 1 and 3 K words are 
loaded from disk into core by means of the operator's control panel. They 
in turn load the virtual code of a Concurrent Pascal program into core and 
start executing it as a single process, called the initial process. The latter 
can now create a fixed number of child processes. The kernel multiplexes the 
processor among these processes. 

Each process has a data segment in core (Fig. 9.3). Data  segments have 
fixed lengths determined during compilation. They exist forever during 
execution. This makes store allocation trivial: segments are allocated contig- 
uously in their order of creation. 

The segment length of the initial 'process and the start address of its 
code are defined at the beginning of the virtual code. The store require- 
ments and code addresses of child processes are defined by initprocess in- 
structions (corresponding to the init statements in the program). 

Virtual Store 

On the PDP 11/45 computer,  the storage space of a process consists of 
up to 8 segments of at most  4 K words each. These segments can be placed 
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INITIAL PROCESS 

CHI LD PROCESS 

CHILD PROCESS 

Fig. 9.3 Data segments 

COMMON SEGMENT 

PRIVATE SEGMENT 

Fig. 9.4 Virtual store 

anywhere in core. An addressing mechanism makes them appear contiguous 
to the process. 

This mechanism is not  used by Concurrent Pascal to enforce the access 
rights of processes. That is done during compilation. It is just a (rather in- 
convenient) way of extending the addressing capability of a computer with 
a short word length by letting each process see a part of a larger core store. 
The addressing mechanism would be unnecessary on a machine that  can 
address the whole store directly. 

The virtual store of a process gives it access to a common segment 
shared by all processes and to its own data segment (called a private seg- 
ment) (Fig. 9.4). 

The common segment consists of the interpreter, the virtual code, and 
the data segment of the initial process. The latter contains the monitors 
that  processes communicate through (Fig. 9.5). 

The initial process has no private data segment. Its data segment is in- 
cluded in the common segment. 

Data Segments 

A data segment contains the stack and heap of a process (Figs. 9.3 and 
9.6). 
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INTERPRETER 

VIRTUAL CODE 

INITIAL PROCESS 

Fig. 9.5 Common segment 

HEAP 

STACK 

Fig. 9.6 Data segment 

The stack contains the permanent variables (and parameters) of  a pro- 
cess as well as its temporary variables used within procedures (Fig. 9.7). 

The initial process is created by the kernel. It has no parameters. When a 
child process is created, its parameters are copied from the parent 's  stack 
(in the common data segment) into the child's stack (in a private segment). 

The heap is only accessible to Sequential Pascal programs executed by 
a Concurrent  Pascal process. 

Permanent Variables 

Figure 9.8 shows the representat ion of  the permanent variables and 
parameters of  a class, monitor, or process. 

A monitor contains an address of  a data structure called a gate. The 
gate is stored in the kernel. It is used to give a process exclusive access to 
the monitor .  The gate address has no significance for classes and processes. 

A process can only operate on one set of permanent  variables at a time. 
They are addressed relative to a global base address g. When a process is 
created its global base register points to its own permanent  variables. When 
it calls a moni tor  (or class) procedure  the current  base address is pushed 
onto  its stack, and the global base register is used to  point  to the permanent  
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TEMPORARY 
VARIABLES 

PERMANENT 
VARIABLES 

Fig. 9.7 Stack 

VARIABLES 

GATE ADDRESS 

PARAMETERS 

G (GLOBAL BASE) 

Fig. 9.8 Permanent variables 

variables of  that  moni tor  (or class). Upon return from the procedure the 
previous base address is popped from the stack. 

Temporary Variables 

Figure 9.9 shows the representation of the parameters, variables, and 
temporaries of a procedure call. A dynamic link connects the procedure to 
the contex t  in which it was called. 

A process can only operate on one set of  temporary  variables (and para- 
meters) at a time. They are addressed relative to a local base address b. 
Temporaries are addressed relative to a stack top s. 

The dynamic link defines the stack addresses g, b, and s used by a 
process before a procedure call and a return address q in the virtual code. 
The link also contains the current  line number within the procedure to 
facilitate location of run-time errors. 

When a process is created its global and local base registers both point  
to the permanent  variables of that  process. It is initialized with no tempo- 
raries and an empty  heap. 

When a process calls one of  its own procedures,  the local base register 
will point  to the temporary  variables of that  procedure,  while its global 
base address remains unchanged. 
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TEMPORARIES 

VARIABLES 

DYNAMIC LINK 

PARAMETERS 

S (STACK TOP) 

B (LOCAL BASE) 

Fig. 9.9 Temporary variables 

When a process calls a moni tor  (or class) procedure, the global base 
register will point  to the permanent  variables of  that  moni tor  (or class), 
and the local base register will point  to the temporary variables of  the 
moni tor  (or class) procedure. 

Upon return from a procedure its temporary variables are popped  
from the stack and the previous values of  the base registers are reestablished 
by means of  the dynamic link. 

Disk Allocation 

The disk used by the Solo operating system contains 4800 pages of  
256 words each. The beginning of  the disk contains 5 contiguous segments 

kernel segment The machine code of  the kernel and the in- 
terpreter (6 K words). 

Solo segment The virtual code of  the Solo operating sys- 
tem (16 K words). 

other OS segment 

free page list 

The virtual code of  another operating sys- 
tem (16 K words). It is used by the Sequen- 
tial Pascal program start to  execute another 
Concurrent Pascal program (Section 5.1). 

The set of free disk pages (0.5 K words). 
It is used by the Sequential Pascal program 
file to allocate disk files (Section 5.1). 
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catalog page map A disk page which defines the length of the 
disk catalog and the location of its pages 
(Fig. 5.4). 

The first three of these segments are larger than they need to be to 
permit future expansion of the kernel and the operating systems. The 
rest of the disk contains catalog pages and disk files. The organization 
of  these is described in Sections 5.1 and 5.4. 

The kernel is loaded from disk into core by means of  the operator's 
control panel. The kernel in turn loads the Solo system from disk and 
starts it. The operating systems are loaded from a fixed set of  consecu- 
tive disk pages to make the system kernel unaware of the structure of a 
particular filing system (such as the one used by Solo). 

The sequential program start can copy a concurrent program from 
a disk file into one of the operating system segments and load it by 
means of a control operation on the disk device (Section 8.15.7.2). 

Compromises 

In implementing Concurrent Pascal I followed one simple guideline: 
A computer  should only do obvious things and should do them well. Where 
compromise was needed I firmly put  simplicity first, efficiency second, and 
generality third. Like any other design rule it needs no justification other 
than the success it leads to in practice. 

