
THE ARCHITECTURE
OF CONCURRENT

PROGRAMS

Prentice-Hall
Series in Automatic Computation

AHO, ed., Currents in the Theory of Computing
AHO and ULLMAN, The Theory o f Parsing, Translation, and Compiling,

Volume I: Parsing; Volume II: Compiling
ANDREE, Computer Programming: Techniques, Analysis, and Mathematics
ANSELONE, Collectively Compact Operator Approximation Theory

and Applications to Integral Equations
AVRIEL, Nonlinear Programming: Analysis and Methods
BENNETT, JR., Scientific and Engineering Problem.Solving with the Computer
BLAAUW, Digital System Implementation
BLUMENTHAL, Management Information Systems
BRENT, Algorithms for Minimization without Derivatives
BRINCH HANSEN, The Architecture of Concurrent Programs
BRINCH HANSEN, Operating System Principles
BRZOZOWSKI and YOELL, Digital Networks
COFFMAN and DENNING, Operating Systems Theory
CRESS, et al., FORTRAN IV with WATFOR and WATFIV
DAHLQUIST, BJORCK, and ANDERSON, Numerical Methods
DANIEL, The Approximate Minimization of Functionals
DEO, Graph Theory with Applications to Engineering and Computer Science
DESMONDE, Computers and Their Uses, 2nd ed.
DIJKSTRA, A Discipline of Programming
DRUMMOND, Evaluation and Measurement Techniques for Digital Computer Systems
EC KHOUSE, Minicomputer Systems: Organization and Programming (PDP-11)
FIKE, Computer Evaluation of Mathematical Functions
FIKE, PL /1 for Scientific Programmers
FORSYTHE, MALCOLM, and MOLLER, Computer Methods for Mathematical Computations
FORSYTHE and MOLLER, Computer Solution of Linear Algebraic Systems
GEAR, Numerical Initial Value Problems in Ordinary Differential Equations
GILL, Applied Algebra for the Computer Sciences
GORDON, System Simulation
GRISWOLD, String and List Processing in SNOBOL4: Techniques and Applications
HANSEN, A Table o f Series and Products
HARTMANIS and STEARNS, Algebraic Structure Theory o f Sequential Machines
HILBURN and JULICH, Microcomputers/Microprocessor: Hardware, Software, and Applications
HUGHES and MICHTOM, A Structured Approach to Programming
JACOBY, et al., Iterative Methods for Nonlinear Optimization Problems
JOHNSON, System Structure in Data, Programs, and Computers
KIVIAT, et al., The SIMSCRIPT II Programming Language
LAWSON and HANSON, Solving Least Squares Problems
LO RIN, Parallelism in Hardware and Software: Real and A pparen t Concurrency
LOUDEN and LEDIN, Programming the IBM 1130, 2nd ed.
MARTIN, Communications Satellite Systems
MARTIN, Computer Data-Base Organization, 2nd ed.
MARTIN, Design of Man-Computer Dialogues

LIBRARY

MARTIN, Design o f Real-Time Computer Systems
MARTIN, Future Developments in Telecommunications, 2nd ed.
MARTIN, Principles o f Data-Base Management
MARTIN, Programming Real-Time Computing Systems
MARTIN, Security, Accuracy, and Privacy in Computer Systems
MARTIN, Systems Analysis for Data Transmission
MARTIN, Telecommunications and the Computer, 2nd ed.
MARTIN, Teleprocessing Network Organization
MARTIN and NORMAN, The Computerized Society
MCKEEMAN, et al., A Compiler Generator
MEYERS, Time-Sharing Computation in the Social Sciences
MINSKY~ Computation: Finite and Infinite Machines
NIEVERGELT, et al., Computer Approaches to Mathematical Problems
PLANE and MCMILLAN, Discrete Optimization
POLIVKA and PAKIN, APL: The Language and Its Usage
PRITSKER and KIVIAT, Simulation with GASP II: A FORTRAN-based Simulation Language
PYLYSHYN, ed., Perspectives on the Computer Revolution
RICH, Internal Sorting Methods Illustrated with PL / LPrograms
RUDD, Assembly Language Programming and the IBM 360 and 370 Computers
SACKMANN and CITRENBAUM, eds., On-Line Planning: Towards Creative Problem-Solving
SALTON, ed., The SMART Retrieval System: Experiments in Automatic Document Processing
SAMMET, Programming Languages: History and Fundamentals
SCHAEFER, A Mathematical Theory of Global Program Optimization
SCHULTZ, Spline Analysis
SCHWART Z, et al., Numerical Analysis o f Symmetric Matrices
SHAH, Engineering Simulation Using Small Scientific Computers
SHAW, :The Logical Design o f Operating Systems
SHERMAN, Techniques in Computer Programming
SIMON and SIKLOSSY, eds., Representation and Meaning:

Experiments with Information Processing Systems
STERBENZ, Floating-Point Computation
STOUTEMYER, PL /1 Programming for Engineering and Science
STRANG and FIX, An Analysis o f the Finite Element Method
STROUD, Approximate Calculation o f Multiple Integrals
TANEN BAUM, Structured Computer Organization
TAVISS, ed., The Computer Impact
UHR, Pattern Recognition, Learning, and Thought:

Computer-Programmed Models o f Higher Mental Processes
VAN TASSEL, Computer Security Management
VARGA, Matrix Iterative Analysis
WAITE, Implementing Software for Non-Numeric Application
WILKINSON, Rounding Errors in Algebraic Processes
WIRTH, Algorithms + Data Structures = Programs
WIRTH, Systematic Programming: An Introduction
YEH, ed., Applied Computation Theory: Analysis, Design, Modeling

To my father

THE ARCHITECTURE
OF CONCURRENT

PROGRAMS

M 4,1 L Li67pA,9 ~

PER BRINCH HANSEN

University of Southern California

PRENTICE-HALL, INC. Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Brinch Hansen, Per,
The architecture of concurrent programs.

(Prentice-Hall series in automatic computat ion)
Summary in Danish.
Bibliography: p.
Includes index.
1. Concurrent Pascal (Computer programming language)

2. Operating systems (Computers) I. Title.
QA76.73.C65B73 1977 001.6 '424 77-4901
ISBN 0-13-044628-9

73
,C 5

/ 77
C,I

© 1977 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey

All rights reserved. No part of this book may be
reproduced in any form, by mimeography or by any
means, without permission in writing from the publisher.

07632

1 0 9 8 7 6 5 4 3

Printed in the United States of America

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LTD., Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
PRENTICE-HALL OF SOUTH EAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

CONTENTS

PROGRAMMING TOOLS

1. DESIGN PRINCIPLES 3

1.1. Program quality 3
1.2. Simplicity 4
1.3. Reliability 6
1.4. Adaptability 8
1.5. Portability 9
1.6. Efficiency 9
1.7. Generality 10
1.8. Conclusion 11
1.9. Literature 11

2. PROGRAMMING CONCEPTS 15

2.1. Concurrent processes 16
2.2. Private data 17
2.3. Peripherals 19
2.4. Shai-ed data 19

2.5. Access rights 21
2.6. Abstract data types 2 3
2.7. Hierarchical structure 2 5

" j

vii

viii CONTENTS

3. SEQUENTIAL PASCAL 29

3.1. Program structure 30
3.2. Constants and variables 31
3.3. Simple data types 33
3.4. Structured data types 36
3.5. Routines 40
3.6. Scope rules 41
3.7. Type checking 42
3.8. Literature 45

4. CONCURRENT PASCAL 47

4.1. Input]output 47
4.2. Processes 49
4.3. Monitors 52
4.4. Queues 54
4.5. Classes 54
4.6. A complete program 57
4.7. Execution times 62
4.8. Conclusion 63
4.9. Literature 65

CONCURRENT PROGRAMS

5. THE SOLO OPERATING SYSTEM 69

5.1. Overview 69
5.2. Job interface 80
5.3. Processes, monitors, and classes 98
5.4. Disk scheduling 142
5.5 List of Solo components 147

6. THE JOB STREAM SYSTEM 148

6.1. Funct ion and performance 148
6.2. Sequential programs and files 153
6.3. Concurrent program 166
6.4. Final remarks 186
6.5. List of Job stream components 187

7. A REAL-TIME SCHEDULER 189

7.1. Purpose and design 189
7.2. Programming 197
7.3. Testing 214
7.4. Final remarks 226
7.5. List of Real-time components 227

67

CONTENTS ix

LANGUAGE DETAILS

8. CONCURRENT PASCAL REPORT 231

8.1. Introduction 231
8.2. Syntax graphs 232
8.3. Character set 232
8.4. Basic symbols 233
8.5. Blocks 235
8.6. Constants 235
8.7. Types 236
8.8. Variables 246
8.9. Expressions 249
8.10. Statements 250
8.11. Routines 251
8.12. Queues 255
8.13. Scope rules 256
8.14. Concurrent programs 257
8.15. PDP 11/45 system 257
8.16. ASCII character set 267
8.17. Index of report 268

9. CONCURRENT PASCAL MACHINE 271

9.1. Store allocation 271
9.2. Code interpretation 278
9.3. Kernel 283
9.4. Compiler 293

THE NEXT STEP 298

229

REFERENCES 301

LIST OF PROGRAM COMPONENTS 304

DANISH SUMMARY 307

INDEX 311

PREFACE

CONCURRENT PROGRAMMING

This book describes a method for writing concurrent computer pro-
grams of high quality. It is written for professional programmers and stu-
dents who are faced with the complicated task of building reliable computer
operating systems or real-time control programs.

The motivations for mastering concurrent programming are both eco-
nomic and intellectual. Concurrent programming makes it possible to use a
computer where many things need attention at the same t ime - -be they
people at terminals or temperatures in an industrial plant. It is wi thout
doubt the most difficult form of programming.

This book presents a systematic way of developing concurrent programs
in a structured language called Concurrent Pascal--the first of its kind. The
use of this language is illustrated by three non-trivial concurrent programs :
a single-user operating system, a job-stream system, and a real-time sched-
uler. All of these have been used successfully on a PDP 11/45 computer.
The book includes the complete text of these three programs and explains
how they are structured, programmed, tested, and described.

I n an earlier book, Operating System Principles [Prentice-Hall, 1973] ,

xi

xii PREFACE

I tried to establish a background for studying existing operating systems in
terms of basic concepts. This new tex t tells the other side of the s tory :
how concurrent programs can be constructed systematically from scratch.
It also illustrates details of important design p r o b l e m s - - t h e management of
input /ou tpu t , data files, and programs- -which were deliberately omit ted
from the first book. So it is useful both as a practical supplement to operat-
ing system courses and also as a handbook on structured concurrent pro-
gramming for engineers.

COMPILATION AND TESTING

A concurrent program consists of sequential processes tha t are carried
out simultaneously. The processes cooperate on common tasks by exchang-
ing data through shared variables. The problem is that unrestr icted access
to the shared variables can make the result of a concurrent program de-
pendant on the relative speeds of its processes. This is obvious if you think
of a car and a train passing through the same railroad crossing : it is the
relative timing of these "processes" tha t determines whether they will
collide.

Unfor tunately , the execut ion speed of a program will vary somewhat
f rom one run to the next. It will be influenced by other (unrelated) pro-
grams running simultaneously and by operators responding to requests.
So you can never be quite sure what an incorrect, concurrent program
is going to do. If you execute it many times with the same data you will
get a different result each time. This makes it hopeless to judge what went
wrong. Program testing is simply useless as a means of locating time-depen-
dent errors.

Some of these errors can no doubt be located by proofreading. I have
seen a programmer do this by looking at an assembly language program
for a week. But, to proofread a large program, you must understand it in
complete detail. So the search for an error may involve all of the people who
wrote the program, and even then you cannot be sure it will be found.

Well, i f we c a n n o t m a k e c o n c u r r e n t programs w o r k by proo f read ing
or testing, then I can see on ly one o the r e f f ec t i ve m e t h o d at the m o m e n t :
to wri te all c o n c u r r e n t programs in a p r o g r a m m i n g language that is so
s t ruc tured that y o u can spec i f y exac t l y w h a t processes can do to shared
variables and d e p e n d on a compi l e r to c h e c k that the programs sat is fy
these assumpt ions . Concurrent Pascal is the first language that makes
this possible.

In the long run it is no t advisable to write large concurrent programs
in machine-oriented languages that permit unrestr icted use of store loca-

PREFACE x i i i

tions and their addresses. There is just no way we will be able to make such
programs reliable (even with the help of complicated hardware mechanisms).

CONCURRENT PASCAL

From 1963-65 I was one of ten programmers who wrote a Cobol com-
piler in assembly language. This program of 40,000 instructions took 15
man-years to build. Although it worked well, the compiler was very diffi-
cult to maintain since none of us understood it completely.

Five years later, compiler writing was completely changed by the se-
quential programming language Pascal, invented by Niklaus Wirth. Pascal is
an abstract language that hides irrelevant machine detail from the program-
mer. At the same time it is efficient enough for system programming. It is
easily understood by programmers familiar with Fortran, Algol 60, Cobol,
or PL/I.

In 1974 A1 Hartmann used Sequential Pascal to write a compiler for my
new programming language, called Concurrent Pascal. This compiler is
comparable to a machine program of 35,000 instructions. But, written in
Pascal, the program text is only 8,300 lines long and can be completely
understood by a single person. The programming and testing of this com-
piler took only 7 months.

The aim of Concurrent Pascal is to do for operating systems what
Sequential Pascal has done for compilers: to reduce the programming effort
by an order of magnitude.

Concurrent Pascal extends Sequential Pascal with concurrent processes
and monitors. The compiler prevents some time-dependent programming
errors by checking that the private variables of one process are inaccessible
to another. Processes can only communicate by means of monitors.

A monitor defines all the possible operations on a shared data structure.
It can, for example, define the send and receive operations on a message
buffer. The compiler will check that processes only perform these two
operations on a buffer.

A monitor can delay processes to make their interactions independent of
their speeds. A process that tries to receive a message from an empty buffer
will, for example, be delayed until another process sends a message to it.

If a programmer can design a process or monitor correctly, the rest of
a program will not be able to make that component behave erratically
(since no other part of the program has direct access to the variables used
by a component) . The controlled access to private and shared variables
greatly reduces the risk o f t ime-dependent program behavior caused by
erroneous processes.

xiv PREFACE

MODEL OPERATING SYSTEMS

This book stresses the practice of concurrent programming. It con-
tains a complete description of three model operating systems written in
Concurrent Pascal.

Chapter 5 describes a single-user operating system, called Solo. It sup-
ports the development of Sequential and Concurrent Pascal programs on
the PDP 11/45 computer . Inpu t /ou tpu t are hand]Led by concurrent pro-
cesses. Pascal programs can call one another recursively and pass arbitrary
parameters among themselves. This makes it possib]Le to use Pascal as a job
control language. Solo is the first major example of a hierarchical concurrent
program made of processes and monitors.

Chapter 6 presents a job-stream system that compiles and executes
short Pascal programs which are input from a card reader and are ou tput on
a line printer. Input , execut ion, and ou tpu t take place simultaneously, using
buffers stored on disk.

Chapter 7 discusses a real-time scheduler for process control applications
in which a fixed number of concurrent tasks are carried out periodically
with frequencies chosen by an operator.

These chapters no t only describe how to build different kinds of operat-
ing systems but also illustrate the main steps of the program development
process.

The Solo system shows how a concurrent program of more than a
thousand lines can be structured and programmed as a sequence of com-
ponents of less than one page each. The real-time scheduler is used to dem-
onstrate how a hierarchical, concurrent program can be tested systematically.
The job-stream system illustrates how a program structure can be derived
from performance considerations.

LANGUAGE DEFINITION AND IMPLEMENTATION

I have tried to make this book as readable as possible to share an archi-
tectonic view of concurrent programming effectively. Formalism is of ten a
stumbling block in the first encounter with a new field, and the practice of
s t ructured concurrent programming is not commonplace yet. So I have
assumed in chapters 3 and 4 that you are so familiar with one or more
programming languages that it is sufficient to show the flavor of Sequential
and Concurrent Pascal by examples before describing the model operating
systems.

But when you wish to use a new programming language in your own
work, a precise definit ion of it becomes essential. So the Concurrent Pascal
report is included in chapter 8.

PREFACE xv

The whole purpose of this work is to show how much a concurrent
programming effort can be reduced by using an abstract language that
suppresses as much machine detail as one can afford to without losing
control of program efficiency. For this reason the introduction to Concur-
rent Pascal ignores the question of how the language is implemented.

Chapter 9 is an overview of the language implementation for those who
feel uncomfortable unless they have a dynamic feeling for what their pro-
grams make the machine do. I suspect that most of us belong to that group.
Once you understand what a machine does, however, it is easier to forget
the details again and start relying completely on the abstract concepts that
are built into the language.

TEACHING AND ENGINEERING

Very few operating systems are so well-structured and well-documented
that they are worth studying in detail. And few (if any) computing centers
make it possible for students to write their own concurrent programs in an
abstract language. Since students can neither study nor build realistic operat-
ing systems it is almost impossible to make them feel comfortable about the
subject.

This book tries to remedy that situation. It defines an abstract language
for concurrent programming that has been implemented on the PDP 11/45
computer. The compiler can be moved to other computers since it is written
in Sequential Pascal and generates code for a simple machine that can be
simulated efficiently by microprogram or machine language.

The book also offers complete examples of model operating systems
that can be studied by students.

If you are a professional programmer you can seldom choose your own
programming language for large projects. But you can benefit from new
language constructs--such as processes and mon i to r s - -by taking them as
models of a systematic programming style that can be imitated as closely as
possible in other languages (including assembly languages).

The system kernel that is described in chapter 9 illustrates this. It is an
assembly language program written entirely by means of classes (a concept
similar to monitors). Since this concept is not in the assembly language it is
described by comments only.

The book can also be used as a handbook on the design of small operat-
ing systems and significant portions of larger ones.

If you are a software engineer you may feel that the operating systems
described here are much smaller than those you are asked to build. This
raises the question of whether the concepts used here can help you build
huge systems. My recommendation is to use abstract programming concepts

xvi PREFACE

(such as processes and monitors) wherever you can. This will probably solve
most programming problems in a simple manner and leave you with only
a few really machine-dependent components (such as a processor scheduler
and a storage allocator). As a means of organizing :your thoughts, Concur-
rent Pascal can only be helpful.

But I should also admit that I do not see a future for large operating
systems. They never worked well and they probably never will. They are
just too complicated for the human mind. They were the product of an
early stage in which none of us had a good feeling for what software quality
means. The new technology that supports wide-spread use Of cheap, per-
sonal computers will soon make them obsolete.

Although operating systems have provided the most spectacular exam-
ples of the difficulty of making concurrent programs reliable, there are
other applications that present problems of their own. As an industrial
programmer I was involved in the design of process control programs for a
chemical plant, a power plant, and a meteorological institute. These real-
time applications had one thing in common: they were all unique in their
software requirements.

When the cost of developing a large program cannot be shared by many
users the pressure to reduce the cost is much greater than it is for general-
purpose software, such as compilers and operating systems. The only prac-
tical way of reducing cost then is to give the process control engineers an
abstract language for concurrent programming. To :illustrate this I rewrote
an existing real-time scheduler from machine language into Concurrent
Pascal (chapter 7).

The recent reduction of hardware costs for microprocessors will soon
put even greater pressure on software designers to reduce their costs as
well. So there is every reason for a realistic programmer to keep an eye
on recent developments in programming methodology'.