It takes strong nerves to follow this advice on a machine that  invites a 
software designer to optimize register usage and use sliding addressing 
windows. I decided to simplify code generation by ignoring the instruction 
set and different registers of the PDP 11/45 and simulate a simple stack 
machine instead. 

The virtual addressing mechanism is more difficult to ignore since it 
determines the amount  of core store that  can be used by a Concurrent 
Pascal program. The virtual store of the PDP 11/45 consists of two address 
spaces: one for machine code and another for data. Since the only machine 
code executed by a process is an interpreter of 1 K words, it is no t  worth 
keeping it in a separate address space. So I let the two address spaces be 
identical. 

Concurrent Pascal makes it possible to check the access rights of pro- 
cesses before they are executed. Consequently, monitor  calls can be made 
almost as fast as simple procedure calls. To gain this efficiency, the virtual 
code and data of monitors were included in the address of every process. 
(Otherwise, it would have been necessary to change address spaces and copy 
parameters back and forth between these spaces during monitor  calls.) 
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However, by putting simplicity and efficiency first, we have undoubted- 
ly lost generality; a process must divide its address space of 32 K words 
between its private data and the code and common data of all processes. 
To avoid fragmentation of  the virtual address space, processes have only a 
single segment in common. This is achieved by the following language re- 
striction: Only the initial process can create other processes and give them 
access to common data (Section 8.15.1). 

Segmentation of address space can be helpful when it supports the 
scope rules of a high-level language by associating data segments with pro- 
cedures and classes. But when it arbitrarily cuts physical store into eight 
parts, segmentation becomes an obstacle to straightforward language im- 
plementation. 

9.2 CODE INTERPRETATION 

The Concurrent Pascal compiler generates code for a virtual machine 
simulated by machine code on the PDP 11/45 computer. This section 
describes the virtual code which is similar to the one used by Wirth's group 
for Sequential Pascal [Nori, 1974].  T h e  programming technique used to 
interpret the virtual code is called threaded code [Bell, 1973].  

The use of virtual code designed directly to support a high-level language 
makes code generation straightforward and the compiler portable. (The 
Sequential Pascal compiler for the PDP 11/45 was moved to another mini- 
computer  in one man-month.)  

Virtual Code 

We will use a programming example to illustrate the virtual code. The 
example is a monitor that  defines a send operation on a message buffer. 

type page = array (.1..length.) of  integer; 

type buffer = 
monitor  

vat contents: page; empty:  boolean; 
sender, receiver: queue; 
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procedure entry ser~d(message: page); 
begin 

if not  empty  then delay(sender); 
contents:  = message; 
empty:  = false; 
continue(receiver); 

end; 
o o . . o  

begin ... end 

(The rest of the moni tor  can be ignored here.) 
The virtual code generated for the send procedure is 

a :  

entermonitor(stacklength, paramlength, 
linenumber, varlength) 

pushglobal(empty) 
not  
falsejump(a) 
globaladdr(sender) 
delay 
globaladdr(contents) 
pushlocal(message) 
copystructure(length) 
globaladdr(empty) 
pushconst(false) 
copyword  
globaladdr(receiver) 
continue 
exi tmonitor  

An enter monitor instruction defines the total amount  of stack needed 
by the procedure, the length of its parameters and local variables, and the 
number  of  the program line on which it begins. 

The next  instruction pushes the global variable empty  onto  the stack. 
The program then performs a not operation on it, and jumps to the label 
a if the result is false; otherwise, it pushes the address of the global variable 
sender on the stack and performs a delay operation on it. 

After this, the addresses of  the buffer contents and the message are 
pushed onto the stack. (The message parameter is represented by a local 
variable that contains a reference to the actual argument.) A copy structure 
instruction moves the message into the buffer. 
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This is followed by an assignment of the constant  false to the global 
variable empty. The procedure ends with a continue operation on the 
global variable receiver followed by an exit monitor instruction. 

An instance of  a buffer moni tor  can be declared and used as follows 

vat channel: buffer; data: page; 

..... channel.send(data) ..... 

This monitor call generates the following virtual code 

globaladdr(channel) 
field(varlength) 
globaladdr(data) 
call(send) 

The base address of the global variable channel is pushed onto the 
stack and incremented by a field instruction to make it point  to the gate 
address that separates the permanent  variables of  the moni tor  from its 
parameters (Fig. 9.8). Then the address of the global variable data is pushed 
onto  the stack, and the moni tor  procedure send is called. 

Variables are identified by  their displacements relative to a local or 
global base address (Figs. 9.8 and 9.9). Program labels are represented by 
their displacements relative to a virtual program counter  (making the code 
relocatable). 

There are about  50 different virtual instructions. To make the software 
interpreter fast, the addressing modes (local or global) and the data types 
(bytes, words, reals, or sets) are encoded into t he  operation codes. This 
expands the set of  operation codes to 110. A quarter of  these are used by 
Concurrent Pascal only. The rest are common to Sequential and Concurrent 
Pascal. 

This description only tries to explain the overall structure of  the virtual 
code and its interpreter. The interpreter listing, which is stored on the Solo 
disk, contains a complete  definition of all virtual instructions. 

The language constructs of  Concurrent  Pascal and the corresponding 
virtual code are defined by syntax graphs in the compiler description [Hart- 
mann, 1975] .  
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OPERATION TABLE 

CODE PIECES 

Fig. 9.10 Interpreter 

The Interpreter 

The interpreter is an assembly language program of 1 K words. It con- 
sists of code pieces that  execute virtual instructions and an operation table 
defining the location of these pieces (Fig. 9.10). 

A virtual instruction consists of an operation possibly followed by some 
arguments. The operation and its arguments occupy one machine word 
each. The interpreter uses a virtual instruction counter q to point to the 
next  operation or one of its arguments. 

As an example, the virtual instructions 

pushconst(false) 
copyword 

are represented by three machine words 

pushconst 
false 
copyword 

Upon entry to the push constant code piece in the interpreter, the 
virtual instruction counter q points to the argument of that  instruction 
(the boolean value false). The interpreter executes the push operation as 
follows 

s: = s - 2; store(s):= store(q); q:= q + 2; 

First, the stack top s is decremented by one word (The PDP 11/45 stack 
grows from high towards low addresses, and each word in it contains two 
bytes). Then the argument is moved from its virtual code location store(q) 
to the new stack location store(s). Finally, the virtual instruction counter 
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q is incremented by one word (2 bytes). All this is done by a single machine 
instruction on the PDP 11/45 computer.  

The virtual instruction counter now points to the next  virtual instruc- 
tion copy word. The interpreter uses the operation code store(q) as an 
.index in the operation table (beginning at address zero) to jump to the 
corresponding code piece 

goto store(store(q)); q:= q + 2; 

This is also done by a single machine instruction. 
Every code piece of the interpreter ends with such a jump to its suc- 

cessor. These three store cycles are the only overhead of interpretation 
compared to directly executed code. This efficient form of  interpretation 
is called threaded code [Bell, 1973].  The execution times for the virtual 
code on the PDP 11/45 computer  are listed in Section 8.15.9. 

Registers 

The interpreter uses nine registers to execute the virtual code of a pro- 
cess. Three of these are scratch registers used during the execution of a single 
virtual instruction only. The rest have fixed functions throughout  the execu- 
t ion of a process (Fig. 9.11). 

The real program counter p remains within the interpreter. It uses a 

INTERPRETER 

VIRTUAL CODE 

COMMON 

AND 

PRIVATE 

DATA 

P (REAL PROGRAM COUNTER) 

Q (VIRTUAL PROGRAM COUNTER) 

H (HEAP TOP) 

S (STACK TOP) 

B (LOCAL BASE) 

G (GLOBAL BASE) 

Fig. 9.11 Virtual store and registers 
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virtual program counter q to point  to virtual instructions. The heap top h 
defines the current  extent  of the heap. (It is stored in a store location 
within the interpreter  instead of a register.) The stack is addressed relative 
to  three registers: a global base register g, a local base register b, and a 
stack top s as explained in Section 9.1. 

9.3 KERNEL 

The kernel of Concurrent  Pascal is an assembly language program 
that  multiplexes a PDP 11/45 processor among concurrent  processes and 
gives them exclusive access to monitors.  

The kernel was first writ ten in a programming language that  resembles 
Concurrent  Pascal. It consists of  a collection of  data structures representing 
processes, monitors,  and peripherals. Each data structure consists of  two 
parts: One defines how the data are represented in store, the other  what  
operations one can perform on the data. This combinat ion of a data repre- 
sentation and the possible operations on it is called a class or an abstract 
data type. 

The abstract version of  the kernel was translated by hand into assembly 
language (retaining the abstract version as comments) .  This programming 
method  has several advantages 

(1) A complex program can be programmed as a sequence of  small, 
self-contained components  (classes). 

(2) These components  can be tested one at a time from the bo t tom 
up. 

(3) If the program only accesses a componen t  through procedures 
(or macros) associated with it, new (untested) components  cannot  make old 
(tested) components  fail. 

(4) In the rare cases, where it is necessary to use assembly language, 
one can still use an abstract programming language as a thinking tool, and 
make the product ion of  assembly code a simple clerical procedure (manual 
translation). 

After  an initial test period of 1 month  the Concurrent  Pascal kernel has 
been running wi thout  problems. One might call this form of  programming 
reliable machine programming. 

The details of  the kernel are simplified somewhat  in the following (but 
most  of  the simplifications are pointed out).  The Solo disk contains a com- 
plete kernel listing. 
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Processor Multiplexing 

The computer  executes one process at a time. While one process is 
running, other  processes must await their turn in a ready queue. Every 17 
msec the computer  switches from one process to another  to give the illu- 
sion that  they are executed simultaneously. 

A process is represented by a record within the kernel. When a process 
is p r e e m p t e d  all registers used to interpret  its code are stored in its process 
record (Section 9.2). The register values are restored when the execut ion of  
the process is resumed 

type  registers = record ... end 

process = @ registers 

The symbol @ indicates that  a process is represented by the address of  the 
record that  contains iS  register values. 

A process queue is represented by a sequence of  references to process 
records 

type  processqueue = sequence of  process 

The only operations on a process queue are 

put  Enters a process in the queue. 

get Removes a process f rom the queue. 

any Tells whether  the queue contains anything. 

empty  Tells whether  the queue is empty.  

The running process is represented by a class. It contains two permanent  
variables: The user is a reference to the running process; it is nil when the 
processor is idle. In addition, the hardware registers are considered part  of  
this class. 

Only two operations are defined on the running process: serve and pre- 
empted .  They start  and stop the execut ion of  a process. The s ta tement  at 
the end of  the class is executed when the kernel is initialized. It makes the 
running process nil. (The selection of  the initial process for  execut ion is 
done  elsewhere.) 
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vat running: 
class 

var user: process; reg: registers; 

procedure serve(p: process); 
begin 

user: = p; 
reg:= user@; 

end; 

funct ion preempted:  process; 
begin 

user@:= reg; 
preempted:  = user; 
user: = nil; 

end; 

begin user: = nil end 

The value of the process reference and the record it points to are de- 
noted user and user@. Although they are no t  marked with the word entry 
both routines can be called outside the class. 

The ready queue is represented by another  class. In this simplified 
description, there is only a single queue of  waiting processes. In practice, we 
use a three-level queue that  gives top priori ty to processes executing moni tor  
code, middle priori ty to processes resumed after  input /ou tput ,  and bo t tom 
priori ty to compute-bound processes. Initially the ready queue is empty.  

Two operations can be performed on the ready queue:  enter a process 
in the queue, and select one to be served. An a t tempt  to select a process 
from an empty  ready queue causes the processor to idle until a peripheral 
operation laas been completed and has entered a process in the ready queue. 

vat ready: 
class 

vat waiting: processqueue; 

procedure enter(p: process); 
begin waiting.put(p) end; 
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procedure select; 
begin 

while waiting.empty do idle; 
running.serve(waiting.get); 

end; 

begin waiting.initialize end 

A clock interrupt has no effect  if the processor is idle; otherwise, it 
preempts the running process, enters it in the ready queue, and selects 
another process for execution 

procedure clockinterrupt;  
begin 

if running.user < >  nil then 
begin 

ready, enter(running.preempted);  
ready.select; 

end; 
end 

Again, the picture is simplified: The clock will only preempt  a process 
when it has used a reasonable amount  of  processor time, and it will never 
interrupt a process inside a moni tor  procedure (since this could cause the 
resource controlled by the moni tor  to remain idle until the execution of  the 
procedure is completed).  

The class running also contains procedures for process creation. After  
system loading, the kernel calls a procedure initparent that  starts execu- 
tion of  the initial process 

procedure initparent(length: integer); 
begin 

new(user); 
virtual .defcommon(length);  
initialize registers; 

end 

The procedure new allocates space for a process record in a heap inside the 
kernel. A procedure defcommon within another class virtual is then called 
to define the length and location of  the common segment used by the initial 
process and its descendants (Fig. 9.5). Finally, the registers are initialized 
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with the limits of the stack and the heap within the segment as well as the 
start address of the process code (Fig. 9.11). 