PROJECT BACKGROUND

In 1971, Edsger Dijkstra suggested that concurrent programs might be
easier to understand if all synchronizing operations on a shared data
structure were collected into a single program unit (which we now call
a monitor) .

In May 1972 I wrote a chapter on Resource Protection for Operating
Sys tem Principles. I introduced a language notat ion for monitors and
pointed out that resource protection in operating systems and type checking
in compilers are solutions to the same problem: to verify automatically
that programs only perform meaningful operations on data structures. My
conclusion was that " I expect to see many protect ion rules in future operat-

PREFACE xvi i

ing systems being enforced in the cheapest possible manner by type checking
at compile time. However, this will require exclusive use of efficient, well-
structured languages for programming." This is still the idea behind Con-
current Pascal.

I developed Concurrent Pascal at the California Institute of Technology
from 1972-75. The compiler was written by A1 Hartmann. Robert Deverill
and Tom Zepko wrote the interpreter for the PDP 11/45. I built the model
operating systems, and Wolfgang Franzen made improvements to one of
them (Solo).

ACKNOWLEDGEMENT

The Institute of Electrical and Electronics Engineers, North-Holland
Publishing Company, and John Wiley and Sons kindly granted permission
to reprint parts of the papers:

"The programming language Concurrent Pascal."
IEEE Transactions on Software Engineering 1,
2, June 1975.

"Universal types in Concurrent Pascal."
Information Processing Letters 3,
6, July 1975.

"The Solo operating system."
Software--Practice & Experience 6,
2, April-June 1976.

The development of Concurrent Pascal was partly supported by the National
Science Foundation under grant number DCR74-17331.

Giorgio Ingargiola, Luis Medina, and Ramon Varela all gave helpful
comments on the text. I also wish to thank Christian Gram, Ole-Johan Daht,
and Peter Naur for a constructive, detailed evaluation of this work.

PER BRINCH HANSEN

University o f Southern California

PROGRAMMING TOOLS

i

!
DESIGN PRINCIPLES

This book describes a method for writing concurrent programs of high
quality. Since there is no common agreement among programmers about
the qualities a good program should have, I will begin by describing my
own requirements.

1.1 PROGRAM QUALITY

A good program must be simple, reliable, and adaptable. Without sim-
plicity one cannot expect to understand the purpose and details of a large
program. Without reliability one cannot seriously depend on it. And with-
out adaptability to changing requirements a program eventually becomes
a fossil.

Fortunately, these essential requirements go hand in hand. Simplicity
gives one the confidence to believe that a program works and makes it clear
how it can be changed. Simplicity, reliability, and adaptability make pro-
grams manageable.

In addition, it is desirable to make programs that can work efficiently
on several different computers for a variety of similar applications. But
efficiency, portability, and generality should never be sought at the expense

4 DESIGN PRINCIPLES Chap. 1

of simplicity, reliability, and adaptability, for only the latter qualities make
it possible to understand what programs do, depend on them, and extend
their capabilities.

The poor quality of much existing software is, to a large extent , the
result of turning these priorities upside down. Some programmers justify
extremely complex and incomprehensible programs by their high efficiency.
Others claim that the poor reliability and efficiency of their huge programs
are outweighed by their broad scope of application.

Personally I find the efficiency of a tool that nobody fully understands
irrelevant. And I find it difficult to appreciate a general-purpose tool which
is so slow that it cannot do anything well. But these are matters of taste and
style and are likely to remain so.

Whenever program qualities appear to be in conflict with one another
I shall consistently settle the issue by giving first priority to manageability,
second priority to efficiency, and third priority to generality. This boils
down to the simple rule of limiting our computer applications to those
which programmers fully understand and which machines can handle well.
Although this is too narrow a view for experimentM computer usage it is
sound advice for professional programming.

Let us now look more closely at these program qualities to see how they
can be achieved.

1.2 SIMPLICITY

We will be writing concurrent programs which are so large that one can-
no t understand them all at once. So we must reason about them in smaller
pieces. What properties should these pieces have? Well, they should be so
small that any one of them is trivial to understand in itself. It would be ideal
if they were no more than one page of tex t each so that they can be compre-
hended at a glance.

Such a program could be studied page by page as one reads a book. But
in the end, when we have unders tood what all the pieces do, we must still be
able to see what their combined effect as a whole is. If it is a program of
many pages we can only do this by ignoring most of our detailed knowledge
about the pieces and relying on a much simpler description of what they do
and how they work together.

So our program pieces must allow us to make a clear separation of their
detailed behavior and that small part of it which is of interest when we
consider combinations of such pieces. In other words, we must distinguish
between the inner and outer behavior of a program piece.

Program pieces will be built to perform well-defined, simple functions.
We will then combine program pieces into larger configurations to carry out
more complicated functions. This design method is effective because it splits

Sec. 1.2 SIMPLICITY S

a complicated task into simpler ones: First you convince yourself that the
pieces work individually, and then you think about how they work together.
During the second part of the argument it is essential to be able to forget
how a piece works in detai l--otherwise, the problem becomes too compli-
cated. But in doing so one makes the fundamental assumption that the piece
always will do the same when it carries out its function. Otherwise, you
could not afford to ignore the detailed behavior of that piece in your reason-
ing about the whole system.

So reproducible behavior is a vital property of program pieces that we
wish to build and study in small steps. We must clearly keep this in mind
when we select the kind of program pieces that large concurrent programs
will be made of. The ability to repeat program behavior is taken for granted
when we write sequential programs. Here the sequence of events is com-
pletely defined by the program and its input data. But in a concurrent
program simultaneous events take place at rates not fully controlled by the
programmer. They depend on the presence of other jobs in the machine and
the scheduling policy used to execute them. This means that a conscious
effort must be made to design concurrent programs with reproducible be-
havior.

The idea of reasoning first about what a pieces does and then studying
how it does it in detail is most effective if we can repeat this process by
explaining each piece in terms of simpler pieces which themselves are built
from still simpler pieces. So we shall confine ourselves to hierarchical struc-
tures composed of layers of program pieces.

It will certainly simplify our understanding of hierarchical structures if
each part only depends on a small number of other parts. We will therefore
try to build structures that have minimal interfaces between their parts.

This is extremely difficult to do in machine language since the slightest
programming mistake can make an instruction destroy any instruction or
variable. Here the whole store can be the interface between any two instruc-
tions. This was made only too clear in the past by the practice of printing
the contents of the entire store just to locate a single programming error.

Programs written in abstract languages (such as Fortran, Algol, and
Pascal) are unable to modify themselves. But they still have broad inter-
faces in the form of global variables that can be changed by every statement
(by intention or mistake).

We will use a programming language called Concurrent Pascal, which
makes it possible to divide the global variables into smaller parts. Each of
these is accessible to a small number of statements only.

The main contribution of a good programming language to simplicity
is to provide an abstract readable notation that makes the parts and structure
of programs obvious to a reader. An abstract programming language sup-
presses machine detail (such as addresses, registers, bit patterns, interrupts,
and sometimes even the number of processors available). Instead the lan-

6 DESIGN PRINCIPLES Chap. 1

guage relies on abstract concepts (such as variables, data types, synchro-
nizing operations, and concurrent processes). As a result, program texts
written in abstract languages are often an order of magnitude shorter than
those written in machine language. This textual reduction simplifies program
engineering considerably.

The fastest way to discover whether or not you have invented a simple
program structure is to t ry to describe it in completely readable t e r m s -
adopting the same standards of clarity that are required of a survey paper
published by a journal. If you take pride in your own description you have
probably invented a good program structure. But if you discover that there
is no simple way of describing what you intend to do, then you should
probably look for some other way of doing it.

Once you appreciate the value of description as an early warning signal
of unnecessary complexity it becomes self-evident that program structures
should be described (without detail) before they are built and should be
described by the designer (and not by anybody else). Programming is the art
o f writing essays in crystal clear prose and making them executable.

1.3 RELIABILITY

Even the most readable language notat ion cannot prevent programmers
from making mistakes. In looking for these in large programs we need all the
help we can get. A whole range of techniques is available

correctness proofs
proofreading
compilation checks
execution checks
systematic testing

With the exception of correctness proofs, all these techniques played a vital
role in making the concurrent programs described in this book work.

Formal proofs are still at an experimental stage, particularly for con-
current programs. Since my aim is to describe techniques that are immedi-
ately useful for professional software development, I have omitted proofs
here.

Among the useful verification techniques, I feel those that reveal errors
at the earliest possible time during the program development should be
emphasized to achieve reliability as soon as possible.

One of the primary goals of Concurrent Pascal is to push the role of
compilation checks to the limit and reduce the use of execution checks
as much as possible. This is not done just to make compiled programs more
efficient by reducing the overhead of execution checks. In program en-

Sec. 1.3 RELIABIL ITY 7

gineering, compilation and execut ion checks play the same roles as preven-
tive maintenance and flight recorders do in aviation. The latter only tell
you why a system crashed; the former prevents it. This distinction seems
essential to me in the design of real-time systems that will control vital func-
tions in society. Such systems must be highly reliable before they are put
into operation.

Extensive compilation checks are possible only if the language nota t ion
is redundant. The programmer must be able to specify impor tant properties
in at least two different ways so that a compiler can look for possible incon-
sistencies. An example is the use of declarations to introduce variables and
their types before they are used in statements. The compiler could easily
derive this information from the s ta tements - -provided these statements
were always correct.

We shall also follow the crucial principle of language design suggested
by Hoare: The behavior o f a program written in an abstract language should
always be explainable in terms of the concepts o f that language and should
never require insight into the details o f compilers and computers. Otherwise,
an abstract nota t ion has no significant value in reducing complexity.

This principle immediately rules out the use of machine-oriented fea-
tures in programming languages. So I shall assume that all programming will
take place in abstract programming languages.

Dijkstra has remarked that testing can be used only to show the presence
of errors but never their absence. However true that may be, it seems very
worthwhile to me to show the presence of errors and remove them one at
a time. In my experience, the combinat ion of careful proofreading, extensive
compilation checks, and systematic testing is a very effective way to make a
program so dependable that it can work for months wi thout problems. And
that is about as reliable as most other technology we depend on. I do not
know of bet ter methods for verifying large programs at the moment .

I view programming as the art of building program pyramids by adding
one brick at a time to the structure and making sure that it does no t collapse
in the process. The pyramid must remain stable while it is being built. I will
regard a (possibly incomplete) program as being stable as long as it behaves
in a predictable manner.

Why is program testing so of ten difficult? Mainly, I think, because the
addition of a new program piece can spread a burst of errors th roughout the
rest of a program and make previously tested pieces behave differently. This
clearly violates the sound principle of being able to assume that when you
have built and tested a part of a large program it will continue to behave
correct ly under all circumstances.

So we will make the strong requirement that new program pieces added
on top o f old ones must not be able to make the latter fail. Since this proper-
ty must be verified before program testing takes place, it must be done by
a compiler. We must therefore use a language nota t ion that makes it clear

8 DESIGN PRINCIPLES Chap. 1

what program pieces can do to one another. This strong confinement o f
program errors to the part in which they occur will make it much easier to
determine from the behavior of a large program where its errors are.

1.4 ADAPTABILITY

A large program is so expensive to develop that it must be used for
several years to make the effort worthwhile. As time passes the users' needs
change, and it becomes necessary to modify the program somewhat to satisfy
them. Quite often these modifications are done by people who did not de-
velop the program in the first place. Their main difficulty is to find out how
the program works and whether it will still work after being changed.

A small group of people can often succeed in developing the first version
of a program in a low-level language with little or no documentat ion to sup-
port them. They do it by talking to one another daily and by sharing a men-
tal picture of a simple structure.

But later, when the same program must be extended by other program-
mers who are not in frequent contact with the original designers, it becomes
painfully clear that the "simple" structure is no t described anywhere and
certainly is not revealed by the primitive language notat ion used. It is impor-
tant to realize that for program maintenance a simple and well-documented
structure is even more important than it is during program development. I
will not talk about the situation in which a program that is neither simple
nor well documented must be changed.

There is an interesting relationship between programming errors and
changing user requirements. Both of them are sources of instability in the
program construction process that make it difficult to reach a state in which
you have complete confidence in what a program does. They are caused by
our inability to fully comprehend at once what a large program is supposed
to do in detail.

The relative frequencies of program errors and c:hanging requirements are
of crucial importance. If programming introduces numerous errors that are
difficult to locate, many of them may still be in the program when the user
requests changes of its function. And when an engineer constantly finds him-
self changing a system that he never succeeded in raaking work correctly in
the first place, he will eventually end up with a very unstable product.

On the other hand, if program errors can be located and corrected at a
much faster rate than the system develops, then the addition of a new piece
(or a change) to the program will soon lead to a stable situation in which the
current version of the program works reliably and predictably. The engineer
can then, with much greater confidence, adapt his product to slowly chang-
ing needs. This is a strong incentive to make program verification and testing
fast.

A hierarchical structure consists of program pieces that can be studied

Sec. 1.6 EFFICIENCY 9

one at a time. This makes it easier to read the program and get an initial un-
derstanding of what it does and how it does it. Once you have that insight,
the consequences of changing a hierarchical program become clear. When
you change a part of a program pyramid you must be prepared to inspect
and perhaps change the program parts that are on top of it (for they are the
only ones that can possibly depend on the one you changed).

1.5 PORTABILITY

The ability to use the same program on a variety of computers is desir-
able for economic reasons: Many users have different computers; sometimes
they replace them with new ones; and quite often they have a common
interest in sharing programs developed on different machines.

Portability is only practical if programs are written in abstract languages
that hide the differences between computers as much as possible. Otherwise,
it will require extensive rewriting and testing to move programs from one
machine to another. Programs written in the same language can be made
portable in several ways:

(1) by having different compilers for different machines. This is only
practical for the most widespread languages.

(2) by having a single compiler that can be modified to generate code
for different machines. This requires a clear separation within the compiler
of those parts that check programs and those that generate code.

(3) by having a single computer that can be simulated efficiently on
different machines.

The Concurrent Pascal compiler generates code for a simple machine
tailored to the language. This machine is simulated by an assembly language
program of 4 K words on the PDP 11/45 computer. To move the language to
another computer one rewrites this interpreter. This approach sacrifices
some efficiency to make portability possible. The loss of efficiency can be
eliminated on a microprogrammable machine.

1.6 EFFICIENCY

Efficient programs save time for people waiting for results and reduce
the cost of computation. The programs described here owe their efficiency
to

special-purpose algorithms
static store allocation
minimal run-time checking

10 DESIGN PRINCIPLES Chap. 1

Initially the loading of a large program (such as a compiler) from disk
took about 16 sec on the PDP 11/45 computer. This was later reduced to 5
sec by a disk allocation algorithm that depends on the special characteristics
of program files (as opposed to data files). A scheduling algorithm that tries
to reduce disk head movement in general would have been useless here. The
reasons for this will be made clear later.

Dynamic store algorithms that move programs and data segments around
during execution can be a serious source of inefficiency that is not under the
programmer's control. The implementation of Concurrent Pascal does no t
require garbage collection or demand paging of storage. It uses static alloca-
tion of store among a fixed number of processes. The store requirements are
determined by the compiler.

When programs are written in assembly language it is impossible to
predict what they will do. Most computers depend on hardware mechanisms
to prevent such programs from destroying one another or the operating
system. In Concurrent Pascal most of this protection is guaranteed by the
compiler and is no t supported by hardware mechanisms during execution.
This drastic reduction of run-time checking is only possible because all
programs are written in an abstract language.

1.7 GENERALITY

To achieve simplicity and reliability we will depend exclusively on a
machine-independent language that makes programs readable and extensive
compilation checks possible. To achieve efficiency we will use the simplest
possible store allocation.

These decisions will no doubt reduce the usefulness of Concurrent Pascal
for some applications. But I see no way of avoiding that. To impose struc-
ture upon yourself is to impose restrictions on your freedom of program-
ming. You can no longer use the machine in any way you want (because
the language makes it impossible to talk directly about some machine
features). You can no longer delay certain program decisions until execution
time (because the compiler checks and freezes things much earlier). But the
freedom you lose is often illusory anyhow, since it can complicate program-
ming to the point where you are unable to cope with it.

This book describes a range of small operating systems. Each of them
provides a special service in the most efficient and simple manner. They
show that Concurrent Pascal is a useful programming language for mini-
computer operating systems and dedicated real-time applications. I expect
that the language will be useful (but no t sufficient) for writing large, general-
purpose operating systems. But that still remains to be seen. I have tried to

Sec. 1.9 LITERATURE 11

make a programming tool that is very convenient for many applications
rather than one which is tolerable for all purposes.

1.8 CONCLUSION

I have discussed the programming goals of

simplicity
reliability
adaptability
efficiency
portabili ty

and have suggested that they can be achieved by careful design of program
structure, language notation, compiler, and code interpreter. The properties
that we must look for are the following:

structure: hierarchical structure
small parts
minimal interfaces
reproducible behavior
readable documentat ion

notation: abstract and readable
structured and redundant

compiler: reliable and fast
extensive checking
portable code

interpreter: reliable and fast
minimal checking
static store allocation

This is the philosophy we will follow in the design of concurrent programs.

1.9 LITERATURE

For me the most enjoyable thing about computer programming is the
insight it gives into problem solving and design. The search for simplicity
and structure is common to all intellectual disciplines.

12 DESIGN PRINCIPLES Chap. 1

Here are a historian and a biologist talking about the importance of rec-
ognizing structure:

"It is a matter o f some importance to link teaching and research, even
very detailed research, to an acceptable architectonic vision o f the whole.
Without such connections, detail becomes mere antiquarianism. Yet while
history wi thout detail is inconceivable, wi thout an organizing vision it quick-
ly becomes incomprehens ib le . . . What cannot be understood becomes
meaningless, and reasonable men quite properly refuse to pay at tention to
meaningless matters."

William H. McNeill [1974]

"There have been a number o f physicists who suggested that biological
phenomena are related to the finest aspects o f the consti tut ion o f matter, in
a manner o f speaking below the chemical level. Bu t the evidence, which is
almost too abundant, indicates that biological phenomena operate on the
'systems' level, that is, above chemistry ."

Walter M. Elsasser [1975]

A linguist, a psychologist, and a logician have this to say about writing
and notat ion:

"Omit needless words. Vigorous writing is concise. A sentence should
contain no unnecessary words, a paragraph no unnecessary sentences, for
the same reason that a drawing should have no unnecessary lines and a ma-
chine no unnecessary parts. This requires not that the writer make all his
sentences short, or that he avoid all detail and treat his subject only in
outline, but that every word tell."

William Strunk, Jr. [1959]

"How complex or simple a structure is depends critically upon the way
in which we describe it. Most o f the complex structures found in the world
are enormously redundant, and we can use this redundancy to simplify
their description. Bu t to use it, to achieve the simplification, we must find
the right representation."

Herbert A. Simon [1969]

"There is something uncanny about the power o f a happily chosen ideo-
graphic language; for it of ten allows one to express relations which have no
names in natural language and therefore have never been noticed by anyone.