The initial process can, in turn, call a kernel procedure initchild to 
create other processes. (To be more precise, the initial process executes an 
initprocess instruction which causes the interpreter to call the kernel pro- 
cedure initchild. ) 

procedure initchild(length: integer); 
begin 

ready.enter(preempted); 
new(user); 
virtual.defprivate(length); 
initialize registers; 

end 

This is similar to the previous procedure, except that  the parent is preempted 
in favor of its child. Again, details have been ignored, such as the accounting 
of processor time used by processes. 

When a process terminates its execution, it is preempted forever (but its 
data segment continues to exist) 

procedure endprocess; 
begin user:= nil end 

This leaves the processor idle upon exit from the kernel. To make it busy 
again, the following statement is always executed upon kernel ex i t  

if running.user = nil then ready.select 

Monitor Implementation 

Within the kernel, a monitor  variable is represented by a data structure, 
called a gate, which only gives one process at a time access to the monitor.  
A gate is represented by a boolean defining whether it is open, and a queue 
of processes waiting to enter it. 

At the beginning and at the end of a monitor  procedure a process exe- 
cutes an enter and a leave operation. (More precisely, these kernel routines 
are called by the interpreter when it executes the virtual instructions enter- 
moni tor  and exi tmonitor.  ) 

Enter: If the gate is open, the process enters and closes it; otherwise, 
the process is preempted to wait outside the gate. 
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Leave: If n o b o d y  is waiting outside the gate, it is left  open; otherwise, 
a single waiting process is resumed (by transferring it to the ready queue). 

These are the short-term operations which force processes to enter a 
moni tor  one at a time. A moni tor  can also delay processes for longer periods 
of  time and resume them again by  means of  delay and continue operations 
on single-process queues. 

type  gate = 
class 

vat open: boolean; waiting: processqueue; 

procedure enter; 
begin 

if open then open: = false 
else waiting.put(running.preempted);  

end; 

procedure leave; 
begin 

if waiting.empty then open:= true 
else ready.enter(waiting.get); 

end; 

procedure delay(var q: process); 
begin q:= running.preempted; leave end; 

procedure continue(vat  q: process); 
begin 

if q = nil then leave else 
begin ready.enter(q);  q:= nil end; 

end; 

begin open:=false; waiting.initialize end 

Delay: Preempts the running process and enters it in a given single- 
process queue. The moni tor  can now be entered by another process. 

Continue: Forces the running process to leave the moni tor  and resumes 
any process that  may be waiting in a given single-process queue. 

Please, note  the distinction between a multiprocess queue which the 
virtual machine automatically associates with a monitor,  and a single-process 
queue which the programmer declares within a monitor.  The former is 
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stored within the kernel while the latter is stored in the common segment 
(Figs. 9.2 and 9.5). 

When a monitor  variable is initialized, the kernel executes a procedure 
that  allocates its gate in the kernel heap and initializes it 

procedure initgate(var g: @gate); 
begin new(g); g@.initialize end 

The gate reference is stored in the stack of the calling process and passed 
as a parameter to the kernel each time one of the gate operations is exe- 
cuted (Fig. 9.8). 

Details ignored: When a process is resumed within a monitor  it will 
preempt the running process (unless the latter is engaged in nested monitor  
calls).. 

It should also be mentioned that  all kernel operations are indivisible 
and cannot be interrupted. So conceptually, the kernel is a monitor used by 
all processes and peripheral devices. 

Peripherals 

A peripheral is represented by a class within the kernel. It defines the 
device number of the peripheral and its current user process. An io statement 
in Concurrent Pascal is translated into a call of a kernel procedure that  
starts a data transfer and preempts the calling process. An interrupt resumes 
the user process. 

Details: The interrupt procedure also returns a status word to the calling 
process and (usually) gives it priority over the running process. 

vat peripheral: 
class(device: integer); 

vat user: process; 

procedure start(operation: T); 
begin 

startdevice(device, operation); 
user: = running.preempted; 

end; 
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procedure interrupt; 
begin 

ready.enter(user); 
user: = nil; 

end; 

begin user:= nil end 

Only one process at a time can use a peripheral. This must be guaranteed 
by the operating system written in Concurrent Pascal (and not  by the 
kernel). The main function of the kernel is to make peripherals look uniform 
with respect to simple input /ou tpu t  operations and their results (Section 
8.15.7). It does not  perform error recovery. 

Notice that  all interrupts are considered to be parameterless routine 
calls made by the environment of  the processor. This combines the con- 
ceptual simplicity o f  the class concept with the fast response needed to keep 
peripherals busy. This idea could be used in an abstract programming lan- 
guage for real-time applications that require guaranteed, fast response to 
external events. 

Kernel Classes 

The kernel consists of  a hierarchy of classes (some of which have already 
been described): 

newcore 

processqueue 

signal 

time. 

t imer 

clock 

core 

virtual 

Allocates process records and gates in a kernel 
heap. 

Implements multiprocess queues. 

Implements a queue in which processes can wait 
until a timing signal is sent. 

Keeps track of real time. 

Measures time intervals. 

Delays calling processes for 1 sec. 

Allocates core store to processes. 

Allocates virtual store to processes. 
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running 

ready 

gate 

peripherals 

Creates, executes, and preempts processes. 

Schedules processes for execution. 

Gives processes exclusive access to monitors. 

Handle simple input/output .  

Programming and Testing 

The kernel was translated manually line by line into assembly language 
using the abstract program as comments. A small example is sufficient to 
illustrate this programming technique 

gate: .word 1 ; type gate = 
; class 

open = 0 ; var open: boolean; 
wait = open + .boolean ; waiting: processqueue; 

enter: ; procedure enter; 
mov gate, r0 ; begin 
dec (r0) ; if open 
beq 15 ; then 
clr (r0)+ ; open:= false 
mov r0, procq 
jsr pc, preempt ; else 
mov preval, elem ; waiting.put( 
jsr pc, put ; running.preempted); 

15: rts pc ; end; 

The kernel was tested, class by class, by test  programs written in Con- 
current Pascal 

test 1 : 
test 2: 

test 3-4: 
test 5: 
test 6: 
test 7: 

initialization and process creation 
clock interrupts and processor 
multiplexing 
monitor  gates 
teletype 
timer and clock 
teletype bell key 



292 CONCURRENT PASCAL MACHINE Chap. 9 

In test 1, clock interrupts were turned off. In tests 2-6 they were simu- 
lated manually by the bell key on the teletype. Test 7 used normal clock 
interrupts. The only test  o u t p u t  used was a message on the teletype every 
time a process arrives in a queue or departs from one. This technique for 
testing a system kernel is explained elsewhere [Brinch Hansen, 1973a]. 