Sec. 1.9 L ITERATURE 13

Symbolism, then,
tion. "

becomes an organ of discovery rather than mere nota-

Susanne K. Langer [1967]

An engineer and an architect discuss the influence of human errors and
cultural changes on the design process:

"First, one must perform perfectly. The computer resembles the magic
of legend in this respect, too. I f one character, one pause, o f the incantation
is not strictly in proper form, the magic doesn't work. Human beings are not
accustomed to being perfect, and few areas o f human activity demand it.
Adjusting to the requirement for perfection is, I think, the most difficult
part o f learning to program."

Frederick P. Brooks, Jr. [1975]

"Misfit provides an incentive to c h a n g e . . . However, for the fit to occur
in practice, one vital condition must be satisfied. It must have time to hap-
pen. The process must be able to achieve its equilibrium before the next cul-
ture change upsets it again. It must actually have time to reach its
equilibrium every time it is disturbed--or, if we see the process as continu-
ous rather than intermittent, the adjustment of forms must proceed more
quickly than the drift o f the culture contex t ."

Christopher Alexander [1964]

Finally, here are a mathematician and a physicist writing about the
beauty and joy of creative work:

"The mathematician's patterns, like the painter's or the poet's, must
be beautiful; the ideas, like the colours or the words, must fit together in a
harmonious way. Beauty is the first test: there is no permanent place in
the world for ugly mathematics."

G. Hi Hardy [1967]

"The most powerful drive in the ascent o f man is his pleasure in his own
skill. He loves to do what he does well and, having done it well, he loves to
do it better. You see it in his science. You see it in the magnificence with
which he carves and builds, the loving care, the gaiety, the effrontery. The
monuments are supposed to commemorate kings and religions, heroes,
dogmas, but in the end the man they commemorate is the builder. "

Jacob Bronowski [1973]

14 DESIGN PRINCIPLES Chap. 1

REFERENCES

ALEXANDER, C., Notes on the synthesis of form. Harvard University Press, Cambridge,
MA, 1964.

BRONOWSKI, J., The ascent of man. Little, Brown and Company, Boston, MA, 1973.

BROOKS, F. P., The mythical man-month. Essays on software engineering. Addison-
Wesley, Reading, MA, 1975.

ELSASSER, W. M., The chief abstractions of biology. American Elsevier, New York,
NY, 1975.

HARDY, G. H., A mathematician's apology. Cambridge University Press, New York,
NY, 1967.

LANGER, S. K., An introduction to symbolic logic. Dover Publications, New York,
NY, 1967.

MCNEILL, W. H., The shape of European history. Oxford University Press, New York,
NY, 1974.

SIMON, H. A., The sciences of the artificial. M.I.T. Press, Cambridge, MA, 1969.

STRUNK, W., and WHITE, E. B., The elements of style. Macmillan, New York, NY,
1959.

P R O G R A M M I N G CONCEPTS

We will construct large concurrent programs as hierarchies of smaller
components. Each component should have a well-defined function that can
be implemented and tested as an almost independent program. The com-
ponents and their combinations should have reproducible behavior. And
the verification and testing of such programs must take place much faster
than they will change due to new requirements.

This chapter introduces the kind of components we will use and de-
scribes how to connect them. Our programming tool is a language called
Concurrent Pascal. It extends the sequential programming language Pascal
with new concepts called processes, monitors, and classes.

This is an informal description of Concurrent Pascal. It uses examples,
pictures, and words to bring out the creative aspects of new programming
concepts without getting into their finer details. Other chapters will intro-
duce a language notat ion for these concepts and define them concisely. This
form of presentation is perhaps not precise from a formal point of view. But
it is, I hope, more effective from a human point Of view.

15

16 PROGRAMMING CONCEPTS Chap. 2

2.1 CONCURRENT PROCESSES

I will introduce the language by solving a simple and useful problem:
How can text be copied as fast as possible from a card reader to a line
printer?

Figure 2.1 shows a card reader, a line printer, and a program that copies
data from one to the other. The card reader and line printer can transfer
1000 and 600 lines/min (corresponding to 60 and 100 msec/line).

The simplest solution to the problem is a cyclical, sequential program

cycle input; output end

that inputs one line at a time from the card reader and outputs it to the line
printer.

Unfortunately, this is very inefficient since it forces t h e card reader
and line printer to alternate

input, output , input, output

so that one of them always waits while the other operates. As a result the
copying speed is only 375 lines/min (or 160 msec/line).

We can only increase the speed by letting the card reader and the line
printer operate simultaneously (Fig. 2.2). The copy program now consists
of two sequential processes that are executed simultaneously

card process: cycle input; send end
printer process: cycle receive; output end

A card process inputs one line at a time from the card reader and sends
it through a buffer to a printer process that receives and outputs it to the
line printer. This program copies text at the speed of the slowest device (600
lines/min).

Since we are interested in abstract programming it is not important

CARD READER LINE PRINTER

PROGRAM

Fig. 2.1 Data copying

Sec. 2.2 PRIVATE DATA 17

CARD READER BUFFER LINE PRINTER

CARD PROCESS PRINTER PROCESS

Fig. 2.2 Data flow among concurrent processes

how concurrent processes are implemented on a computer . All we need to
know is that they are executed simultaneously so that they can make peri-
pherals run at the same time.

On some computers , a single processor will be mult iplexed among con-
current processes by means of clock interrupts. On other computers, each
process will be executed by its own processor. We will deliberately ignore
these details and assume that they are taken care of by the machine which
executes the compiled code of our abstract concurrent programs. (Chapter 9
describes the implementat ion of Concurrent Pascal on the PDP 11/45
computer .)

Our refusal to be concerned with machine detail makes it impossible to
predict the absolute and relative speeds o f concurrent processes. We will,
however, assume that all processes have positive speeds. (After all, why
write a piece of program unless we know that the machine will execute it?)
The machine will of ten be much faster than its peripherals so that we can
expect processes to run roughly at the speed of the devices they control.

2.2 PRIVATE DATA

We will build concurrent programs out of sequential processes that are
executed simultaneously. This is quite attractive since most programmers
already have a deep intuitive understanding of sequential programming.

A sequential process consists of a data structure and a sequential pro-
gram that operates on it (Fig. 2.3). The program statements are executed
strictly one at a time.

The impor tant thing about a sequential program is that it always gives

PRIVATE DATA

SEQUENTIAL
PROGRAM

Fig. 2.3 A process

18 PROGRAMMING CONCEPTS Chap. 2

the same results when it operates on the same data independen t ly o f how
fast it is executed. All that matters is the sequence in which operations are
carried out.

A programming error in a sequential program cma always be located by
repeating the execut ion of the program several times with the data that
revealed the error. In each of these experiments , the values of selected
variables are recorded to determine whether or no t a certain program part
works. This process of elimination continues until the error has been lo-
cated.

When a program part has been found to behave correct ly in one test
we can ignore that part (and its variables) in subsequent tests because it
will continue to behave in exactly the same manner each time the program
is executed with the same data. So our abil i ty to test a large, sequent ial
program in small s teps depends fundamenta l l y on the reproducible behavior
o f the program.

The t ime-independent behavior of a sequential process is guaranteed,
however~ only if its variables are inaccessible to other processes. But if a pro-
cess uses the values of a variable which another process changes, then the
result depends on the relative speeds of the processes.

When a concurrent program is executed several times with the same
data, the relative speed of the processes will always vary somewhat. In a
mult iplexed computer the execut ion of a process will be influenced by the
presence of other (perhaps unrelated) processes. And in a multiprocessor
system, execut ion speeds will depend on how fast operators react to program
requests.

If a concurrent program contains an error that makes one process change
the variables of another process at unpredictable times, then that program
will give different results each t ime it is executed with the same data.

Such unpredictable program behavior makes it impossible to locate an
error by systematic testing. It can perhaps be found by studying the program
tex t in detail for days. But this can be very frustrating (if no t impossible)
when it consists of thousands of lines and one has no clues about where to
look.

I f we wish to succeed in building large, concurrent programs which are
reliable, we mus t use programming languages that are so well s tructured
that a compi ler can catch m o s t t ime-dependen t errors (because nobody else
can). So we will choose a language nota t ion that clearly shows which variables
a process owns. The compiler will then make sure that these private variables
are inaccessible to other processes.

Sec. 2.4 SHARED DATA l g

2.3 PERIPHERALS

Peripheral devices are a potential source of erratic program behavior
that deserves careful attention. The classical programming technique for
simultaneous input and processing of data is to use a double buffer that is
accessible both to a sequential program and its input device.

The program inputs the first data item in a buffer variable x. While
the program operates on x, the device inputs the second data item in another
buffer variable y. The program then processes y while tile third data item is
being input to x, and so on.

More than one programmer has made the mistake of referring to a data
item before it has been input completely. This makes the program result
depend on the relative speed of program execution and input transfers.

The problem is that this programming technique turns a program and
its peripherals into concurrent processes that can refer to each other's "pri-
vate" variables by mistake.

In Concurrent Pascal a peripheral device can only be accessed by an
operation io that delays the calling process until the input /output has been
completed. So a variable is at any time accessible either to a single process
or to a single device (but not to both of them). A data transfer is just an-
other sequential operation with a completely reproducible result.

While a process is waiting for the completion of a data transfer, the
computer can execute other processes. So this approach does not necessarily
make the machine idle. Simultaneous input and processing of data items can
be done by two processes connected by a buffer (Fig. 2.2).

Another benefit of making input /output an indivisible operation is that
peripheral interrupts become irrelevant to the programmer. They are handled
completely at the machine level.

When computer problems first arise they are often solved in very compli-
cated ways. It takes a long time to discover the obvious solutions. And then
it takes a while longer to get used to them. The programming of input/out-
put illustrates this well.

2.4 SHARED DATA

Although it is vital to make sure that some variables are private to proc-
esses, they must also be able to share data structures (such as a buffer).
Otherwise, concurrent processes cannot exchange data and cooperate on
common tasks. But since shared data are the major pitfall of concurrent
programming we m u s t proceed with extreme care and define exactly what
processes can do with such data structures.

The buffer in the copying program is a data structure shared by two con-

20 PROGRAMMING CONCEPTS Chap. 2

current processes (Fig. 2.2). The details of how such a buffer is constructed
are irrelevant ' to its users. All the processes need to know is that they can
send and receive data through it. If they try to operate on the buffer in any
other way it is probably either a programming mistake or an example of
tr icky programming. In both cases, one would like a compiler to detect such
misuse of a shared data structure.

To make this possible, we must introduce a language construct that
will enable a programmer to tell a compiler how a shared data structure can
be used by processes. This kind of system componen t is called a monitor.
A moni tor can synchronize concurrent processes and transmit data among
them. It can also control the order in which competing processes use shared,
physical resources.

A moni tor defines a shared data structure and all the operations proc-
esses can perform on it (Fig. 2.4). These synchronizing operations are called
monitor procedures. A moni tor also defines an initial operation that is exe-
cuted when its data structure is created.

We can define a buffer as a monitor . It will consist of shared variables
defining the contents of the buffer. It will also include two moni tor proce-
dures, send and receive. The initial operat ion will make the buffer empty
to begin with.

Processes cannot operate directly on shared data. They can only call
moni tor procedures (such as send and receive) that have access to the data.
A moni tor procedure is executed as part of the calling process (just like any
other procedure).

If concurrent processes simultaneously call moni tor procedures which
operate on the same shared data, these procedures must be executed strict-
ly one at a time. Otherwise, processes might find the data structure in some
(unknown) intermediate state, which would make the results of moni tor
calls unpredictable.

This means that the machine must be able to delay processes for short
periods of time until it is their turn to execute moni tor procedures. We will
not be concerned about how this is done, but will just notice that a process

SHARED DATA

SYNCHRONIZING
OPERATIONS

INITIAL
OPERATION

Fig. 2.4 A monitor

Sec. 2.5 ACCESS RIGHTS 21

has exclus ive access to shared data while it executes a moni tor procedure.
(Chapter 9 explains the implementat ion details of this.)

So the machine on which concurrent processes run will handle short-
term schedul ing of simultaneous moni tor calls. But the programmer must
also be able to delay processes for longer periods of time until their requests
for data and other resources can be satisfied. For example, if a process tries
to receive data from an empty buffer it must be delayed until another
process sends more data.

Concurrent Pascal includes a simple data type, called a queue, that can
be used by moni tor procedures to control m e d i u m - t e r m schedul ing of
processes. A moni tor can either delay a calling process in a queue or con-
t inue a process waiting in a queue.

It is no t impor tant yet to understand how these queues work except
for the following rule: A process has exclus ive access to shared data on l y
as long as it con t inues to e x e c u t e s t a t e m e n t s wi th in a m o n i t o r procedure . A s
soon as a process is de layed in a queue it loses its exclus ive access unti l
ano ther process calls the same m o n i t o r and con t inues its execu t ion .

A compiler will check that processes only access a moni tor through its
procedures. This has dramatic consequences for program reliability. It means
that once a moni tor has been implemented correct ly other parts of a pro-
gram cannot make it fail. It remains a stable, correct c o m p o n e n t no mat ter
what the rest of the program does. Compile-time protect ion of private
variables has the same effect on processes.

Programming languages, such as Fortran, Cobol, PL/1, and Pascal use
common data structures ("global variables") as interfaces between separate
program parts. This makes it easy for one part of a program to crash another
by changing its data structure in unexpected ways.

Concurrent Pascal is based on the assumption that procedures are a
m u c h safer interface mechan i sm than c o m m o n data structures. Procedures
associated with a data structure make it possible for a programmer to define
all the possible operations on the data and depend on a compiler to prevent
the rest of a program from using the data in any other way.

2.5 ACCESS RIGHTS

So far I have only int roduced the c o m p o n e n t s from which concurrent
programs can be constructed, namely processes and monitors. But we still
need a precise way of describing how these components can be c o n n e c t e d
to form hierarchical s tructures.

Figure 2.2 makes it obvious that data flow from a card process through
a buffer to a printer process. We will call this a data f l o w graph.

Figure 2.5 shows the same system from a different viewpoint. The
circles are s y s t e m c o m p o n e n t s , and the arrows are the access rights of these

22 PROGRAMMING CONCEPTS

CARD READER BUFFER LIN~E PRINTER

CARD PROCESS PRINTER PROCESS

Fig. 2.5 System components and their access rights

Chap. 2

ACCESS RIGHTS

PRIVATE DATA

SEQUENTIAL
PROGRAM

Fig. 2.6 A process with access rights

components . They show that both processes can use the buffer, but tha t
only the card process can use the card reader, and only the printer process
can use the line printer. This kind of picture is an access graph.

The access rights of the processes only enable them to call the send and
receive procedures defined by the buffer monitor . They do no t give them the
right to operate directly on the data structure that represents the buffer.
(I remark in passing that peripheral devices can be looked upon as monitors
implemented in hardware which can only be accessed by a single procedure
io.)

This will be our s tructuring mechanism: to connec t program compo-
nents by access rights into hierarchical sys tems in which concurrent pro-
cesses c o m m u n i c a t e by calling monitors .

In a large concurrent program these access rights should be writ ten down
to make the program structure obvious to a reader and verifiable to a com-
piler. So we will extend a process with access rights (Fig. 2.6). The access
rights ment ion the monitors the process can call.

Although the copying example does no t show this, moni tor procedures
should also be able to call procedures defined within other monitors. Other-
wise, the language will no t be very useful for hierarchical design. So a moni-
tor can also have access rights to o ther monitors (Fig. 2.7).

Processes can only communicate by means of monitors. A compiler will
check that a process only uses the monitors it has access to.

Sec. 2.6 ABSTRACT DATA TYPES 23

Fig. 2.7

ACCESS RIGHTS

SHARED DATA

SYNCHRONIZING
OPERATIONS

INITIAL
OPERATION

A monitor with access rights

2.6 ABSTRACT DATA TYPES

A process executes a sequential p r o g r a m - - i t is an active c o m p o n e n t . A
m o n i t o r is just a co l lec t ion o f p rocedures which do no th ing unti l t hey are
called by p r o c e s s e s - - i t is a passive c o m p o n e n t . But there are s t rong similari-
ties be tween a process and a m o n i to r : b o th def ine a data s t ruc tu re (private
or shared) and the meaningfu l opera t ions on it. The main d i f fe rence be tween
processes and mon i to r s is the way they are scheduled for execu t ion .

I t seems natural , there fore , to regard processes and mon i to r s as abstract
data types def ined in terms o f the opera t ions one can pe r fo rm on them.
They are abs t rac t because the rest o f a p rogram only knows what one can do
wi th them w i t h o u t depending on how the da ta are s t ruc tu red and manipu-
lated. I t is even possible to change the data representation w i t h o u t inf luenc-
ing the rest of a p rogram as long as the opera t ions remain the same.

In the copy ing system the buf fe r can be represen ted e i ther by a single
line slot, an array o f lines, a l inked list, or a t ree s t ruc ture . And it can be
s tored e i ther in core or on disk. The processes do n o t care as long as t h ey
can send and receive lines th rough it. This gives the p ro g ram m er the f r eedom
to e x p e r i m e n t wi th d i f fe ren t da ta representa t ions to improve pe r fo rmance .

The hiding o f imp lemen ta t ion details wi thin an abstract data type
makes it easier to tune a program locally. I t also makes it easier to under-
s tand what the program does as a whole, since all these di f ferent data repre-
sentat ions i m p l e m e n t the same abstract idea o f sending and receiving.

Since a compi le r can check tha t these opera t ions are the only ones
carried ou t on the abs t rac t da ta s t ruc ture we can h o p e to be able to build
very reliable, c o n c u r r e n t programs in which con t ro l l ed access to da ta and
physical resources is guaranteed before these programs are p u t in to opera-
t ion (or even tes ted) . This will solve to a large e x t e n t the resource pro tec t ion
problems in the cheapes t possible m a n n e r (w i t h o u t hardware mechanisms
and run- t ime overhead) .

24 PROGRAMMING CONCEPTS Chap. 2

CARD READER BUFFERS LINE PRINTER

CARD PROCESS COPY PROCESS PRINTER PROCESS

Fig. 2.8 A pipeline system

A useful concept can be used over and over again (and not just once). So
we will define processes and monitors as data types and make it possible to
use several instances of each of them in a system. We can, for example, use
two buffers to build a pipeline system in which data pass through a card
process, a copy process, and a printer process (Fig. 2.8).

The copy process will format the text so that each file begins and ends
with a blank page, each page begins and ends with a blank line, and each line
is surrounded by blank margins.

Since input /output and execution alternate strictly within peripheral
processes it is desirable t o keep their data processing minimal to make the
devices run as fast as possible. This is achieved by formatt ing the text in a
separate process that can run while the other processes are waiting for
input /output . This extension of the copying system also has the advantage
of leaving all the previous components unchanged (Fig. 2.5). So here we have
an example of how one can adapt a program to new requirements wi thout
changing it completely.

In a concurrent program the programmer only defines the buffer type
once but declares two instances of it. I will distinguish between definitions
and instances of components by calling them system types and system
components. Access graphs (such as Fig. 2.8) will always show system
components (not system types).

During program execution the machine creates a separate data structure
for each system component. But components of the same type share a single
copy of the procedures associated with the data. So the pipeline system uses
two copies of the buffer variables but only one copy of the send and receive
procedures.

To make the programming language useful for hierarchical system de-
sign it should permit the division of a system type, such as the copy process,
into smaller system types. Let us assume that the buffers in Fig. 2.8 transmit
whole lines of text between the processes. The text formatt ing can then be
done one step at a time by means of three abstract data types inserted be-
tween the copy process and its ou tpu t buffer (Fig. 2.9).

The copy process calls a file maker which adds blank pages to each text

Sec. 2.7 HIERARCHICAL STRUCTURE 25

SUFFER

LINE MAKER

(~) PAGE MAKER

~ FILE MAKER
COPY PROCESS

Fig. 2.9 Decomposition of the copy process

file. The file maker in turn calls a page m a k e r which adds blank lines to each
tex t page. The page maker then calls a line m a k e r which adds a margin to
each tex t line before sending it through the buffer.

The file, page, and line makers are only used by the copy process. Such
components which can only be called by a single other component will be
called classes.

A class defines a data structure and the possible operations on it (just
like a monitor) . The exclusive access of a process to class variables can be
guaranteed completely at compile time. The machine does not have to sched-
ule simultaneous calls of class procedures at run time, because such calls
cannot occur. This makes class calls considerably faster than moni tor calls.

2.7 HIERARCHICAL STRUCTURE

If we pu t all the components of the pipeline system together we get a
complete picture of its structure. In Fig. 2.10, classes, monitors, and pro-
cesses are marked, C, M, and P.

In an access graph a process is a node that no other node has access to.
A class is one that a single other node has access to. And a moni tor is one
that two or more other nodes have access to. (The phrase "has access t o "
also means "points to . ")

Some years ago I was part of a team that built a mult iprogramming
system in which processes can appear and disappear dynamically [Brinch
Hansen, 1970] . In practice, this system was used mostly to set up a fixed
configuration of processes. This is to be expected, since most concurrent
programs control computers with a fixed configuration of peripherals and
perform a fixed number of control tasks in some environment.

26 PROGRAMMING CONCEPTS Chap. 2

CARD READER

BUFFER LINE PRINTER

FILE MAKER

COPY PROCESS

CARD PROCESS

Fig. 2.10 Hierarchical system structure

Dynamic process deletion certainly complicates the meaning and imple-
mentat ion of a programming language considerably. And since it seems to
be unnecessary in many real-time applications, it is probably wise to exclude
it altogether. So a concurrent program will consist o f a f ixed number o f
processes, monitors, and classes. These components and their data struc-
tures will exist forever after system initialization. A concurrent program
can, however, be extended by recompilation.

It remains to be seen whether this restriction will simplify or complicate
operating system design. But the poor quality of most existing operating
systems clearly demonstrates an urgent need for simpler approaches.

In other programming languages the data structures of processes, moni-
tors, and classes would be called global data. This term would be misleading
in Concurrent Pascal, where each data structure can be accessed by a single
component only. It seems more appropriate to call them permanent data
structures.

A Concurrent Pascal compiler will check that the private data of a
process are accessed only by that process. It will also check that the data
structure of a class or moni tor is accessed only by its procedures.

Figure 2.10 shows that the access rights within a concurrent program
normally are not tree structured. Instead they form a directed graph. This
partly explains why the traditional scope rules of block structured languages
are inconvenient for concurrent programming (and, I believe, for sequential
programming as well). In addition, the access rights to variables in these
languages are not very selective (a block can use not only its own variables
but also those defined in all blocks surrounding it). In Concurrent Pascal, a

Sec. 2.7 HIERARCHICAL STRUCTURE 27

program component has access to only a small number of other components.
And these components are accessible only through well-defined procedures.

Since the execution of a monitor procedure will delay the execution of
further calls of the same monitor, we must prevent a monitor from calling
itself recursively. Otherwise, processes can become deadlocked waiting (in
vain) for themselves to leave monitors before they reenter them. So the
compiler will check that the access rights of system components are hier-
archically ordered (or, if you like, that there are no cycles in the access
graph).

The hierarchical ordering of system components has vital consequences
for system design and testing:

A hierarchical, concurrent program can be tested component by com-
ponent, bottom up (but could, of course, be conceived top down or by
iteration). Here the " b o t t o m " of a program is all the components which do
not use any other components, while the " t o p " is those components which
no other components use.

When an incomplete program has been shown to work correctly (by
proof or testing), a compiler can guarantee that this part of the system will
continue to work correctly when new untested components are added on
top of it. Programming errors within new components cannot make old
components fail because old components do not call new components, and
new components only call old components through well-defined procedures
that have already been tested.

Several other reasons besides program correctness make a hierarchical
structure attractive :

(1) A hierarchical system can be studied in a stepwise manner as a
sequence of abstract machines simulated by programs [Dijkstra, 1971].

(2) A partial ordering of process interactions permits one to use
mathematical induction to prove certain overall properties of the system
(such as the absence of deadlocks) [Brinch Hansen, 1973b].

(3) Efficient resource utilization can be achieved by ordering the
program components according to the speed of the physical resources they
control (with the fastest resources being controlled at the bot tom of the
system) [Dijkstra, 1971].

(4) A hierarchical system designed according to the previous criteria is
often nearly decomposable from an analytical point of view. This means that
one can develop stochastic models of its dynamic behavior in a stepwise
manner [Simon, 1969].

It seems most natural to represent a hierarchical system, such as Fig.
2.10, by a two-dimensional picture. But in order to write a concurrent

i
.

28 PROGRAMMING CONCEPTS Chap. 2

program, we must somehow represent these access rules by linear text. This
limitation of written language tends to obscure the simplicity of the original
structure. That is why I have tried to explain the purpose of Concurrent
Pascal by means of pictures instead of language notation.

The next two chapters introduce the language notat ion of Sequential
and Concurrent Pascal and present a complete, executable program for the
pipeline system.

SEQUENTIAL PASCAL

The purpose of this work is to experiment with a small number of con-
cepts for concurrent programming. Instead of inventing a new programming
language from scratch I have used an existing sequential language Pascal as a
host for these ideas. The resulting language is Concurrent Pascal.

The model operating systems described here are written in Concurrent
Pascal. All other programs are written in Sequential Pascal: compilers, edi-
tors, input /output drivers, job control interpreters, disk allocators, and
user programs.

This is a short, informal overview of Sequential Pascal. It is neither com-
plete nor concise. But it should be sufficient to understand the programs
described later. For historic reasons there are minor differences between the
most recent version of Pascal [Jensen and Wirth, 1974] and the one used
here. Since these differences do not change the direction of this work they
will be ignored.

The representation of basic symbols is somewhat restricted by the
character set used (ASCII). I have improved this slightly by using bold face
types for word symbols in this book. Apart from this, the programs are
presented in their original executable form. I have become used to this
program representation and find it as readable as any other.

29

30 SEQUENTIAL PASCAL Chap. 3

3.1 PROGRAM STRUCTURE

A Sequent ia l Pascal p r o g r a m consists o f dec la ra t ions of

cons t an t s
da ta types
variables
rou t ines

and a sequence of statements t h a t ope ra t e on these objects . T h e s t a t e m e n t s
will be e x e c u t e d one at a t ime.

An ou t l ine o f a p r o g r a m is s h o w n be low.

cons t l inelength = 132;

t y p e line = a r ray (.1 . . l inelength.) o f char;

var pageno , m a x n o : integer; ok: boo lean ;

p r o c e d u r e w r i t e t e x t (t e x t : l ine);
var i: integer; c: char ;
begin

i: = 0;
r epea t

i : = i + l ;
c: = text (. i .) ;
d isp lay(c) ;

u n t i l c = ' '"
e n d ;

, , o , ,

begin
° ° , o °

i f p ageno = m a x n o t h e n

begin
wr i t e t ex t (' f i l e l im i t ');
ok: = false;

e n d ;
. ° , . o

e n d .

The p r o g r a m defines a c o n s t a n t linelength with the; value 132 and a da ta
t y p e line which is an a r ray o f charac te r s n u m b e r e d 1, 2, 3 , l inelength.

Sec, 3.2 CONSTANTS AND VARIABLES 31

I t uses th ree variables: t w o integers, called pageno and maxno , and a boo lean
ok.

The p r o g r a m also defines a p r o c e d u r e wri t e t ex t which uses a line para-
m e t e r n a m e d text. The p r o c e d u r e has t w o local variables: an in teger i and a
cha rac te r c. One o f the p r o g r a m s t a t emen t s calls this p r o c e d u r e to wri te the
t e x t s tr ing ' f i le l imit ' .

The objec ts used by the p rog rams have unique identifiers

l inelength
line
pageno
m a x n o
ok
w r i t e t e x t
, • • • ,

These ident if iers are in t roduced by dec lara t ions be fo re t hey are used in s tate-
ments . This r e d u n d a n c y enables a comp i l e r to de t ec t misspel led or ambigu-
ous identif iers. (S t r ic t ly speaking, the same ident i f ie r can be used fo r differ-
en t objec ts wi th in d i f f e ren t rou t ines and da ta s t ruc tures , bu t this is n o t
i m p o r t a n t here .)

3.2 CONSTANTS AND VARIABLES

I f a cons tan t is used several t imes in a p rog ram it is useful to def ine its
value once and refer to it e lsewhere by an ident i f ie r

cons t page length = 512; f irs t l ine = 2;

This makes it easy to change the value la ter if necessary.
ASCII charac te rs are n u m b e r e d 0 to 127. These ordinal values can be

used to def ine unpr in t ab l e charac te rs such as N L (new line) and EM (end
m e d i u m)

cons t nl = ' (:10 :) ' ; e m = ' (: 25 :) ' ;

One can also n a m e str ing cons tan t s and real cons tan t s

cons t pass5 = ' spass5 ' ;
o n e d a y = 86400 .0 " s e c o n d s " ;

• 'tARI=TT.~ LAGORA'°OR E~
I::iBRARY

!450 S. ROLLIP~, ROAD

~ALTIMOR~, M,~RYLt, ND 21227J

32 SEQUENTIAL PASCAL

A comment , such as " s e c o n d s " , has no e f f ec t on t h e p rog ram.
In Pascal a variable v m u s t a lways be o f s o m e fixed[type T

v a r y : T

The t y p e def ines all the possible values o f the variable.
The dec lara t ions

va t pageno , m a x n o : in teger ;
ok: boo lean ;

res t r ic t the variables pageno and maxno t o integer values

. . . -2,-1, 0, 1, 2 , . . .

and l imi t the var iable ok t o boolean values

false, t rue

The basic ope ra t ions on var iables are assignment o f values

m a x n o : = 255
pageno : = pageno + 1
ok := false

and comparisons for equa l i ty

ff pageno = m a x n o t h e n . . .

or inequa l i ty

The f ixed types
m a k i n g s o m e of the i r a s s u m p f i o n s e x p l i c i t . The d e c l E a t i o n

while s ta tus <> c o m p l e t e d o . . .

o f variables enhance the readab i l i ty o f p r o g r a m s by

Chap. 3

vat pageno : in teger

Sec. 3.3 SIMPLE DATA TYPES 33

reveals that the programmer only intends to assign integer values to the
variable pageno, perform arithmetic operations on it, and compare it to
other integers. Anything else is a mistake on his part.

This explicit assumption enables a compiler to detect meaningless state-
ments, such as an assignment of a boolean value to an integer variable

pageno:= false

or a comparison of integer and boolean variables

if pageno = ok t h e n . . .

Although a computer may represent the boolean values false and true by
0 and 1, it is essential to consider booleans and integers as different concepts
in a programming language. Otherwise, a compiler cannot perform this kind
of type checking.

3.3 SIMPLE DATA TYPES

The data type concept plays a central role in abstract programming
because it clarifies the assumptions of programs and makes them part ly
verifiable during compilation.

The simple data types consist of values that can only be operated upon
as a whole. They are either enumerations or reals. The types

type integer = (-32768, -32767 0, 1, ... 32767)

type boolean = (false, true)

type char = (nul, soh, ... '# ' , '$', ... '0' , '1' , ... 'a', 'b', ... del)

are enumerations. Each of them defines a finite, ordered set of values. These
standard types need no t be defined by the programmer. This is only done
here to show their values.

The language nota t ion does no t reveal how these values are represented
in a computer . The integer values might be stored as two's complement bit
patterns, the boolean values as 0 and 1, and the character values as 0 to 127.
Pascal enables the programmer to ignore details o f machine representation
and consider integers, booleans, and characters as distinct, abstract concepts.

34 SEQUENTIAL PASCAL Chap. 3

The programmer can also define his own enumerat ion types. For exam-
ple, the definition

type iooperat ion = (input, output , move, control)

introduces a new data type called iooperation. Its values are called input,
output, move, and control. A computer might represent these values by 0, 1,
2, and 3, but this is irrelevant to the programmer.

Other examples of new enumerat ion types are

type iodevice = (typedevice, diskdevice, tapedevice,
printdevice, carddevice)

type ioresult = (complete, intervention, transmission,
failure, endffle, endmedium, s tar tmedium)

Enumerat ion variables are declared as follows

vat count , lineno, charno: integer;

ok: boolean;

c: char;

status: ioresult;

An enumerat ion value can be used to select a s tatement to be executed

if count < 0 then wri te(' - ') else write(' ')

if (count = pagelength) or (c = em) then
begin write(text) ; count : = 0 end

case status of
complete:

ok: = true;
intervention:

begin wait; ok: = false end;
transmission, failure:

begin write('errors ') ; ok:= false; end
end

Sec. 3.3 SIMPLE DATA TYPES 35

or to repeat the e x e c u t i o n o f a s t a t e m e n t

fo r l ineno:= 1 to f irst l ine - 1 do wri te(nl)

while (c < > ' # ') & (charno < l inelength) do
begin wr i te (c) ; charno: = cha rno + 1; read(c) end

r epea t read(c) unt i l c = em

An e n u m e r a t i o n t y p e can also be a subrange of a n o t h e r one

t y p e f i leno = 1..2;

digit = '0 ' . . ' 9 ' ;

i o m a r k = endf i l e . . s t a r tmed ium;

var f: f i leno; d: digit; m: i omark ;

These dec lara t ions res t r ic t the var iable f to the values 1 and 2, the var iable
d to the values '0 ' , '1 ' , . . . '9 ' , and the var iable m to the values endfile, end-
medium, and startmedium. F o r e x a m p l e

f := 2; d := '3 ' ; m: = e n d m e d i u m ;

T h e s t a n d a r d t y p e real consists o f a f ini te se t o f the real n u m b e r s

var seconds: real;

seconds := seconds + 1.0;

i f seconds > = o n e d a y then seconds: = seconds - oneday ;

The fo l lowing s t andard func t ions convert values o f one s imple t y p e to
a n o t h e r

o rd (x)

chr (x)

cony(x)

t r unc (x)

The ordinal value o f the cha rac t e r x.

The cha rac te r wi th the ordinal value x.

The real co r r e spond ing to the in teger x.

The in teger co r r e spond ing to the real x.

36

Example :

SEQUENTIAL PASCAL

cons t o n em in = 60.0 " s eco n d s" ;
vat min, sec: integer; r em: real;
s ec := t runc (rem - conv(min) * onemin)

Chap. 3

Example :

vat digit: char; rem: integer;
digit: = chr (abs(rem rood 10) + o rd (' 0 '))

3.4 STRUCTURED DATA TYPES

Arrays, records , and sets are da ta s t ruc tures c o m p o s e d of s impler types.
T h e y can be ope ra t ed u p o n e i ther as a whole or c o m p o n e n t by c o m p o n e n t .

An array is a da ta s t ruc tu re wi th a f ixed n u m b e r of c o m p o n e n t s of the
same type . A t e x t line, fo r example , can be de f ined as an array of characters

t y p e l i n e = array (.1 . .132.) o f char

The individual characters have indices f r o m 1 to 132.
The declarat ions

var t ex t , e r ror : line; charno : integer;

i n t roduce two line variables, t ex t and error, and an in teger variable, charno.
Lines can be ope ra t ed u p o n as a whole

if s tatus < > c o m p l e t e t h en t ex t : = er ror

or charac te r by charac te r

fo r cha rno : = 1 to 132 do e r ro r (. charno .) : = '? '

An array e l emen t is selected by means of its inffex

e r ror (. charno .)

Sec. 3.4 STRUCTURED DATA TYPES 37

During program execution the machine checks that indices are within the
range of the arrays (here 1 to 132).

A record is a data structure with a fixed number of components that
may be of different types. For example, to output a line on a printer one
uses a record that defines the input /output operation and its result

type ioparam = record
operation: iooperation;
status: ioresult;
arg: integer

end

This data type is called an ioparam. It contains three fields named operation,
status, and arg. These fields are of types iooperation, ioresult, and integer
defined earlier.

A line is printed as follows

vat param: ioparam; text: line;

param.operation: = output;
repeat io(text, param, printdevice)
until param.status = complete;

(The extra argument in the record is only used for disks and magnetic tapes.)
A record field is selected by means of its identifier

param.operation
param.status

Instead of repeatedly qualifying record fields with the same record
identifier one can do it once by means of a with statement

with param do
begin

operation: = output;
repeat io(text, param, printdevice)
until status = complete;

end

38 SEQUENTIAl... PASCAL

The data type

type characters = set o f char

defines all the possible subsets of characters, among others

where

vat empty , signs, digits: characters;
empty := (..)
signs := (. '+', ' - ' .)
digits:= (. '0 ' , '1' , '2' , '3' , '4' , '5' , '6' , '7' , '8' , '9 ' .)

Another example of a set type is

type cyl inder = set o f sector

type sector = 0..23

which defines a disk cyl inder as a set of sectors numbered 0 to 23.
In general, a set t ype

set o f T

defines all the possible subsets of the values of an enumera t ion type T.
The basic set operat ions are

or un ion
& intersect ion
- difference
in membership

Example:

var numeric : characters;

numeric := signs or digits

Chap. 3

Sec. 3.4

Example:

STRUCTURED DATA TYPES 39

vat pool: cylinder; next: sector;

while no t (next in pool) do
next:= (next+l) mod 24;
pool: = pool - (.next.)

We will occasionally use a variable that can have values of different
types, such as boolean, integer, or identifier. A possible notat ion for this
might be

var param: either boolean, integer, or identifier;

param:= boolean(false)
param := integer(X 5)
if param = identif ier('backup') then ...

This idea is a bit more cumbersome to express in Pascal. The variable must
be defined as a record that contains either a boolean field, an integer field,
or an identifier field. This record must include a tag field that defines which
of the three variants is being represented by the other record field

type argtag = (booltype, int type, idtype);
type argtype = record

case tag: argtag o f
bool type: (bool: boolean);
int type: (int: integer);
idtype: (id: identifier)

end;
vat param: argtype;

The type argtag defines the possible values of the tag field. The type argtype
defines a record with three variants. If the tag field has the value booltype
then the rest of the record is a boolean field named bool. On the other hand,
if the tag value is inttype the record contains an integer field called int, and
so on.

This variant record can be used as follows

40 SEQUENTIAL PASCAL Chap. 3

with param do
begin tag: = bool type; bool:= false end

if param.tag = idtype then ...

The programmer pays a price for the flexibility' of variant types. Every
time a program refers to a variant field the machine will check whether the
tag value is consistent with the variant assumed.

3.5 ROUTINES

A routine is a sequence of statements with parameters that have been
combined into a single action. Data types and routines are the main com-
ponents of Sequential Pascal programs. There are two kinds of routines:
procedures and functions.