It took 10 test runs to make test 1 work (!) The rest of the tests re- 
quired 18 runs altogether. Finally, the peripherals were tested by Con- 
current Pascal programs in normal operation. After this initial testing (Janu- 
ary 1975), the kernel seems to be correct. 

Size and Performance 

The kernel classes are of  the following size 

Words 

newcore 560 
processqueue 30 
signal 40 
time 20 
timer 10 
clock 60 
core 40 
virtual 160 
running 570 
ready 130 
gate 110 
6 peripherals 1020 
initialization 160 

kernel 2910 

The kernel heap in newcore  has room for 10 process records and 25 monitor  
gates. Process creation and termination account for 60 per cent of running. 
Each peripheral  is controlled by a class of about  150 words. 

The most critical e x e c u t i o n  t imes  are 

empty kernel call 20 t~sec 
monitor  call 200 psec 
delay, continue 600 psec 
clock interrupt 900 tLsec 

A m o n i t o r  call causes the interpreter to call the kernel twice: at the 
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beginning and at the end of  the procedure. The 200 gsec assumes that  the 
process can enter the monitor  immediately and continue its execution when 
it returns from it. This should be compared with the execution time of a 
simple procedure call (58 psec). 

The figures for delay and continue (600 psec) illustrate the cost of 
switching the processor from one process to another. 

9.4 COMPILER 

The Concurrent Pascal compiler is written in the programming language 
Sequential Pascal. Its structure is inspired by the Gier Algol and Siemens 
Cobol compilers [Naur, 1963, and Brinch Hansen, 1966]. The compiler 
is divided into 7 passes. The following describes the overall division of labor 
among the passes as well as their size and performance. The compiler is 
described in detail by Hartmann [1975]. 

Multipass Compilation 

Our goal was to make a compiler that  can compile operating systems on 
a minicomputer with at least 16 K words of core store and a slow disk 
(50 msec/transfer). To fit into a small core store, the compiler is divided 
into 7 passes 

pass 1: symbol analysis 
pass 2: syntax analysis 
pass 3: scope analysis 
pass 4: declaration analysis 
pass 5: statement analysis 
pass 6: code selection 
pass 7: code assembly 

The main efficiency problem is to avoid random references to the slow 
disk and access it strictly sequentially during compilation. The compiler is 
loaded one pass at a time. Each pass makes a single sequential scan of the 
program text  and outputs intermediate code on the disk. This becomes 
the input to the next  pass. 

So the compiler can b e  viewed as a pipeline consisting of passes con- 
nected by disk buffers. Since the available machine is sequential, only one 
pass is executed at a time. 

A multipass compiler not  only makes store allocation and disk access 
efficient. It  also simplifies the programming task considerably. In a one- 
pass compiler, each procedure performs a variety of compilation tasks 
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[Wirth, 1971].  This tends to make procedures and symbol tables large and 
complicated. In a multipass compiler, syntax analysis, semantic analysis, 
and code generation can be dealt with separately in smaller passes that  use 
simpler data structures tailored to their tasks. 

Each pass is essentially a minicompiler that  only needs to know the 
syntax of its input and output  languages. The data structures and procedures 
used by one pass are irrelevant to another. We found it extremely helpful to 
define the function of each pass by syntax graphs of its expected input and 
output  [Hartmann, 1975].  

Intermediate Files 

The compiler uses four files: source t ex t  and listing, pass inpu t  and out-  
put .  The first two can be stored on any available medium, while the last two 
are kept on disk. These files are accessed by five procedures implemented 
within the operating system (Section 5.2) 

read Inputs a character from the source text. 

write Outputs a character on the source listing. 

get Inputs a disk page from the previous pass. 

put  Outputs a disk page to the next  pass. 

length Defines the length of a disk file in pages. 

After each pass, the disk files exchange roles: The output  file of the 
previous pass becomes the input file of the next  pass, and the former input 
file becomes the next  output  file. 

Disk access times are reduced as follows: The pages of the intermediate 
files are interleaved on the disk. This makes the disk head sweep slowly 
across both files during a pass instead of moving wildly back and forth 
between them. The pages which contain the compiler code are arranged on 
the disk in a manner that  minimizes rotational delay during compiler loading 
(Section 5.4). 

A pass can build tables in core store and leave them there for the next  
pass. This is done by passing a single heap pointer as a parameter from each 
pass to its successor. 

The loading and execution of the passes is controlled by a small Pascal 
program that  also opens and closes all intermediate files (Sections 5.1 and 
6.2). 
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Pass Summary 

Symbol analysis scans the program text  character by character and con- 
verts symbols, identifiers, and numeric constants into unique integers. Iden- 
tifiers are looked up by hashing. This pass does not  distinguish between 
different uses of the same identifier in different contexts. 

Syntax analysis checks the program syntax by means of a set of recur- 
sive procedures--one for each language construct [Wirth, 1971]. Syntax 
errors are handled by erasing part of the program text  to make it look 
syntactically correct to the rest of the compiler. 

Scope analysis checks the access rights of processes, monitors, classes, 
procedures, and with statements. It uses a stack to handle nested contexts. 
The top of the stack defines the identifiers declared within the current 
context.  They are popped at the end of the context.  Every identifier referred 
to by the program is looked up in the nested name table to see if it is ac- 
cessible. Different uses of the same identifier in several contexts are re- 
placed by unique integers. This pass also replaces constant identifiers by 
their values or addresses. Apart from this, scope analysis is only concerned 
about whether an identifier can be used within a given context,  but does 
not  worry about what kind of object it refers to. 

Declaration analysis checks that  declarations of constants, types, vari- 
ables, and procedures are consistent and computes the length of types and 
the addresses of variables. It builds a table of  identifier attributes and dis- 
tributes them wherever the identifiers are referred to in statements. After 
this pass, declarations have disappeared from the intermediate code. 

Statement analysis checks that  operands and operators are compatible. 
This is done by means of  a stack that  simulates program execution by oper- 
ating on data types rather than data values (Section 3.7). In this pass and 
the previous one, semantic errors are handled by replacing undefined types 
and incorrect operands by universal ones that  are compatible with any- 
thing. This prevents an avalanche of error messages from a single semantic 
error. 

Code selection selects code pieces to be generated and computes the 
length of procedure code and temporary variables. It leaves a table of pro- 
gram labels, stack requirements, and large constants in core store. (This is 
the only pass that  transmits large tables in core store to its successor, in 
addition to the intermediate code stored on the disk.) 