Example:

procedure readpage(addr: integer; var block: page);
var param: ioparam;
begin

with param do
begin

operation:= input;
arg:= addr;
repeat io(block, param, diskdevice)
until status = complete;

end;
end

where

type page = array (.1..512.) of char

This procedure is called readpage. Its parameters are an integer and a
disk page, called addr and block. The procedure can use the values of both
parameters but can only change the second one. The distinction between
constant and variable parameters is made by omitt ing or writing the symbol
var before the parameters

addr: integer vat block: page

Sec. 3.6 SCOPE RULES 41

The p rocedu re also uses a local variable param to pe r fo rm disk input .
The p rocedu re can be execu t ed by being called with arguments cor-

responding to those specif ied in its def in i t ion

var pageno: integer; slot: page;

readpage(pageno, slot)

A func t ion is a rou t ine tha t comp u te s a single value

func t ion hash(id: ident i f ier) : integer;
var key, i: integer; c: char;
begin

key: = 1 ; i : = 0;
r epea t

i: = i + 1; c:= id(.i.);
i f c < > ' ' t h en

key: = key * ord(c) m o d table length + 1;
unt i l (c = ' ') or (i = idlength) ;
hash := key;

end

This func t ion conver ts an ident i f ier

c o n s t i d l e n g t h = 1 2
t ype ident i f ier = array (.1. . idlength.) o f char

in to an integer value called its hash key

vat name: ident i f ier ; key: integer;
key := hash(name)

3.6 SCOPE RULES

A program is m u c h easier to unders t and if each of its s t a tements opera te
on ly on a small n u m b e r o f variables and if each variable is accessible on ly to
a small par t o f the program. This par t of the program is called the scope of
the variable.

The variables declared at the beginning o f a Sequent ia l Pascal p rogram

42 SEQUENTIAL PASCAL Chap. 3

are accessible throughout the program. These global variables exist as long as
the program is being executed.

The variables declared within a routine are only accessible to that
routine. These local variables exist only while the routine is being executed.

The compiler checks these scope rules.
Since the local variables disappear after the execution of a routine they

can only be used to hold temporary results. More permanent results must be
stored in global variables. This tends to make the global data structures
large and complicated for nontrivial programs. It also makes programs hard
to understand since every s ta tement can potentially change the global data.

Programs can become somewhat obscure when routines change global
variables that a re not passed to them as parameters. The following is an
example of these side effects

vat header: line; endinput: boolean;
out: record count: integer; text: line end;

.

procedure initialize(text: line);
begin

header:= text;
endinput:= true;
out .count := 0;

end

Instead of letting this procedure change the global variables header, endin-
put, and out without prior warning, one could ask the programmer to pass
them as explicit arguments to the routine. However, the intention of this
programming style is to show that these three arguments are always the
same. This assumption would be hidden throughout the program (and might
be violated by mistake) if all arguments had to be explicit.

The problem is simply that this routine needs local variables that are
permanent rather than temporary. But Sequential Pascal does not make it
possible for the programmer to restrict the access to a permanent variable
to one (or just a few routines). It is accessible either to all routines or to
none. This problem with global variables is solved in Concurrent Pascal.

3.7 TYPE CHECKING

In Pascal every constant, variable, and expression has a type that is
known during compilation. This enables a compiler to check that operands
are compatible with the operations performed on them. The compiler does

Sec. 3.7 TYPE CHECKING 43

this by simulating the execution of statements using the types of the oper-
ands instead of their values.

An example will show how this works

vat ok: boolean; codelength: integer;

if ok & (codelength > 0) then savefile

By replacing the operands with their types we get the abstract s tatement

if boolean & (integer > integer) then statement

The comparison of two integers is a legal subexpression that produces a
boolean result (since it is either true or false). This reduces the expression to

if boolean & boolean then statement

The and operation on two booleans produces a boolean result

if boolean then statement

So the whole expression has a boolean value which is exactly what is re-
quired by a conditional statement.

On the other hand, the statement

if ok & codelength then savefile

will be found incorrect since an and operation cannot be performed on a
boolean and an integer

if boolean & integer then statement

Type checking depends on a comparison of declarations and state-
ments written in different parts of a program text. This textual separation
makes it difficult to find type errors by proofreading the text. It is therefore
vital to design a programming language such that these obscure errors can
be discovered during compilation.

44 SEQUENTIAL PASCAL Chap. 3

Automatic type checking assumes that the types o f all operands and the
possible operations on them are known during compilation. In Sequential
Pascal all operands have fixed types, and the elementary operations on the
standard types (boolean, char, integer, and real) are known as well (&, or,
not, +, -, * , / , < , =, > , and so on).

But when the programmer introduces a structured data type, such as

type diskffle = record
unit: disk;
map: filemap;
opened: boolean

end

and defines four operations on it

procedure open(file: diskfile; mapaddr: integer)
procedure close(file: diskfile)
procedure read(file: diskfile; pageno: integer; vat block: page)
procedure write(file: diskfile; pageno: integer; block: page)

the language does not make it possible to tell the compiler that these are
supposed to be the only operations one can perform on disk files.

In Concurrent Pascal type checking is extended to data structures as
well. The problem of doing this is closely related to the problem of limiting
the scope of permanent variables to a small number of routines.

Occasionally, a system programmer must be able to relax the rules of
type checking somewhat. This can be done wi thout going to the other
extreme of introducing variables that are treated as typeless bit patterns
throughout the program (as assembly languages and some implementation
languages do).

Consider again an operating system procedure that outputs a page of
data to a disk file

procedure write(file: diskfile; pageno: integer; block: page)
begin end

where a page is defined as a text string

type page = array (.1..512.) of char

Sec. 3.8 LITERATURE 45

This procedure can be used to ou tpu t a t ex t string x as page number i on a
disk file f

vat f: diskfile; i: integer; x: page;
write(f, i, x)

But if we insist that the arguments of a procedure call must be of the
same types as the parameters defined within the procedure, then we cannot
use the same procedure to ou tpu t a page of another type, say an array of
integers

type intpage = array (.1..256.) o f integer
vat g: diskfile; j: integer; y: intpage;
write(g, j, y)

We could, of course, suggest the use of a type definition that mentions
all the possible variants of a disk page. But this is unrealistic. When a system
programmer writes a disk file rout ine he cannot anticipate all the possible
data types that users will assign to disk pages in the future. All the pro-
grammer knows and can depend on when he writes the disk file procedure
is the physical length of a disk page. This is one of the few cases in which
one cannot hope to hide machine detail.

To make the output procedure more general we will define the disk
page as a universal parameter

procedure write(file: diskfile; pageno: integer;
block: univ page)

The symbol univ indicates that the procedure can be called with any argu-
ment that occupies the same number of store locations as a disk page. It can
now be called with the integer page y as an argument. Before and after the
call, the variable y is regarded strictly as an integer page. And within the
procedure, the parameter is considered strictly as a disk page. Type check-
ing is only relaxed at the point where the procedure is being called.

3.8 LITERATURE

Hoare [1973] and Wirth [1976b] discuss philosophies of language de-
sign and evaluation. In Structured programming, Hoare [1972] summarizes
the fundamental concepts of data types and structures.

46 SEQUENTIAL PASCAL Chap. 3

Wirth's books [1973 and 1976a] are very readable introductions to
systematic programming in Sequential Pascal. The User m a n u a l and repor t
by Jensen and Wirth [1974] is a short overview and concise definition of
Pascal.

REFERENCES

DAHL, O. J., DIJKSTRA, E. W., and HOARE, C. A. R., Structured programming.
Academic Press, New York, NY, 1972.

HOARE, C. A. R., Hints on programming language design. Computer Science Depart-
ment, Stanford University, Stanford, CA, Dec. 1973.

JENSEN, K., and WIRTH, N., "Pascal--user manual and report," Lecture notes in
computer science 18, Sprlnger-Verlag, New York, NY, 1974.

WIRTH, N., Systematic programming: an introduction. Prentice-Hall Inc., Englewood
Cliffs, NJ, 1973.

WIRTH, N., Algorithms + data structures = programs. Prentice-Hall Inc., Englewood
Cliffs, NJ, 1976a.

WIRTH, N., Programming languages: what to demand and how to assess them. Institut
fiir Informatik, Eidgen~ssische Technische Hochschule, Zurich, Switzerland, 1976b.

4
CONCURRENT PASCAL

Earlier I explained the concepts of Concurrent Pascal informally by
means of pictures of a hierarchical pipeline that copies tex t from a card
reader to a line printer and formats it. I will now use the same example to
introduce a language notat ion. The presentation is still i n fo rma l - - i t shows
the concepts of the language rather than its details.

We will program the components of the pipeline program one at a
t ime (Fig. 2.10).

4.1 INPUT/OUTPUT

The standard procedure

io(block, param, device)

makes a peripheral device input or ou tpu t a data block as defined by an
additional parameter. The calling process is delayed until the operat ion is
completed.

47

48 CONCURRENT PASCAL Chap. 4

We will write the pipeline program for a computer on which the device
and its parameter must be of the following types

type iodevice = (typedevice, diskdevice, tapedevice,
printdevice, carddevice)

type ioparam = record
operation: iooperation;
status: ioresult;
arg: integer

end

where

type iooperation = (input, output , move, control)

type ioresult = (complete, intervention, transmission,
failure, endfile, endmedium, startmedium)

A process defines an input /ou tput operation and its argument before
starting a device. After the data transfer the device returns one of the follow-
ing results

complete

intervention

transmission

failure

endfile

endmedium

startmedium

The operation succeeded.

The operation failed, but can be; repeated after
manual intervention.

The operation failed due to a transmission error,
but can be repeated immediately.

The operation failed and cannot be repeated until
the device has been repaired.

An end of file mark was reached.

An end of medium mark was reached.

A start of medium mark was reached.

The types of a data block and the extra argument within an io para-
meter vary from device to device but will be fairly self-evident in each case
(see Chapter 8 for details).

The card reader and line printer can transfer one line at a time

Sec. 4.2 PROCESSES 49

cons t l inelength = 132
t ype line = array (.1. . l inelength.) o f char

The card reader inputs 80 characters per line (w i t h o u t a t e rmina t ion
character) . The line p r in te r ou tpu t s a variable n u m b e r o f characters on each
line t e rmina ted by a NL or FF charac te r

cons t nl = ' (:10 :) ' ; f f = ' (:12:) ' ;

A c o n c u r r e n t p rogram mus t ensure tha t its devices are used by at m o s t one
process at a t ime (since the mach ine does n o t check this).

4.2 PROCESSES

Although we only need one printer process, we m a y as well def ine it as
a general sys tem type o f which several copies m a y exist

t ype pr in te rprocess =
process (buf fer : l inebuffer) ;

vat param: ioparam; t ex t : line;

begin
pa ram.opera t ion : = o u tp u t ;
cycle

buf fe r . rece ive(tex t) ;
r epea t io(tex t , param, pr in tdevice)
unt i l param.s ta tus = comple te ;

end;
end;

A pr in te r process has access to a buffer of t y p e linebuffer (to be def ined
later). The process has two variables, param and text, of ioparam and line
types.

A process type defines a sequential program: in this case, an endless
cycle tha t receives a line f rom the buf fe r and ou tpu t s it to the pr inter .

The receive opera t ion on the buf fe r

buf fe r . rece ive(tex t)

re turns a line o f text .

50 CONCURRENT PASCAL Chap. 4

The output of a line is repeated until it is successfully completed (that
is, until the operator turns on the power of the line printer and puts it under
computer control).

The next component type is a card process.

type cardprocess =
process(buffer: linebuffer);

var param: ioparam; text, error: line;
charno: integer;

begin
for charno: = 1 to 80 do error(.chamo.):= ' ? ' ;
param.operation: = input;
with param do
cycle

repeat io(text, param, carddevice)
until status < > intervention;
if status < > complete then text:=: error;
buffer.send(text);

end;
end;

A card process has access to a line buffer. It uses four private variables: an
io parameter, two lines called t e x t and error, and an integer called charno.

The process inputs lines from the card reader and sends them through
the buffer. If the power of the card reader is turned off, the input is re-
peated until the operator intervenes. A card input with transmission errors
is replaced by question marks.

Finally, we need a copy process that can transmit data from one buffer
to another.

type copyprocess =
process(inbuffer, outbuffer: linebuffer);

vat consumer: filemaker; text: line;

begin
init consumer(outbuffer);
with inbuffer, consumer do
cycle receive(text); write(text) end;

end;

Sec. 4.2 PROCESSES 51

A c o p y process has access to an input and an ou tpu t buffer. I t has two
private variables: a consumer of type filemaker (def ined later) and a text
line.

The s t a t emen t

init c o n s u m e r (o u t b u f f e r)

initializes the consumer and connec t s it to the o u t p u t buffer . This is ex-
plained in more detai l later.

To begin with, a c o n c u r r e n t p rogram is ex ecu t ed as a single, sequent ia l
process called the initial process. I t contains declara t ions o f the o the r pro-
cesses and mon i to r s

vat inbuffer , ou tb u f f e r : l inebuffer ;
reader: cardprocess;
copier : copyprocess ;
pr inter : pr in terprocess ;

The sys tem c o m p o n e n t s are a card process, a co p y process, and a p r in te r
process called the reader, copier, and printer. T h e y are c o n n e c t e d by input
and ou tpu t buffers.

The initial process starts the reader process by an init s t a t em en t

init r eader (inbuf fe r)

which allocates storage for the private variables of the process and starts its
e xe c u t i on wi th access to the inpu t buffer . The access rights of a process to
o the r sys tem componen t s , such as the inpu t buffer , are also called its para-
meters.

A process can only be init ialized once. Af te r init ial ization, the para-
meters and private variables of a process exist forever. T h e y are called
permanent variables.

The ini t s t a t emen t can be used to s tar t c o n c u r r e n t execu t ion of several
processes and def ine thei r access rights. The s t a t e m e n t

init reader (inbuf fe r) ,
copier (inbuffer , ou tbu f fe r) ,
p r i n t e r (ou tbu f f e r)

starts c o n c u r r e n t execu t ion of the reader process (with access to the input

52 CONCURRENT PASCAL Chap. 4

buffer), the copier process (with access to both buffers), and the printer
process (with access to the output buffer).

A process can only access its own parameters and private variables. The
latter are not accessible to other system components. Compare this with the
more liberal scope rules of block-structured languages, in which a routine can
access not only its own parameters and local variables but also those declared
globally.

In Concurrent Pascal all variables accessible to a system component are
declared within its type definition. This access rule and the init s tatement
make it possible for a programmer to state access rights explicitly and have
them checked by a compiler. They also make it possible to study a system
type as a self-contained program unit.

Although the examples do not show this, one can also define constants,
data types, and procedures within a process. These objects can only be
used within the process type.

4.3 MONITORS

A line buffer is a monitor type.

type linebuffer =
monitor

vat contents: line; full: boolean;
sender, receiver: queue;

procedure entry receive(vat text: line);
begin

if not full then delay(receiver);
text:= contents; full:= false;
continue(sender);

end;

procedure entry send(text: line);
begin

if full then delay(sender);
contents:= text; full:= true;
continue(receiver);

end;

begin full:= false end;

Sec. 4.3 MONITORS 53

The monitor defines a set of shared variables: The contents of the buffer is
a single line. A boolean defines whether or no t the buffer is full. Two vari-
ables of type queue are used to delay the sender and receiver processes until
the buffer becomes empty and full, respectively.

The monitor defines two procedures, send and receive. These monitor
procedures are marked with the word entry to distinguish them from local
procedures used within the monitor only (there are none of these in this
example).

Receive delays the calling process until the buffer is full. It then returns
a text line to the process. Finally, the procedure continues the execution
of a sending process (if it is waiting in the sender queue).

Send delays the calling process until the buffer is empty. It then puts
a text line into the buffer and continues the process (if any) waiting in the
receiver queue. (The queueing mechanism will be explained in detail short-
ly.)

The initial s tatement of a line buffer makes it empty to begin with.
A line buffer is declared and initialized as follows within the initial

process

vat inbuffer: linebuffer;
init inbuffer

The init statement allocates storage for the shared variables of the input
buffer and executes its initial statement. A monitor can be initialized only
once. After initialization, the shared variables of a monitor exist forever.
They are called permanent variables.

The parameters and local variables of a monitor procedure exist only
while it is being executed, however. They are called temporary variables.

A monitor procedure can only access its own temporary and permanent
variables. These variables are not accessible to other system components.
Other components can, however, call procedure entries within a monitor
(provided they have access to it).

While a monitor procedure is being executed, it has exclusive access to
the permanent variables of the monitor. If concurrent processes try to
call procedures within the same monitor simultaneously, these procedures
will be executed strictly one at a time.

Only monitors and constants can be permanent parameters of processes
and monitors. This rule ensures that processes communicate only by means
of monitors.

It is possible to define constants, data types, and local procedures within
monitors (and processes). These local objects of a system type can only be
used within that system type.

54 CONCURRENT PASCAL Chap. 4

To prevent deadlocks of moni tor calls and ensure that access rights are
hierarchical the following rules are enforced: A rout ine must be declared
before it can be called; rout ine definitions cannot be nested and cannot call
themselves; and a system type cannot call its own routine entries.

The absence of recursion makes it possible for a compiler to determine
the store requirements of all system components . This and the use of perma-
nent components make it possible to use a f ixed store allocation in a com-
puter t ha t does not support paging (see Chapter 9 for details).

Since system components are permanent they must be declared as
permanent variables of other components .

4.4 QUEUES

A moni tor procedure can delay a calling process for any length of time
by executing a delay operat ion on a queue variable. Only one process at a
time can wait in a queue. When a calling process is delayed by a moni tor
procedure it loses its exclusive access to the moni tor variables until another
process calls the same moni tor and executes a continue operat ion on the
queue in which the first process is waiting.

The cont inue operat ion makes the calling process return from its moni-
tor procedure. If another process is waiting in the selected queue, that proc-
ess will immediately resume its execut ion of the moni tor procedure in which
it was delayed. After being resumed, the process again has exclusive access
to the permanent variables of the monitor .

A single-process queue is the simplest tool thai; gives the programmer
complete control of the medium-term scheduling of individual processes.
A queue is still a fairly abstract concept which allows one to ignore the
identi ty of a process and think of it merely as " the calling process" or " the
process waiting in this queue ." It also hides the details of processor schedul-
ing that take place during preempt ion and resumption of a process.

A queue must be declared as a permanent variable within a moni tor
type. The larger programs described later show how multiprocess queues
can be built f rom single-process queues.

4.5 CLASSES

A file maker is defined as a class type. It has access to a line buffer. Its
permanent variables define a page maker, called the consumer, and a boolean
eof denoting the end of a t ex t file.

The class defines a procedure entry write tha t skips a page a t the be-
ginning and the end of a file and transmits its t ex t lines to the page maker.

Sec. 4.5 CLASSES 55

It also includes a local funct ion m o r e that defines whether or not a
line contains tex t or an end of file mark. (The latter is a card consisting of
the character # followed by blanks.)

The initial s t a t e m e n t of a file maker initializes its page maker and sets
the boolean eof to true.

A class can only be initialized once. After initialization, its parameters
and private variables exist forever. A class routine can only access its own
temporary and permanent variables. These cannot be accessed by other
components.

type filemaker =
class(buffer: l inebuffer);

vat consumer: pagemaker; eof: boolean;

funct ion more(text : line): boolean;
vat charno: integer;
begin

if text(.1.) < > '# ' then
more: = true else

begin
charno:= 80;
while text(.charno.) = ' ' do

charno: = charno - 1;
more:= (charno < > 1);

end;
end;

procedure entry write(text: line);
begin

if eof then
begin consumer.skip; eof:= false end;
.if more(text) then

consumer.wri te(text) else
begin consumer.skip; eof: = true end;

end;

begin init consumer(buffer) ; eof: = true end;

A class is a system componen t that cannot be called simultaneously by
several other components . This is guaranteed by the following rule: A class
must be declared as a permanent variable within a system type; a class can
be passed as a permanent parameter to another class (but no t to a process

56 CONCURRENT PASCAL Chap. 4

or monitor). So a chain of nested class calls can only be started by a single
process (possibly from within a monitor). Consequently, it is not necessary
to schedule simultaneous class calls at run t i m e - they simply cannot occur.

A page maker is also a class.

type pagemaker =
class(buffer: linebuffer);

vat consumer: linemaker; lineno: integer;

procedure newpage;
vat text: line;
begin

text(. 1.) := ff; consumer.write(text);
text(.1.) := nl; consumer.write(text);
lineno := 1;

end;

procedure entry skip;
begin newpage end;

procedure entry write(text: line);
begin

consumer, write(text);
if lineno -- 60 then newpage else

lineno:= lineno + 1;
end;

begin init consumer(buffer); newpage end;

A page maker defines a procedure entry that skips the rest of a page and
another one that writes 60 lines per page.

The page maker uses another class called a line maker.

type linemaker =
class(buffer: linebuffer);

vat image: line; charno: integer;

Sec. 4.6 A COMPLETE PROGRAM 57

procedure entry write(text: line);
begin

for charno: = 27 to 106 do
image(.charno.): = text(.charno - 26.);

buffer.send(image);
end;

begin
for charno:= 1 to 26 do

image(.charno.) := ' '"
image(.107.) := nl;

end;

This class extends a text line with a left margin of 26 characters and termi-
nates it with a NL character before sending it through the buffer.

4.6 A COMPLETE PROGRAM

We can now put all these components together into a complete, con-
current program. A Concurrent Pascal program consists of nested definitions
of system types (processes, monitors, and classes). The outermost of these
is the initial process which declares and initializes the other processes and
the monitors that connect them.

When the execution of a process (such as the initial process) terminates,
its permanent variables continue to exist. This is necessary because these
variables may be monitors that are used by other processes.

The following is a complete program for the pipeline system. It has been
running on a PDP 11/45 computer.

" *

* input /output types *
* * * * * * * * * * * * * : ~ * * * ~ * * * * * ' ~

type iodevice = (typedevice, diskdevice, tapedevice,
printdevice, carddevice);

type iooperation = (input, output , move, control);

type ioresult = (complete, intervention, transmission,
failure, endfile, endmedium, startmedium);

58 CONCURRENTPASCAL

type ioparam = record
operation: iooperation;
status: ioresult;
arg: integer

end;

const linelength = 132;
type line = array (.1..hnelength.) of char;

const nl = '(:10:) ' ; f f = '(:12:) ' ;

~ * * * * * * * * * * * * * * *

* linebuffer *
* * * * * * * * * * * * * * * "

type linebuffer =
moni tor

vat contents: line; full: boolean;
sender, receiver: queue;

procedure entry receive(var text: line);
begin

if not full then delay(receiver);
text:= contents; full: = false;
continue(sender);

end;

procedure entry send(text: line);
begin

if full then delay(sender);
contents: = text; full: = true;
continue(receiver);

end;

begin full:= false end;

" * * * * * * * * * * * * * *

* hnemaker *
* * * * * * * * * * * * * * ~ '

type linemaker =
class(buffer: linebuffer);

Chap. 4

Sec. 4.6 A COMPLETE PROGRAM

vat image: line; charno: integer;

procedure entry write(text: line);
begin

for charno: = 27 to 106 do
image(.charno.) := text(.charno - 26.);

buffer.send(image);
end;

begin
for charno:= 1 to 26 do

image(.charno.):= ' '"
image(.107.) := nl;

end;

~ * * * * * * * * * * * * * * *

* pagemaker *

type pagemaker =
class(buffer: linebuffer);

var consumer: linemaker; lineno: integer;

procedure newpage;
vat text: line;
begin

text(. i .) := ff; consumer.write(text);
text(.1.) := nl; consumer.write(text);
lineno := 1;

end;

procedure entry skip;
begin newpage end;

procedure entry write(text: line);
begin

consumer.write(text);
if lineno = 60 then newpage else

lineno:= lineno + 1;
end;

begin init consumer(buffer); newpage end;

59

60 CONCURRENTPASCAL

* filemaker *

type filemaker =
class(buffer: linebuffer);

vat consumer: pagemaker; eof: boolean;

funct ion more(text: line): boolean;
vat charno: integer;
begin

if text(.1.) < > '# ' then
more:= true else

begin
charno:= 80;
while text(.charno.) = ' ' do

charno := charno - 1;
more: = (charno < > 1);

end;
end;

procedure entry write(text: line);
begin

if eof then
begin consumer.skip; eof:= false end;
if more(text) then

consumer.write(text) else
begin consumer.skip; eof:= true end;

end;

begin init consumer(buffer); eof: = true end;

Chap. 4

* c~dprocess *
$ * $ * $ $ $ $ $ $ $ * $ * $ ~ ' ~

type cardprocess =
process(buffer: linebuffer);

vat param: ioparam; text, error: line;
charno: integer;

Sec. 4.6 A COMPLETE PROGRAM

begin
for charno: = 1 to 80 do error(.charno.): = '?';
param.operation: = input;
with param do
cycle

repeat io(text, param, carddevice)
until status < > intervention;
if status < > complete then text: = error;
buffer, send (text);

end;
end;

~ * * * * * * * * * * * * * * * *

* copyprocess *

type copyprocess =
process(inbuffer, outbuffer: linebuffer);

vat consumer: fflemaker; text: line;

begin
init consumer(outbuffer) ;
with inbuffer, consumer do
cycle receive(text); write(text) end;

end;

*

* printerprocess *
*

type printerprocess =
process(buffer: linebuffer);

vat param: ioparam; text: line;

begin
param.operation: = output ;
cycle

buffer.receive(text);
repeat io(text, param, printdevice)
until param.status = complete;

end;
end;

61

62 CONCURRENT PASCAL Chap. 4

~ * * * * * * * * $ * $ $ * * * * * $ $ $

* initi~ process *
$ * $ $ * $ * * $ * $ $ * $ $ $ $ * * * ~

var inbuffer, outbuffer: linebuffer;
reader: cardprocess;
copier: copyprocess;
printer: printerprocess;

begin
init inbuffer, outbuffer,

reader(inbuffer),
copier(inbuffer, outbuffer),
printer(outbuffer);

end.

4.7 EXECUTION TIMES

Section 8.15.9 defines the execution times for Concurrent Pascal state-
ments on a PDP 11/45 computer. We will use these figures to illustrate how
one estimates the execution time of a statement, such as

for charno: = 27 to 106 do
image(.charno.) := text(.charno - 26.)

which is the bottleneck of the copying process in the pipeline system.
The assignment statement takes the following time (in psec)

image 40
(.charno.) 10
:= 8
text 40
(.charno 10
- 9

26.) 7

indexed enumeration
enumeration variable
enumeration assignment
indexed enumeration
enumeration variable
enumeration subtraction
enumeration constant

124 psec

So the whole for statement takes

82 + (69 + 124) * 80 = 15522 psec

Sec. 4.8 CONCLUSION 63

or about 16 msec. Since the printing of a line takes 100 msec, there is more
than enough time to do the formatting simultaneously.

The following figures give a feeling for the cost of routine calls and
processor multiplexing

simple routine call
class routine call
monitor routine call (no processor switching)
delay or continue (processor switching)
io

58 psec
80 psec

200 psec
600 ~sec

1500 psec

To call a class routine is almost as fast as calling a simple routine. The short-
term scheduling of simultaneous monitor calls make them almost three times
slower than class calls. If a monitor call delays the calling process or contin-
ues another process waiting in a queue, the resulting processor switching
takes another 0.6 msec. Input /output , which usually causes the processor
to switch from one process to another twice (before and after the transfer),
uses about 1.5 msec of processor time.

Although the exact timing of processor multiplexing is unknown to a
Concurrent Pascal programmer, the execution figures make it possible to
predict the total amount of processor time used by the pipeline program per
line copied and estimate the cycle time of each process roughly.

4.8 CONCLUSION

We have constructed a nontrivial, concurrent program from small, trivial
components that can be studied in almost any order you please. We will
now pause and look at Concurrent Pascal in the light of the programming
principles presented in Chapter 1.

Program structure

The pipeline program consists of 4 processes, 3 classes, and 1 monitor
type which are connected hierarchically. Each component is small (10- 20
lines) and uses a small number of other components (1 - 3) . The program
and its components have reproducible behavior and will print a text correct-
ly each time it is input independently of its speed of execution.

64 CONCURRENT PASCAL Chap. 4

Language notation

Concurrent Pascal is an abstract programming language that hides most
of the machine details which make assembly language programming so
troublesome

registers and store locations
data representation
variable addresses
machine instructions and jumps
peripheral instructions and interrupts
processor and store allocation

Compared to assembly language, Concurrent Pascal reduces the text of a
program by an order of magnitude and makes it clear what the program
components are and how they are connected.

The declaration of objects before they are used is a redundancy that
makes it possible to check automatically whether a program satisfies some
of the assumptions on which it was built.

Compiler

The Concurrent Pascal compiler for the PDP 11/45 computer performs
extensive checks of

program syntax
declarations
type compatibility
access rights
hierarchical structure

Almost none of these consistency checks are possible for a machine language
program which is an unstructured sequence of instructions operating on
typeless, global variables that do not have to be declared (but can be ac-
cessed by computing arbitrary addresses).

The Concurrent Pascal compiler generates code for an abstract computer
simulated by a machine program. It can be moved to other computers by re-
writing this interpreter of 4 K words.

The compiler has been running without errors since January 1975. It
compiles about 10 lines/sec on a PDP 11/45 computer using a slow disk
(50 msec/transfer) for intermediate storage of code.

Sec. 4.9 LITERATURE 65

Interpreter

The abstract code generated by the compiler is about 60 per cent slower
than the corresponding machine code. In practice, however, concurrent
programs are often limited by the speed of peripherals rather than by the
interpreter (as shown in Section 4.7).

Operating systems which handle user programs written in machine
language must necessarily take the pessimistic view that all programs could
turn out to be random bit patterns. To prevent such programs from crashing
a system, the designer must depend heavily on hardware protection mecha-
nisms. The RC 4000 multiprogramming system is one of those heroic sys-
tems that try to make concurrent programs reliable at the machine level
(Brinch Hansen, 1970).

The exclusive use of abstract programming languages changes the ap-
proach to reliability completely. When all programs are certified by a reliable
compiler one can eliminate hardware protection mechanisms entirely as we
have done on the PDP 11/45 computer. The Concurrent Pascal interpreter
only checks that array indices are within range. This is one of the few cases
in which abstract programming is even more efficient than machine program-
ming.

The static store allocation among processes makes it possible for con-
current programs to execute efficiently at fairly predictable speeds.

We will now apply this programming technique to more complicated
concurrent tasks.

4.9 LITERATURE

The classes in Concurrent Pascal are a restricted form of those invented
by Dahl [1972] for the Simula 67 language. Simula 67 makes the variables
of a class directly accessible both inside and outside that class. Concurrent
Pascal classes can only be accessed by procedure calls.

Dijkstra suggested the idea of monitors in 1971. I proposed the first
language notation for them [Brinch Hansen, 1973]. In 1972 I suggested
the use of queue variables (called "events") for process scheduling. Hoare
[1974] used a first-come, first-served variant of these queues (called "con-
ditions"). In defining Concurrent Pascal, I finally decided to use the simplest
possible form of queues (with a single process waiting in each) [Brinch
Hansen, 1975].

66 CONCURRENT PASCAL Chap. 4

REFERENCES

BRINCH HANSEN, P., "Structured multiprogramming," Comm. ACM 15, 7, pp. 574-
78, July 1972.

BRINCH HANSEN, P., Operating system principles. Prentice-Hall Inc., Englewood Cliffs,
NJ, July 1973b.

BRINCH HANSEN, P., "The programming language Concurrent Pascal," IEEE Transac-
tions on Software Engineering 1, 2, pp. 199-207, June 19'75.

DAHL, O. J., DIJKSTRA, E. W., and HOARE, C. A. R., Structured programming. Aca-
demic Press, New York, NY, 1972.

DIJKSTRA, E. W., "Hierarchical ordering of sequential processes," Acta Informatica 1,
2, pp. 115-38, 1971.

HOARE, C. A. R., "Monitors: an operating system structuring concept," Comm. ACM
17, 10, pp. 549-57, Oct. 1974.

CONCURRENT PROGRAMS

THE SOLO OPERATING SYSTEM

This is a description of the first operating system Solo written in the
programming language Concurrent Pascal. It is a simple, but useful single-
user operating system for the development and distribution of Pascal pro-
grams for the PDP 11/45 computer. It has been in use since May 1975.

5.1 OVERVIEW

From the user's point of view there is nothing unusual about the Solo
system. It supports editing~ compilation, and storage of Sequential and Con-
current Pascal programs. These programs can access either console, cards,
printer, tape or disk at several levels (character by character, page by page,
file by file, or by direct device access). Input, processing, and output of files
are handled by concurrent processes. Pascal programs can call one another
recursively and pass arbitrary parameters among themselves.

To the system programmer, however, Solo is quite different from many
other operating systems

(1) Less than 4 per cent of it is written in machine language. The rest
is written in Sequential and Concurrent Pascal.

69

70 THE SOLO OPERATING SYSTEM Chap. 5

(2) In contrast to machine-oriented languages, :Pascal does not contain
low-level programming features, such as registers, addresses, and interrupts.
These are all handled by the virtual machine which executes compiled
programs.

(3) System protect ion is achieved largely by means of compile-time
checking of access rights. Run-time checking is minimal and is not sup-
ported by hardware mechanisms.

(4) Solo is the first major example of a hierarchical concurrent pro-
gram implemented by means of abstract data types (classes, monitors, and
processes).

(5) The complete system consisting of more than 100,000 machine
words of code (including two compilers) was developed by a s tudent and
myself in less than a year.

To appreciate the usefulness of Concurrent Pascal one needs a good
understanding of at least one operating system written in the language. The
purpose of this section is to look at the Solo system from the user's point
of view before studying its internal structure. It tells how the user operates
the system, how data flow inside it, how programs call one another and
communicate, how files are stored on d i sk , and how well the system per-
forms in typical tasks.

Job Control

The user controls lbrogram execution from a display (or a teletype).
He calls a program by writing its name and parameters, for example

move(5)
read(maketemp, seqcode, true)

The first command positions a magnetic tape at file number 5. The second
one inputs the file to disk and stores it as sequential code named maketemp.
The boolean true protects the file against accidental deletion in the future.

If the user forgets which programs are available, he may for example
type

help

(or anything else). The system responds by writing

Sec. 5.1 OVERVIEW 71

not executable, try
list(catalog, seqcode, console)

The suggested command lists the names of all sequential programs on the
console.

If the user knows that the disk contains a certain program, but is uncer-
tain about its parameter conventions, he can simply call it as a program
without parameters, for example

read

The program then gives the necessary information

try again
read(file: identifier; kind: filekind; protect: boolean)

using
filekind = (scratch, ascii, seqcode, concode)

Still more information about a program can be gained by reading its manual

copy(readman, console)

A user session may begin with the input of a new Pascal program from
cards to disk

copy(cards, sorttext)

followed by a compilation

pascal(sorttext, printer, sort)

If the compiler reports errors on the program listing

pascal:
compilation errors

72 THE SOLO OPERATING SYSTEM Chap. 5

the next step is usually to edit the program text

edit(sorttext)
. o ,

and compile it again. After a successful compilation, the user program can
now be called directly

sort(...)

The system can also read job control commands from other media,
for example

do(tape)

A task is preempted by pushing the BEL key on the console. This
causes the system to reload and initialize itself. The command start can be
used to replace the Solo system with any other concurrent program stored
on disk, for example

start(jobstream)

This s tar ts the job stream system described in Chapter 6. The Solo system
can be restarted by pushing the BEL key.

Data Flow

Figure 5.1 Shows the data flow inside the system when the user is
processing a single text file sequentially by copying, editing, or compiling
it.

The input, processing, and ou tpu t of text take place simultaneously.
Processing is done by a job process that starts input by sending an argument
through a buffer to an input process. The argument is the name of the input
device or disk file.

The input process sends the data through another buffer to the job
process. At the end of the file the input process sends an argument through
yet another buffer to the job process indicating whether any transmission
errors occurred during the input.

Sec. 5.1 OVERVIEW 73

ARGBUFFER ARG BUFFER

BUFFE~ DEVICEj
"~.~,.~ RG B U F F E ~ , / '~X,,.,,,..~ R G B U F F E ~=i.j. j

INPUT JOB OUTPUT
PROCESS PROCESS PROCESS

Fig. 5.1 Processes and buffers

Output is handled similarly by an ou tpu t process and another set of
buffers.

In a single-user operating system it is desirable to process a file con-
tinuously at the highest possible speed. So the data are buffered in core
instead of on disk. The capacity of each buffer is 512 characters.

Control Flow

Figure 5.2 shows what happens when the user types a command such as
edit(cards, tape)

After system loading the machine executes a Concurrent Pascal program
(Solo) consisting of three processes. Initially the input and output processes
both load and call a sequential program io while the job process calls another
sequential program do. The do program reads the user command from the
console and calls the edit program with two parameters, cards and tape.

The editor starts its input by sending the first parameter to the io
program executed by the input process. This causes the io program to call
another program cards which then begins to read cards and send them to
the job process.

The editor starts its output by sending the second parameter to the io

74 THE SOLO OPERATING SYSTEM Chap. 5

CARDS

()

()
INPUT

PROCESS

Fig. 5.2

EDIT

JOB
PROCESS

TAPE

)

~ I0

OUTPUT
PROCESS

Concurrent processes and sequential programs

program executed by the output process. The latter calls a program tape
which receives data from the job process and puts them on tape.

At the end of the file the cards and tape programs return to the io
programs which then await further instructions from the job process. The
editor returns to the do program which continues to read and interpret the
next command from the console.

It is worth observing that the operating system itself has no built-in
drivers for input /ou tput from various devices. Data are simply produced
and consumed by Sequential Pascal programs stored on disk. The operating
system contains only the mechanism to call these. This gives the user com-
plete freedom to supplement the system with new devices and simulate
complicated input /output such as the merging, splitting, and formatting of
files without changing the job programs.

Most important is the ability of Sequential Pascal programs to call one
another recursively with arbitrary parameters. In Fig. 5.2, for example, the
do program calls the edit program with two identifiers as parameters. This
removes the need for a separate (awkward) job control language. The job
con trol language is Pascal.

This is illustrated more dramatically in Fig. 5.3, which shows how the
command

pascal(sorttext, printer, sort)

causes the do program to call the program Pascal. The latter in turn calls
seven compiler passes one at a time, and (if the compiled program is correct)
Pascal finally calls the filing system to store the generated code on disk.