Code assembly outputs virtual code in which program labels are re- 
placed by relative addresses. The generation of virtual code is straightfor- 
ward; no optimization is attempted. It is interpreted by machine code on 
the PDP 11/45 computer  (Section 9.2). This pass also prints error messages 
from the other passes (but does not  generate code, if there are any errors). 
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Scope Analysis 

It is the scope rules more than anything else that  distinguish Concur- 
rent Pascal from other programming languages (such as Fortran, Algol, 
Cobol, PL/1, and Sequential Pascal). 

A Concurrent Pascal program consists of a hierarchy of abstract data 
types (classes, monitors, and processes). An abstract data type can only be 
accessed through procedures associated with it. A procedure can refer to 
its own temporary variables and to the permanent variables of the data type 
it operates on. 

Data types and procedures cannot be recursive. This means that  pro- 
cedure entries associated with a single data type cannot call one another. 

To enforce these rules, scope analysis associates an access a t t r ibute  with 
every identifier [Hartmann, 1975].  

Names with external  access may only be referred to outside the scope 
in which they are declared. Example: monitor  procedures. 

Names with internal access may only be referred to inside the scope in 
which they are declared. Examples: monitor  variables and procedure para- 
meters. 

Names with incomple te  access may. not  be referred to until their declara- 
tion has been completed. Example: type declarations. 

Testing 

The compiler was tested using a technique invented by Naur [ 1963].  The 
passes were tested in their natural order starting with pass 1. For each pass 
we used a Concurrent Pascal text  to make the pass execute all statements at 
least once. 

During testing the compiler lists the source text  and the intermediate 
code produced by each pass. A comparison of the input and output  of  a 
pass immediately reveals if something is wrong. The corresponding input 
operator usually tells in which procedure the problem is. After correction 
of  the error the test is repeated. 

This test o u t p u t  mechanism of about  20 lines is a permanent  part of 
the compiler and can always be turned on to document  compiler errors 
revealed by a particular program text. 

The generated code checks that  subscripts are within range, that  poin ters  
are initialized, and that  references to variant records are compatible with 
their mg values. These checks were invaluable during testing of  the com- 
piler. 

In a sample of 64 compiler failures during testing, 50 per cent were 
range errors, 20 per cent were pointer errors, and 28 per cent variant errors. 
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All made the compiler stop with a message of the form 

pass 3 line 307 range error 

(or something similar). Only one of the failures made the compiler go into 
an endless loop wi thout  any indication of what went wrong. Anyone who 
has tested compilers in assembly language will recognize the value of  an 
abstract programming language that  makes checking at compile and run 
time possible. 

It took 4 months to write the compiler and 3 months to test it. This 
was done by A1 Hartmann. The compiler has been used since January 1975 
without  problems. 

A Sequential Pascal compiler was derived from the concurrent one in 
one additional man-month. It can compile its largest pass in 16 K words of 
core store. This compiler was moved from the PDP 11/45 computer  to 
another minicomputer in another man-month. 

Size and Performance 

The following shows the storage requirements of  the compiler when it 
compiles the Solo operating sys tem--a  Concurrent Pascal program of 1300 
lines (Chapter 5). 

Virtual code (words) Data (words) 

common 1000 1300 
pass 1 4000 5600 
pass 2 5600 1200 
pass 3 7800 6200 
pass 4 5800 4800 
pass 5 4000 300 
pass 6 3000 650 
pass 7 3600 650 

compiler 34800 20700 

The compiler runs in 16 K words of core store. This includes 2 K words 
of common input /output  procedures and data buffers. 

After an initial time of 7 sec the compilation speed is 240 char/sec (or 
about  10 lines/sec). The compiler is about  60 per cent disk limited. 



THE NEXT STEP 

The process and monitor concepts unify many things that  were thought 
to be unrelated before (and were taught in different courses on program- 
ming) 

hierarchical programming (precise modulari ty)  
data abstraction (information hiding) 
scope rules (access rights) 
resource protect ion 
type  checking 
concurrent  processes 
process synchronization 
deadlock prevention 

The minor inconvenience of  the class notat ion (borrowed from Simula 67) 
is of little consequence compared to the general insight it has given us. 

Where do we go from here? My feeling is that Concurrent Pascal can 
serve as a starting point  for further development  of  abstract concurrent 
programming in several directions. 

298 
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Model Operating Systems 

The operating systems written so far in Concurrent Pascal are small. I 
would hope (and expect) that  a larger system will turn out to be "more 
of the same." But it seems worthwhile to confirm this by using Concurrent 
Pascal to build a medium-size operating system, for example, a terminal 
system that  gives each user the capability of Solo. 

I would also expect that  extensive control of access rights during com- 
pilation can be used to guarantee the integrity of a valuable data base kept 
on a large backing store. 

Program Verification 

Using the axiomatic method of Hoare [1969] it is possible to verify 
mathematically that  small programs are correct. This verification can either 
be done manually [Hoare, 1971] or semiautomatically [Igarashi, London,  
and Luckham, 1975].  Formal verification is still limited to programs of 
about one page or less. 

Since a Concurrent Pascal program can be composed of semiindependent 
components of one page each, there is reason to hope that  the verification 
techniques for sequential programs can be extended to concurrent programs 
as well. Some of this work has already been started by Hoare [1972a, 1972b, 
1974],  Howard [1976],  and Owicki [1976]. It would be a worthy achieve- 
ment  to verify parts of a working operating system, such as Solo. 

The greatest value of a formal approach to correctness is probably the 
extreme rigor and structure that  it must  impose on the design process from 
the beginning to be successful. This cannot fail to improve our informal 
understanding of programs as well. 

Language Design 

Since hierarchical ordering of access rights is such a fruitful program- 
ming concept it should be studied from many other points of view. 

One possibility is to use even tighter control of access rights and check 
that  components only call a subset of the procedures within other com- 
ponents (for example, that  a process only sends data through a buffer, 
but does not  try to receive from it) [Wulf, 1974].  

Another possibility is to check the sequence in which operations are 
carried out  on abstract data structures (for example, that  a resource always 
is requested before being used and is released afterwards) [Campbell and 
Habermann, 1974].  
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It may also be possible to simplify the access mechanisms of  Concurrent 
Pascal (rather than extending them). If successful, this should reduce the 
size of  both the compiler and the kernel [Wirth, 1976c] .  

Another  idea would be to develop a simple, abstract language for real- 
time applications with critical timing constraints as suggested in Section 9.3. 