Sec. 5.1 OVERVIEW 75

PASS 1 PASS 2 PAS'S 7 FILE

(DO

JOB PROCESS

Fig. 5.3 Compilation

A program does not know whether it is being called by another program
or directly from the console. In Fig. 5.3 the Pascal program calls the filing
system. The user may, however, also call the file system directly

file(protect, sort, true)

to protect his program against accidental deletion.
r

The Pascal pointer and heap concepts give programs the ability to pass
arbitrarily complicated data structures among each other, such as symbol
tables during compilation [Jensen and Wirth, 1974]. In most cases, however,
it suffices to use identifiers, integers, and booleans as program parameters.

Store Allocation

The run-time environment of Sequential and Concurrent Pascal is a
kernel of 4 K words. This is the only program written in machine language.
The user loads the kernel from disk into core by means of the operator's
panel. The kernel then loads the Solo system and starts it. The Solo system
consists of a fixed number of processes. They occupy fixed amounts of core
store determined by the compiler.

All other programs are written in Sequential Pascal. Each process stores
the code of the currently executed program in a fixed core segment. After
termination of a program called by another, the process reloads the previous
program from disk and returns to it. The data used by a process and the
programs called by it are all stored in a core resident stack of fixed length.

76 THE SOLO OPERATING SYSTEM Chap. 5

CATALOG

FJ LE

PAGE MAP

LENGTH

PAG E 1

PAGE N

PAGES

Q O Q

-I
Fig. 5.4 File system

File System

The backing store is a slow disk with removable packs. Each user has his
own disk pack containing the system and his private files. So there is no
need for a hierarchical file system.

A disk pack contains a catalog of all files stored on it. The catalog
describes itself as a file. A file is described by its name, type, protection,
and disk address. Files are looked up by hashing.

All system programs check the types of their input files before operating
on them and associate types with their output files. The Sequential Pascal
compiler, for example, will take input from an ascii file (but not from a
scratch file), and will make its ou tpu t a sequential code file. The possible
file types are scratch, ascii, seqcode, and concode.

Since each user has his own disk pack, files need only be protected
against accidental overwriting and deletion. All files are initially unpro-
tected. To protect one the user must call the file system from the console
as described in the section on control flow.

To avoid compacting of files (lasting several minutes), file pages are
scattered on disk and addressed indirectly through a page map (Fig. 5.4).
A file is opened by looking it up in the catalog and bringing its page map
into core.

The resident part of the Solo system implements only the most fre-
quently used file operations: lookup, open, close, get, and put. A nonresi-
dent, sequential program, called file, handles the more complicated and
less frequently used operations: create, replace, rename, protect, and delete
file.

Disk Allocation

The disk always contains a scratch file of 255 pages called next. A pro-
gram creates a new file by outputt ing data to this :file. It then calls the file

Sec. 5.1 OVERVIEW 77

system to associate the data with a new name, a type, and a length (< 255).
Having done this the file system creates a new instance of next.

This scheme has two advantages

(1) All files are initialized with typed data.
(2) A program creating a file need only call the nonresident file system

once (after producing the file). Without the file next the file system would
have to be called at least twice: before output to create the file, and after
output to define its final length.

The disadvantage of having a single file next is that a program can only
create one file at a time.

Unused disk pages are defined by a set of page indices stored on disR.
On a slow disk special care must be taken to make program loading fast.

If program pages were scattered randomly on the disk it would take 16
sec to load the compiler and its input /output drivers. An algorithm de-
scribed later reduces this to 5 sec. When the system creates the file next it
tries to place it on consecutive pages within neighboring cylinders as far as
possible (but will scatter the pages somewhat if it has to). It then rearranges
the page indices within the page map to minimize the number of disk revolu-
tions and cylinder movements needed to load the file. Since this is done
before a program is compiled and stored on disk it is called disk scheduling
at compile time.

The system uses a different allocation technique for the two temporary
files used during compilation. Each pass of the compiler takes input from a
file produced by its predecessor and delivers output to its successor on
another file. A program maleetemp creates these files and interleaves their
page indices (making every second page belong to one file and every second
one to the other). This makes the disk head sweep slowly across both files
during a pass instead of moving wildly back and forth between them.

Operator Communication

The user communicates with the system through a console. Since a task
(such as editing) usually involves several programs executed by concurrent
processes these programs must identify themselves to the user before asking
for input or making output

do:
edit(cards, tape)
edit:

do:

78 THE SOLO OPERATING SYSTEM Chap. 5

Program identity is only displayed every time the user starts talking to a
different program. A program that communicates several times with the
user without interruption (such as the editor) only identifies itself once.

Normally only one program at a time tries to talk to the user (the
current program executed by the job process). But an input /output error
may cause a message from another process

tape:
inspect

Since processes rarely compete for the console, it is sufficient to give a
process exclus ive access to the user for input or output of a single line. A
conversation of several lines will seldom be interrupted.

A Pascal program only calls the operating system once with its identifi-
cation. The system will then automatically display it when necessary.

Size and Performance

The Solo system consists of an operating system written in Concurrent
PasCal and a set of system programs written in Sequential Pascal.

Program Pascal lines Mach ine words

operating system 1300 4 K
do, io 700 4 K
file system 900 5 K
concurrent compiler 8300 42 K
sequential compiler 8300 42 K
editor 400 2 K
input /output programs 600 3 K
others 1300 8 K

21800 110 K

(The two Pascal compilers can be used under different operating systems
written in Concurrent Pascal - -not just Solo.)

The amounts of code written in different programming languages are

Per cent

machine language 4
Concurrent Pascal 4
Sequential Pascal 9,']

Sec. 5.1 OVERVIEW 79

This clearly shows that a good sequential programming language is more
important for operating system design than a concurrent language. But al-
though a concurrent program may be small it still seems worthwhile to write
it in a high-level language that enables a compiler to do thorough checking
of data types and access rights. Otherwise, it is far too easy to make time-
dependent programming errors, which are extremely difficult to locate.

The kernel written in machine language implements the process and
monitor concepts of Concurrent. Pascal and responds to interrupts. It is in:
dependent of the particular operating system running on top of it.

The Solo system requires a core store of 39 K words for programs and
data.

kernel
operating system
input /output programs
job programs

4 K words
11 K words

6 K words
18 K words

core store 39 K words

This amount of space allows the Pascal compiler to compile itself.
The speed of text processing using disk input and tape ou tpu t is

copy 11600 char/sec
edit 3 3 0 0 ' 6 2 0 0 char/sec
compile 240 char/sec

All these tasks are 60-100 per cent disk limited. These figures do not distin-
guish between time spent waiting for peripherals and time spent executing
operating system or user code Since this distinction is irrelevant to the user.
They illustrate an overall performance of a system written in a high-level
language using straightforward code generation wi thout any optimization.

Final Remarks

The compilers for Sequential and Concurrent Pascal were designed and
implemented by A1 Hartmann and myself in half a year. I wrote the operat-
ing system and its utility programs in 3 months. In machine language this
would have required 20-30 man-years and nobody would have been able
to understand the system fully. The use of an efficient, abstract program-
ming language reduced the development cost to less than 2 man-years and
produced a system that is completely understood by two programmers.

The low cost o f programming mahes it acceptable to throw away awh-
ward programs and rewrite them. We did this several times: An early 6-pass

80 THE SOLO OPERATING SYSTEM Chap. 5

compiler was never released (although it worked perfectly) because we found
its structure too complicated. The first operating system written in Concur-
rent Pascal (called Deamy) was used only to evaluate the expressive power
of the language and was never built. The second one (called Pilot) was used
for several months but was too slow.

From a manufacturer 's point of view it seems both realistic and attrac-
tive to replace a huge ineffective "general-purpose" operating system with a
range of small, efficient systems for special purposes.

The kernel, the operating system, and the compilers were tested very
systematically initially and appear to be correct.

In an excellent paper, Stoy and Strachey [1972] recommend that one
should learn to build good operating systems for single users before trying
to satisfy many users simultaneously. I have found this to be very good
advice. I have also tried to follow the advice of Lampson [1974] and make
both the high- and low-level abstractions available to the user programmer.

5.2 JOB INTERFACE

The following describes the interface between user programs and the
Solo operating system.

Solo enables a single user to develop and execute Sequential Pascal
programs on a PDP 11/45 computer. A Sequential Pascal program is stored
in compiled form on disk and invoked by a user command from console.
A sequential program interacts with the Solo system by means of procedures
implemented within the operating system. These interface procedures and
their parameter types are declared in a prefix to the user's program. The
prefix enables the Pascal compiler to make complete type checking of calls
to the operating system. No hardware mechanisms are used to supplement
the compile-time checking of job interactions with run-time checking.

The system can put the prefix automatically in front of user programs
before they are compiled. This makes it impossible to violate the system in-
terface conventions. The interface can be modified by editing and recompila-
t ion of the Solo operating system (the latter taking about 2.5 min). The use
of an interface declaration during compilation seems to be a very simple
solution to the nontrivial problem of how to confine a user program to a
well-defined set of interactions with an operating system.

This section explains the standard interface to the Solo system and gives
an example of its use by a Sequential Pascal program. The implementat ion of
the interface procedures within the Solo system is explained later. One of
the interface procedures allows Pascal programs to call one another recur-
sively and pass parameters among themselves. This makes it possible to use
Sequential Pascal as a job control language.

Sec. 5.2 JOB INTERFACE 81

Program Parameters

In the Solo system a Sequential Pascal program can be called either by
the operating system itself or by another Pascal program. The caller passes
a list of parameters to the program. They can be booleans, integers, identi-
fiers, pointers, or nfltypes. The program parameters are declared in a prefix
to the user's program text

const idlength = 12;
type identifier = array (.1..idlength.) of char;

type argtag =
(niltype, booltype, inttype, idtype, ptr type);

type pointer = @ anytype;

type argtype = record
case tag: argtag of

niltype, bool type: (bool: boolean);
inttype: (int: integer);
idtype: (id: identifier);
ptr type: (ptr: pointer)

end;

const maxarg = 10;
type arglist = array (.1..maxarg.) of argtype;

program p(var param: arglist);

"user program text follows here"

The programmer can refer to a program parameter as follows

param(.2.)

The user calls a program by writing its name and parameters on the con-
sole, for example

copy(cards, tape)

82 THE SOLO OPERATING SYSTEM Chap. 5

This causes the system to call the program copy with the two identifiers
cards and tape as parameters as explained in Section 5.1. The system always
extends the parameters specified by the user with a boolean. It is used by
the program to indicate whether it succeeded in doing its job. So the copy
program has access to three parameters

ok: boolean; "param(.1.)"
source: identifier; "param(.2.)"
destination: identifier; "param(.3.)"

(The rest of the parameters are niltypes.)
A program must check tha t its parameters are of the right types to de-

tect a meaningless call, such as

copy(15, true)

This can be done as follows

var source: argtype;

source:= param(.2.);
with source do
if tag < > idtype then help

where help is a procedure within the program that tells the user how to call
it correctly.

A program can return parameter values to its caller before it terminates,
for example

vat ok: boolean;

param(.1.).booh= ok;

Catalog Lookup

A Sequential Pascal program can call a set of procedures implemented
within the Solo operating system. These interface procedures and their
parameter types are declared in the program prefix. As an example, the
procedure

Sec. 5.2 JOB INTERFACE 83

procedure lookup(id: identifier; var attr: fileattr;
vat found: boolean)

enables a program to call the operating system to look up a file in the disk
catalog. Since the procedure is implemented within the operating system it
is only necessary to declare its name and parameters in the prefix to user
programs.

Lookup returns a boolean, telling whether the file was found in the cata-
log. If it was, it also returns the attributes of the file. These attributes are
defined by type definitions in the program prefix

type filekind =
(empty, scratch, ascii, seqcode, concode);

type fileattr = record
kind: filekind;
addr: integer;
protected: boolean;
notused: array (. 1.. 5.) of integer

end

The file attributes define what kind of file it is as well as the disk address
and protection status. There are four kinds of files: scratch, ascii text, se-
quential code, and concurrent code.

As an example, the copy program will look up the name of its source file
to check that it is an ascii file stored on disk or produced by a sequential
input program

vat source: argtype; attr: fileattr; found: boolean;

with source do
if tag < > idtype then help else
begin

lookup(id, attr, found);
if not found then

error('source file unknown(: 10:)') else
case attr.kind of

scratch, concode:
error('source kind must be ascii or seqcode (:10:) ');

ascii, seqcode:
end;

end

84 THE SOLO OPERATING SYSTEM Chap. 5

[The (: 10:) denotes the ascii character number 10 = newline.]

Input/Output Streams

A program starts its input /output by sending the names of the source
and destination files to the input and output processes. This is done by
means of an interface procedure

where

It can be used as follows

procedure writearg(s: argseq; arg: argtype)

type argseq = (inp, out)

vat source, dest: argtype;

writearg(inp, source)
writearg(out, dest)

After this the program can read and write its data character by character
by calling the interface procedures

procedure read(vat c: char)
procedure write(c: char)

So the main loop of the copy program could be written this way

vat c: char;

repeat
read(c); write(c);

until c = em

where e m is the end of medium character.
The read and write procedures are convenient for text processing, but

Sec. 5.2 JOB INTERFACE 85

somewhat slow for simple copying. So the copy program transmits its data
page by page by calling the interface procedures

procedure readpage(var block: univ page; vat eof: boolean)
procedure writepage(block: univ page; eof: boolean)

where

const pagelength = 512;
type page = array (.1..pagelength.) of char;

(The key word universal makes it possible to use these procedures to trans-
mit any data type that can be stored on a page, and not just a textstring.)

A file produced by a process must be terminated by an empty page and
a boolean e o f = true. This leads to the following loop in the copy program

vat block: page; eof: boolean;

repeat
readpage(block, eof);
writepage(block, eof);

until eof

At the end of the file, the program must receive a boolean from the
input and output processes to see whether transmission errors occurred dur-
ing the input /output . These booleans are received by calling the interface
procedure

procedure readarg(s: argseq; var arg: argtype)

For example

vat ok: boolean; arg: argtype;

readarg(inp, arg);
if not arg.bool then ok:= false;
readarg(out, arg);
if not arg.bool then ok:= false;

86 THE SOLO OPERATING SYSTEM Chap. 5

Operator Communication

A program communicates with the operator 's console by means of the
interface procedures

procedure accept(vat c: char)
procedure display(c: char)

These can, for example, be used to implement the following procedure with-
in a user program

procedure wri tetext(text : line);
var i: integer; c: char;
begin

i:= 0;
repeat

i: = i + 1;
c:= text(.i.);
display(c);

until c = nl;
end

where

const nl = ' (:10:) ' ;

cons t l inelength = 132;
type line = array (.1..linelength.) o f char;

A program identifies itself once and for all by calling the interface
procedure

procedure identify(header: line)

For example

identify('copy: (:10 :)')

Sec. 5.2 JOB INTERFACE 87

causes the Solo system to prefix input /ou tput requests on the console with
the name of the copy program. If the copy program writes the message

writetext('source file unknown(:10:)')

it will be displayed as

copy:
source file unknown

to the operator. If a program communicates several times with the operator
without being interrupted by another one it is only identified once on the
terminal.

Program Calls

A Sequential Pascal program can call another Pascal program by means
of the interface procedure.

procedure run(id: identifier; vat param: arglist;
vat line: integer; var result: progresult)

The program is identified by its name in the disk catalog. The caller passes
it a list of arguments. Upon return the caller is informed about where and
how the program terminated (by means of a line number and a program
result)

type progresult =
(terminated, overflow, pointererror, rangeerror,
varianterror, heaplimit, stacklimit, codelimit,
timelimit, callerror)

If the copy program, for example, is called to output a file to disk, it
will call a file program to enter the new file in the disk catalog. This is done
as follows

88 THE SOLO OPERATING SYSTEM

vat dest: argtype; length: integer;
where: (nowhere, ondisk, elsewhere);

procedure savefile;
var line: integer; result: progresult;

list: arglist;
begin

with list(.1.) do
begin tag: = bool type; bool:= false end;
with list(.2.) do
begin tag:= idtype;

if where = nowhere then id: = 'create '
else id := 'replace ';

end;
with list(. 3.) do
begin tag: = idtype; id: = dest.id end;
with list(.4.) do
begin tag: = inttype; int: = length end[;
with list(. 5.) do
begin tag: = idtype; id:= 'ascii ' end;
with list(.6.) do
begin tag: = bool type; booh= false end;
run('file ', list, line, result);
if (result < > terminated) or not list(.1.).bool

then error('destination file lost(: 10:)');
end

This has the same effect as the console command

Chap. 5

file(create, dest, length, ascii, false)

(The boolean false is the protect ion status of the new file.)
The ability of Pascal programs to call other Pascal programs and pass

parameters to them makes it possible to use Pascal as a job control language.
In this example, the copy program controls the execution of the file pro-
gram.

Disk Files

A program can access a disk file sequentially by sending its name to the
input process which then transmits its contents to the job process.

Sec. 5.2 JOB INTERFACE 89

A program can also make random access to a disk file by means of the
interface procedures.

procedure open(f: file; id: identifier; var found: boolean)
procedure close(f: file)
procedure get(f: file; p: integer; vat block: univ page)
procedure put(f: file; p: integer; block: univ page)
function length(f: file): integer

where

type file = 1..2

Open makes a file with a given name accessible (if it is found on disk).
Close makes it inaccessible again. Get and put transfer page number p of
file number f to and from core. (File pages are numbered 1, 2 , . . . , length.)
Length defines the number of pages in a file.

Direct Input/Output

The lowest level of input /output is defined by two interface procedures

procedure i0transfer(device: iodevice; vat param: ioparam;
vat block: univ page)

procedure iomove(device: iodevice; vat param: ioparam)

where

type iodevice = (typedevice, diskdevice, tapedevice,
printdevice, carddevice);

type iooperation = (input, output, move, control);
type ioarg = (writeeof, rewind, upspace, backspace);
type ioresult = (complete, intervention, transmission,

failure, endfile, endmedium, startmedium);
type ioparam = record

operation: iooperation;
status: ioresult;
arg: ioarg

end

90 THE SOLO OPERATING SYSTEM Chap. S

These are the elementary input /output operations discussed in Section 4.1.

Heap Allocation

The interface procedures

procedure mark(vat top: integer)
procedure release(top: integer)

return the current top address of the heap and reset it to a given value as
explained in Chapter 8.

Task Kind

The interface function

function task: taskkind

where

type taskkind = (inputtask, jobtask, outputtask)

tells a program whether it is being executed by the., input process, the job
process, or the output process.