But all these ideas must  be tested in the design of real systems before 
they can be evaluated realistically. 

Computer Design 

The widespread use of  Fortran, Algol 60, P1/1, and Cobol illustrates 
the success of  abstract user programming. Sequential and Concurrent  Pas- 
cal show that  suppression of  machine detail a lso is the key to success in 
system programming. During the next  decade, abstract concurrent  program- 
ming may well simplify computer design as well. 

New digital technology has already lead to the development  of  simple 
devices that  are useful to everyone (calculators, watches, and fuel injectors). 
Eventually industry will be using complicated, specialized networks of  
microprocessors. We do no t  know how to build them systematically yet ,  
but  it is an intellectual challenge wor thy  of  the best  minds. 

These dedicated computer  systems may no t  be programmable in the 
sense that  they can execute arbitrary programs. They may indeed owe their 
efficiency to fixed algorithms built  into the hardware. But  somebody  must  
still write and verify these concurrent  algorithms. In that  sense, such com- 
puter  systems will involve program development.  And before these programs 
are nailed into hardware and mass-produced, they had better  be correct. 

It 'seems very attractive to write a concurrent  program in an abstract 
language, test it on a minicomputer,  and then derive the most  straight- 
forward multiprocessor architecture from the program itself. 
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LIST OF PROGRAM COMPONENTS 

This is a complete list of all classes, monitors, process, and sequential 
programs used in the model operating systems (Job stream, Pipeline, Real- 
time, and Solo). 

Classes 

Bellkey (Real-time), 200 
Charstream (Solo), 126 
Dataffle (Job stream, Solo), 118 
Disk (Job stream, Solo), 111 
Diskffle (Job stream, Solo), 113 
Disktable (Job stream, Solo), 116 
Fifo (Job stream, Real-time, Solo), 102 
Filemaker (Pipeline), 55 
Inputstream (Job stream), 169 
Linemaker (Pipeline), 56 
Outputstream (Job stream), 170 
Pagemaker (Pipeline), 56 
Progffle (Job stream, Solo), 121 
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Terminal (Job stream, Solo), 108 
Terminal (Real-time), 198 
Terminalstream (Solo), 110 
Typewriter (Job stream, Solo), 106 
Typewriter (Real-time), 198 

Monitors 

Clock (Real-time), 204 
Diskcatalog (Job stream, Solo), 117 
Linebuffer (Job stream), 171 
Linebuffer (Pipeline), 52 
Pagebuffer (Job stream), 167 
Pagebuffer (Solo), 125 
Progstack (Solo), 122 
Progtimer (Job stream), 173 
Resource (Job stream, Real-time, Solo), 103 
Taskqueue (Real-time), 201 
Taskset (Real-time), 202 
Timetable (Real-time), 206 
Typeresource (Job stream, Solo), 105 

Processes 

Cardprocess (Job stream, Solo), 136 
Cardprocess (Pipeline), 50 
Clockprocess (Job stream), 175 
Clockprocess (Real-time), 208 
Copyprocess (Pipeline), 50 
Initial process (Job stream), 185 
Initial process (Pipeline), 62 
Initial process (Real-time), 213 
Initial process (Solo), 140 
Inputprocess (Job stream), 175 
Ioprocess (Solo), 133 
Jobprocess (Job stream), 177 
Jobprocess (Solo), 128 
Loaderprocess (Job stream, Solo), 139 
Operatorprocess (Real-time), 209 
Outputprocess (Job stream), 183 
Printerprocess (Job stream, Solo), 138 
Printerprocess (Pipeline), 49 
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Taskprocess (Real-time), 205 

Sequential Programs 

Copy (Solo), 93 
Jobinput (Job stream), 153 
Joboutput (Job stream), 162 
Jobservice (Job stream), 158 



DANISH SUMMARY 

Denne afhandling beskriver en systematisk metode  for konstruktion af 
simple, paalidelige multiprogrammer--programmer der faar en datamaskine 
til at gCre flere ting samtidigt. 

Bogen har baade teoretisk og praktisk sigte. Den forsCger at laegge 
grundlaget for abstrakt (maskinuafhaengig) multiprogrammering ved hjaelp 
af et nyt  programmeringssprog Concurrent Pascal- det  fCrste af sin art. 

Brugen af dette sprog illustreres af tre simple operativsystemer for en 
enkelt bruger, for smaa studenter  programmer, og for industriel proceskon- 
trol. Bogen indeholder en komplet  udskrift  af disse multiprogrammer der 
alle har vaeret afprCvet paa en PDP 11/45 datamaskine. 

Kapitel 1 opsummerer de generelle programmeringsprincipper bag 
abstrakt multiprogrammering. Simpelhed opnaas ved brugen af et maskinu- 
afhaengigt programmeringssprog, mens paalidelighed baseres paa omfat tende 
oversaetterkontrol. 

Kapitel 2 forklarer hvordan samtidige processer og monitorer  kan 
anvendes til at konstruere et hierarkisk multiprogram. 

Kapitel 3 giver et kort  overblik over det  sekventielle programmerings- 
sprog Pascal de re r  udgangspunktet  for dette arbejde. 

Kapitel 4 indf~rer en sprognotation for hovedbegreberne i Concurrent 
Pascal (processer og monitorer). 
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Kapitel 5 beskriver et enkeltbruger system for en minidatamaskine 
skrevet i Concurrent Pascal. Det oversaetter og udfCrer brugerprogrammer 
skrevet i sekventiel Pascal. Programudf~rsel samt indlaesning og udskrift af 
data sker samtidigt. Pascal programmer kan kalde hinanden rekursivt, 
saaledes at Pascal ogsaa kan bruges som jobkontrolsprog. 

Kapitel 6 praesenterer et system der oversaetter og udf~rer en str~bm af 
smaa Pascal programmer indlaest fra en hulkortlaeser og udskrevet paa en 
linieskriver. Indlaesning, udfCrsel, og udskrift styres af samtidige processer 
der udveksler data gennem store diskbuffere. 

Kapitel 7 beskriver et sandtidsprogram for proceskontrolanvendelser 
med et fast antal kontrolprocesser der udf~ires periodisk efter operatCrens 
forskrift. 

Solo systemet viser hvorledes et multiprogram paa mere end 1000 linier 
kan opbygges af en raekke processer og monitorer der hver isaer kun bestaar 
af en sides programtekst og som kan programmeres og afpr~bves enkeltvis. 

Sandtidssystemet bruges til at vise hvorledes saadanne programkom- 
ponenter kan afpr~ves systematisk. 

Jobstr~m systemet illustrerer hvordan et multiprogram kan konstrueres 
til at yde det bedst mulige paa den givne maskine. 

Kapitel 8 definerer programmeringssproget Concurrent Pascal kort og 
praecist. 

Kapitel 9 beskriver hovedlinierne i implementeringen af sproget: lager- 
tildeling, kodeudfSrsel, systemkerne, og oversaetter. 

Bogen slutter med at foreslaa en raekke muligheder for videre forskning 
af abstrakt multiprogrammering. 

Concurrent Pascal er resultatet af 10 aars arbejde med multiprogramme- 
ring. Det begyndte i 1965 da jeg laeste Edsger Dijkstra's skelsaettende vaerk 
"Samarbejdende sekventielle processer" hvori han viser hvorledes samtidige 
processer kan synkroniseres ved at sende tidssignaler gennem semafor vari- 
able. 

Peter Kraft og jeg brugte disse ideer i RC 4000 proceskontrol systemet i 
Pulawy, Polen [Brinch Hansen, 1967]. 

I praksis viste det sig at vaere vanskeligt at bruge semaforer rigtigt. Den 
mindste programmeringsfejl kunne g~bre et multiprogram tidsafhc~ngigt, 
saaledes at det gav forskellige resultater hver gang det blev udfCrt med de 
samme data. Det gjorde til tider programafprCvning vaerdil~bs, idet man ikke 
kunne slutte fra programmets varierende opf~rsel hvad der vat galt med det. 

I RC 4000 multiprogrammeringssystemet fors¢gte JCrn Jensen, SOren 
Lauesen og jeg at lose dette paalidelighedsproblem ved at lade samtidige 
processer sende meddelelser til hinanden (istedet for tidssignaler). Et maskin- 
program, kaldet monitoren, s~rgede for at disse operationer altid blev udf~rt 
korrekt [Brinch Hansen, 1970]. 

Baade Dijkstra's T.H.E. system og Regnecentralen's RC 4000 system 
blev skrevet i maskinkode. Men mens Dijkstra antog at samtidige processer 
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samarbejdede frivilligt, saa betragtede vi RC 4000 processer som vaerende 
saa upaalidelige at maskinen maatte overvaage dem konstant  (ved hjaelp af 
et beskyttelsessystem). Det fCrste synspunkt  er ofte urealistisk, og det  andet 
er altid besvaerligt at arbejde med. Det forekom mig at der burde findes 
en bedre maade at gCre multiprogrammering baade simpel og paalidelig. 

I 1971 fik Tony Hoare og jeg den ide at skrive multiprogrammer i et 
programmeringssprog der er saa velstruktureret at en oversaetter til en vis 
grad kan garantere at programmeringsfejl ikke fCrer til tidsafhaengige re- 
sultater. Vores hovedide var at erklaere variable der bruges af flere processer 
som faelles variable og markere alle operationer paa disse variable som 
kritiske sektioner. Oversaetteren og maskinen kan saa automatisk s~rge for 
at disse kritiske sektioner udfCres een ad gangen. Jeg foreslog tillige brugen 
af procesk~er til at gCre synkroniseringsoperationer mere effektive [Hoare, 
1971 og Brinch Hansen, 1972] .  

Omtrent  samtidigt foreslog Dijkstra [1971] at et  multiprogram ville 
vaere nemmere at forstaa hvis en faelles variabel og alle operationer paa den 
var samlet paa eet sted i programmet. Denne kombination af en faelles 
datastruktur og alle de procedurer der har adgang til den kaldes en monitor. 

I min laerebog om "Operativsystemprincipper" [1973] foreslog jeg en 
sprognotation for monitorbegrebet  baseret paa klassebegrebet i Simula 67 
[Dahl, 1972] .  Jeg paapegede samtidigt at denne notat ion ville gore det  
muligt for en oversaetter at kontrollere at resten af et program kun udfCrer 
netop de operationer paa en faelles variabel der er defineret af dens monitor. 
Det er saaledes en mekanisme der beskyt ter  en programkomponent  mod 
at blive ~bdelagt af andre komponenter .  

I en senere artikel fllustrerede Tony Hoare [1974] det te  monitorbegreb 
med simple eksempler. 

For at pr~tve disse ideer i praksis udvidede jeg det  sekventielle pro- 
grammeringssprog Pascal [Jensen and Wirth, 1974] med samtidige processer 
og monitorer. Resultatet  blev Concurrent Pascal [Brinch Hansen, 1975] .  
I januar 1975 fuldf¢rte Alfred Hartmann den fSrste Concurrent Pascal 
oversaetter for PDP 11/45 maskinen. Samme aar udviklede jeg de tre eks- 
perimentelle operativsystemer der er beskrevet her [Brinch Hansen, 1976] .  

Concurrent Pascal er et abstrakt sprog der skjuler de fleste af de detailer 
der gCre maskinprogrammering saa problematisk (registre og lagerord, 
bitm¢nstre og adresser, maskininstruktioner og hop, afbrydesignaler, saint 
tildeling af centralenheder og lager). 

Proces- og monitorbegreberne forener mange ting der tidligere blev 
betragtet som vaerende uden forbindelse med hinanden (og blev indf~rt i 
forskellige programmeringskurser ): 

hierarkisk programmering (praecis modularitet)  
data abstraktion (isolering af detailer) 
resource beskyttelse 
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type  kontrol  
bevisfCrelse for programmer 
multiprogrammering 
synkronisering 

Sk~bnt klassebegrebet er ligesaa nytt igt  til sekventiel programmering er 
det  ikke noget tilfaelde at dets fulde potentiel  f~brst blev opdaget i forbin- 
delse med den mest generelle og vanskelige form for programmering -- multi- 
programmering. Fejl i sekventielle programmer kan altid reproduceres og 
lokaliseres eksperimentelt. Men den mindste fejl i et  multiprogram kan faa 
det  til at k~re saa tilfaeldigt at afprCvning bliver meningsl~bs. Man maa derfor 
indf~re saa meget struktur i et programmeringssprog at en oversaetter kan 
finde synkroniseringsfejl (da ingen anden kan g~bre det). 

F~r sekventielle programm~rer fandt  ud af at hop og globale variable 
var problematiske havde multiprogramm~rer allerede erstattet  parallelle 
forgreninger med samtidige processer og begraenset brugen af faelles variable 
til kritiske sektioner. Ting der ofte forekommer  at vaere et sp~brgsmaal om 
smag og behag i sekventielle programmer kan be tyde  forskellen mellem 
success og fiasko i multiprogrammer I den forstand er multiprogrammering 
en rig kilde til en dybere forstaaelse af sekventiel programmering. 
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