The Complete Prefix

const nl = '(:10:) ' ; ff = '(:12:) ' ;
cr = '(:13:) ' ; em = '(:25:) ' ;

const pagelength = 512;
type page = array (.1..pagelength.) of char;

const linelength = 132;
type line = array (.1..linelength.) of char;

const idlength = 12;
type identifier = array (.1..idlength.) of char;

Sec. 5.2 JOB INTERFACE 91

type file = 1..2;

type filekind = (empty, scratch, ascii, seqcode, concode);

type fileattr = record
kind: filekind;
addr: integer;
protected: boolean;
notused: array (.1..5.) of integer

end;

type iodevice = (typedevice, diskdevice, tapedevice,
printdevice, carddevice);

type iooperation = (input, output, move, control);

type ioarg = (writeeof, rewind, upspace, backspace);

type ioresult = (complete, intervention, transmission,
failure, endfile, endmedium, startmedium);

type ioparam = record
operation: iooperation;
status: ioresult;
arg: ioarg

end;

type taskkind = (inputtask, jobtask, outputtask);

type argtag = (niltype, booltype, inttype, idtype, ptrtype);

type pointer = @ boolean;

type argtype = record
case tag: argtag of

niltype, booltype: (bool: boolean);
inttype: (int: integer);
idtype: (id: identifier);
ptrtype: (ptr: pointer)

end;

const maxarg = 10;
type arglist = array (.1..maxarg.) of argtype;

92 THE SOLO OPERATING SYSTEM Chap. 5

type argseq = (inp, out);

type progresult = (terminated, overflow, pointererror,
rangeerror, varianterror, heaplimit,
stacklimit, codelimit, timelimit,
callerror);

procedure read(vat c: char);
procedure write(c: char);

procedure open(f: file; id: identifier; vat found: boolean);
procedure close(f: file);
procedure get(f: file; p: integer; vat block: univ page);
procedure put(f: file; p: integer; block: univ page);
function length(f: file): integer;

procedure mark(vat top: integer);
procedure release(top: integer);

procedure
procedure
procedure

identify(header: line);
accept(vat c: chat);
display(c: chat);

procedure readpage(vat block: univ page; vat eof: boolean);
procedure writepage(block: univ page; eof: boolean);

procedure readline(vat text: univ line);
procedure writeline(text: univ line);

procedure readatg(s: argseq; vat arg: atgtype);
procedure writearg(s: argseq; arg: argtype);

procedure lookup(id: identifier; vat attr: fileattr;
vat found: boolean);

procedure iotransfer(device: iodevice; vat param: ioparam;
vat block: univ page);

procedure iomove(device: iodevice; vat param: ioparam);

function task: taskkind;

Sec. 5.2 JOB INTERFACE 93

procedure run(id: identifier; vat param: arglist;
v a r line: integer; vat result: progresult);

program p(var param: arglist);

The compiler regards the prefix as being the first part of a Sequential
Pascal program. The input, job, and ou tpu t processes use the same prefix
(but the procedures readline and writeline have no effect within the job
process).

A Sequential Program: Copy

This is an example of a complete program that uses the prefix to interact
with the operating system. The program copies a text file from a source
medium (console, cards, disk, or tape) to a destination medium (console,
printer, disk, or tape).

var source, dest: argtype; ok: boolean;
where: (nowhere, ondisk, elsewhere);
length: integer;

procedure wri tetext(text: line);
vat i: integer; c: char;
begin

i: = 0;
repeat

i:= i + 1;
c:= text(.i.);
display(c);

until c = nl;
end;

procedure error(text: line);
begin

wri tetext(text) ;
ok:= false;

end;

94 THE SOLO OPERATING SYSTEM Chap. 5

procedure help;
begin

if ok then
begin

wri te text(' t ry again(: 10 :) ') ;
wri tetext(' copy(source, destination: identifier) (: 10 :)');
ok:= false;

end;
end;

procedure savefile;
vat line: integer; result: progresult;

list: arglist;
begin

with list(.1.) do
begin tag: = bool type; bool: = false end;
with list(.2.) do
begin tag: = idtype;

if where = nowhere then id: = 'create '
else id: = 'replace ';

end;
with list(.3.) do
begin tag: = idtype; id: = dest.id end;
with list(.4.) do
begin tag: = int type; int: = length end;
with list(.5.) do
begin tag: = idtype; id: = 'ascii ' end;
with list(.6.) do
begin tag: = bool type; bool: = false end;
run('file ', list, line, result);
if (result < > terminated) or no t list(.1.).bool then

error('destination file lost(:10:) ');
end;

Sec. 5.2 JOB INTERFACE 95

procedure checkarg;
vat attr: fileattr; found: boolean;
begin

source:= param(:2.);
with source do
if tag < > idtype then help else
begin

lookup(id, attr, found);
if no t found then

error('source file unknown(: 10:) ') else
case attr.kind of

scratch, concode:
error('source kind must be ascii or seqcode (: 10:)');

ascii, seqcode:
end;

end;
dest: = param(.3.);
with dest do
if tag < > idtype then help else
begin

lookup(id, attr, found);
if not found then where:= nowhere else
if attr.kind = seqcode then where:= elsewhere else

i f at tr .protected then
error('destination file protected (:10:) ') else
where:= ondisk;

end;
end;

procedure initio;
vat arg: argtype;
begin

writearg(inp, source);
if where = elsewhere then writearg(out, dest) else
begin

with arg do
begin tag: = idtype; id:= 'next ' end;
writearg(out, arg);

end ;
end;

96 THE SOLO OPERATING SYSTEM Chap. 5

procedure checkio;
vat arg: argtype;
begin

readarg(inp, arg);
if not arg.bool then ok:= false;
if where < > elsewhere then
begin readarg(out, arg); length:= arg.int end;
readarg(out, arg);
if not arg.bool then ok:= false;
if (where < > elsewhere) & ok then saveffle;

end;

procedure copytext;
vat block: page; eof: boolean;
begin

repeat
readpage(block, eof);
writepage(block, eof);

until eof;
end;

procedure initialize;
begin

identify('copy: (: 10:)');
ok:= (task = jobtask);
checkarg;

end;

procedure terminate;
begin

with param(.1.) do
begin tag: = booltype; bool:= ok end;

end;

begin
initialize;
if ok then
begin

initio;
copytext;
checkio;

end;
terminate;

end.

Sec. 5.2 JOB INTERFACE 97

The copy program initializes itself by checking its arguments. If they
are ok it starts concurrent input /output , copies the file, and checks the
input /output for transmission errors.

Conclusion

The Sequential Pascal compiler assumes that the interface procedures
and their parameter types are declared exactly the same way in the prefix
and within the operating system. Since the compiler has no way of checking
whether the prefix is correct it must be handled with some care.

In developing the Solo system, we found it sufficient to maintain the
prefix as a standard card deck that was put in front of all the programs
before they were stored on disk. The prefix is now kept on disk as a separate
text file. It can be put in front of a program file by means of a concatenation
program called from the console

concat(prefix, source, dest)

As long as the informal use of a single prefix causes no problems for
system programmers, I see no reason to handle it by more complicated,
automatic mechanisms. But, for general use, it is, of course, much safer
and more convenient to let the system automatically put a prefix in front
of all user programs before compilation. The job stream system described
in Chapter 6 does just that.

Since the compiler refuses to accept further interface definitions after
the key word program, a user cannot change a pref ix by adding his own
declarations to it. In many cases, a much smaller prefix than the one de-
scribed here will be used. As an example, the job stream system will compile
and execute programs with input from cards and output on a line printer.
A compiled program needs only a prefix defining five procedures for reading
and writing of text and numbers.

The use of a prefix to check interactions between an operating system
and its jobs illustrates a persistent theme in the Concurrent Pascal project:
Program relationships that remain unchanged for long periods of time can
be verified once and for all at compile time. The verification of system
invariants at compile time contributes to program reliability by detecting
errors before systems are put into operation. It also increases program
efficiency by removing the need for complicated hardware protection
mechanisms.

98 THE SOLO OPERATING SYSTEM Chap. 5

5.3 PROCESSES, MONITORS, AND CLASSES

This is a description of the program structure of the Solo operating
system.

The main idea of Concurrent Pascal is to divide the global data struc-
tures of an operating system into small parts and define the meaningful
operations on each of them. In Solo, for example, t:here is a data structure,
called a resource, which is used to give concurrent processes exclusive access
to a disk. This data structure can only be accessed[by means of two pro-
cedures that request and release access to the disk. The programmer specifies
that these are the only operations one can perform on a resource, and the
compiler checks that this rule is obeyed in the rest of the system. This
approach to program reliability has been called resource protection at
compile time [Brinch Hansen, 1973b] .

The combinat ion of a data structure and the operations used to access it
is called an abstract data type. It is abstract because the rest of the system
only needs to know what operations one can perform on it but can ignore
the details of how they are carried out. A Concurrent Pascal program is con-
structed from three kinds of abstract data types: processes, monitors, and
classes. Processes perform concurrent operations oll data structures. They
use monitors to synchronize themselves and exhange data. They access pri-
vate data structures by means of classes. Chapters 2 and 4 are an overview of
these concepts and their use in concurrent programming.

The following is a complete, annota ted program listing of the Solo
system. It also explains how the system was tested systematically.

Program Structure

Solo consists of a hierarchy of program layers, each of which controls a
particular kind of compute r resource, and a set of concurrent processes that
use these resources (Fig. 5.5).

Resource management controls the scheduling of the operator 's console
and the disk among concurrent processes.

Console management lets processes communicate with the opera tor after
they have gained access to the console.

Dish management gives processes access to disk files and a catalog de-
scribing them.

Program management fetches program files from disk into core on
demand from processes that wish to execute them.

Buffer management transmits data among processes.

These facilities are used by seven concurrent processes:

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 99

I RESOURCE MANAGEMENT]

I

I
I o,s. I

I

I

R
PROCESS PROCE~J PROCESS ~ROCESS PROCESS

INITIAL LOADER
PROCESS PROCESS

Fig. 5.5 Program layers and processes

A job process executes Pascal programs upon request from the operator.
Two input/output processes produce and consume the data of the

job process.
A card process feeds punched cards to the input process which then

removes trailing blanks from them and packs the text into blocks.
A printer process prints lines that are unpacked from blocks and sent

to it by the output process.
A loader process preempts and reinitializes the operating system when

the operator pushes the bell key on the console.
An initial process starts up the rest of the system after system loading.
The term program layer is only used as a convenient way of explaining

the gross division of labor within the system. It is not represented by the
language notat ion of Concurrent Pascal.

100 THE SOLO OPERATING SYSTEM Chap. 5

Abstract Data Types

Each p r o g r a m layer consis ts o f one or m o r e abs t r ac t da ta types (moni -
to r s and classes).

Resource management

A fifo class i m p l e m e n t s a first-in, f i r s t -out queue t h a t is used to main-
ta in mul t ip rocess queues and message buffers .

A resource m o n i t o r gives processes exclusive access to a c o m p u t e r re-
source. I t is used to con t ro l disk access.

A typewriter resource m o n i t o r gives processes exclusive access to a
conso le and tells t h e m w h e t h e r t h e y need to iden t i fy themse lves to the
ope ra to r .

Console management

A typewriter class t r ansmi t s a single l ine b e t w e e n a process and a con-
sole (b u t does n o t give the process exclusive access to it).

A terminal class gives a process the i l lusion t ha t i t has its own pr iva te
conso le by giving the process exclusive access to the o p e r a t o r fo r i npu t or
o u t p u t o f a single line.

A terminal stream makes a t e rmina l l o o k cha rac t e r or ien ted .

Disk management

A disk class can access a page a n y w h e r e on disk (b u t does n o t give a
process exclusive access to it). I t uses a t e rmina l to r e p o r t disk failure.

A disk file class can access any page be longing to a pa r t i cu la r file. The
file pages, which m a y be sca t t e red on disk, are addressed ind i rec t ly t h r o u g h
a page map . The disk address of the page m a p ident if ies the file. I t uses a
disk to access the m a p and its pages.

A disk table class m a k e s a disk ca ta log o f files l o o k l ike an a r ray of
entries, some o f which descr ibe files, and some of which are e m p t y . The
entr ies are ident i f ied b y numer i c indices. The class uses a disk file to access
the ca ta log page by page.

A disk catalog m o n i t o r can l o o k up files in a ca ta log b y means o f the i r
names. I t uses a r e source to get exclusive access to the disk and a disk tab le
to scan the catalog.

A data file class gives a process access to a n a m e d disk file. I t uses a
resource , a disk catalog, and a disk file to access the disk.

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 101

Program management

A program file class can load a named disk file into core when a process
wishes to execute it. It uses a resource, a disk catalog, and a disk file to do
this.

A program stack monitor keeps track of nested program calls within a
process.

Buffer management

The buffer monitors transmit various kinds of messages between pro-
cesses: arguments (enumerations or identifiers), lines, and pages.

The following defines the purpose, specification, and implementation
of each of these abstract data types.

Input/Output

The data types below are used in elementary input /output operations.
They define the identifiers of peripheral devices, input /output operations
and their results, as well as the data types to be transferred (printer lines
and disk pages). They are similar to the input /output types used in the
pipeline program (Section 4.1).

type iodevice = (typedevice, diskdevice, tapedevice,
printdevice, carddevice);

type iooperation = (input, output, move, control);

type ioarg = (writeeof, rewind, upspace, backspace);

type ioresult = (complete, intervention, transmission,
failure, endffle, endmedium, startmedium);

type ioparam = record
operation: iooperation;
status: ioresult;
arg: ioarg

end;

const nl = '(:10:)'; ff = '(:12:)';
cr -- ' (:13:) ' ; em = '(:25:) ' ;

102 THE SOLO OPERATING SYSTEM Chap. 5

cons t l inelength = 132;
t ype line = ar ray (.1. . l inelength.) o f char;

cons t pagelength = 512;
t y p e page = array (.1. .pagelength.) o f char;

Fifo Queue

A fifo keeps t rack o f the length and the head and tail indices of an array
used as a first-in, f i rs t -out queue (bu t does n o t con ta in the queue e lements
themselves) .

The access rights and rout ines o f a f i fo are:

type fifo = class(limit: integer)
A fifo is init ial ized wi th a cons t an t t ha t defines its range of queue indices
1..limit.

function arrival: integer
Returns the index o f the n e x t queue e l em en t in which an arrival can take
place.

function departure: integer
Returns the index of the n e x t queue e l emen t f rom which a depar tu re can
take place.

function empty: boolean
Defines whe the r the queue is e m p t y (arrivals = depar tures) .

function full: boolean
Defines whe the r the queue is full (arrivals = depar tures + limit).

A user o f a f ifo queue mus t ensure tha t the length o f the queue remains
wi th in its physical l imit

0 < arrivals - depar tures < l imit

I M P L E M E N T A T I O N :

A f i fo queue is r ep resen ted b y its l imit, head, tail, and length. The Con-
cu r ren t Pascal compi le r will ensure tha t these variables are accessed on ly by
the rou t ines of the class. In general, a class variable can be accessed on ly by
calling one of the rou t ine entries associated wi th it. The s t a t e m e n t a t the

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 103

end of the class is executed when an instance of a fifo queue is declared
and initialized.

type fifo =
class(limit: integer);

vat head, tall, length: integer;

function entry arrival: integer;
begin

arrival:= tail;
tail:= tail mod limit + 1;
length:= length + 1;

end;

function entry departure: integer;
begin

departure:= head;
head:= head mod limit + 1;
length := length - 1;

end;

function entry empty: boolean;
begin empty:= (length = O) end;

function entry full: boolean;
begin full:= (length = limit) end;

begin head:= 1; tail:= 1; length:= 0 end;

R esou rce

A resource gives processes exclusive access to a computer resource (but
does not perform any operations on the resource itself).

t ype resource = mon i to r

procedure request
Gives the calling process exclusive access to the resource.

procedure release
Makes the resource available for other processes.

104 THE SOLO OPERATING SYSTEM Chap. S

A user o f a resource m u s t reques t i t be fo re using it and mus t release i t
af terwards. If the resource is released wi thin a finite, t ime it will also b e c o m e
available to any process request ing it wi th in a f ini te t ime. In shor t , the
resource scheduling is fair.

I M P L E M E N T A T I O N :

A resource is r ep resen ted by its s tate (free or used) and a queue o f
processes wait ing for it. The mul t iprocess queue is r epresen ted by two da ta
s t ructures : an array o f single process queues and a f i fo to keep t rack o f the
queue indices.

The initial s t a t e m e n t o f the m o n i t o r sets the resource s ta te to free and
initializes the f i fo variable wi th a cons t an t def ining the to ta l n u m b e r o f
processes which can wai t in the queue.

The compi le r will ensure tha t the m o n i t o r variables can be accessed on ly
by calling the rou t ine entries associated wi th them. The vir tual mach ine will
ensure tha t at mos t one process at a t ime is execu t ing a rou t ine wi th in this
mon i to r . The m o n i t o r can delay or con t inue the ex ecu t i o n of a calling
process.

A rou t ine associated wi th a class or m o n i t o r is called b y men t ion ing the
class or m o n i t o r variable fo l lowed b y the n am e o f the rout ine . As an exam-
ple, the call

next .arr ival

will p e r fo rm an arrival opera t ion on the f i fo variable next.

const processcount = 7;
t ype p rocessqueue = array (.1 . .processcount .) o f queue ;

t ype resource --
m o n i t o r

vat free: boo lean ; q: p rocessqueue ; nex t : f i fo;

procedure entry request ;
begin

if f ree t hen f ree:= false
else de lay (q(. next . arrival.));

end;

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 105

procedure entry release;
begin

if next .empty then free: = true
else continue(q(.next.departure.));

end;

begin free:= true; init next(processcount) end;

Typewriter Resource

A typewriter resource gives processes exclusive access to a typewriter
console. A calling process supplies its own identification and is told whether
it needs to display it to the operator.

type typeresource = monitor

procedure request(text: line; var changed: boolean)
Gives the calling process exclusive access to the resource. The process identi-
fies itself by a text line. A boolean changed defines whether this is the same
identification that was used in the last call of request (in which case there
is no need to display it to the operator again).

procedure release
Makes the resource available for other processes.

The resource scheduling is fair, as explained earlier.

IMPLEMENTATION:

type typeresource =
monitor

vat free: boolean; q: processqueue; next: fifo; header: line;

procedure entry request(text: line; var changed: boolean);
begin

if free then free:= false
else delay(q(.next.arrival.));

changed:= (header < > text);
header:= text;

end;

106 THE SOLO OPERATING SYSTEM Chap. 5

procedure entry release;
begin

if next .empty then free:= true
else Continue(q(.next.departure.));

end;

begin
free: = true; header(.1.):= nl;
init next(processcount);

end;

Typewriter

A typewriter can transfer a text line to or from a typewriter console. It
does not identify the calling process on the console or give the process ex-
clusive access to it.

type typewriter = class(device: iodevice)
A typewriter is initialized with the identifier of the device it controls.

procedure write(text: line)
Writes a line on the typewriter.

procedure read(var text: line)
Rings the bell on the typewriter and reads a line from it. Single characters
or the whole line can be erased and retyped by typing control c or control l.
The typewriter responds to erasure by writing a question mark.

A newline character (NL) terminates the input or output of a line. A
line that exceeds 73 characters is forcefully terminated by a newline charac-
ter.

IMPLEMENTATION:

The standard procedure io delays the calling process until the transfer of
a single character is completed.

The procedure writechar is no t a routine entry; it can only be called
within the typewriter class.

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 107

t y p e typewr i t e r =
class(device: iodevice);

c o n s t l inelimit = 7 3;
cancelchar = '(: 3 :)' " con t ro l c" ;
cancelline = '(:12:) ' "con t ro l 1";

p rocedure wri techar(x: char);
vat param: ioparam; c: char;
begin

param.opera t ion := ou tpu t ;
C : = X ;

io(c, param, device);
end;

p rocedure en t ry wr i te (text : line);
vat param: ioparam;

i: integer; c: char;
begin

pa ram.opera t ion := ou tpu t ;
i: = O;
repea t

i:= i + 1; c: = text(. i .) ;
io(c, param, device);

unti l (c = nl) or (i = linelimit);
if c < > nl then wri techar(nl) ;

end;

108 THE SOLO OPERATING SYSTEM Chap. 5

p r o c e d u r e en t ry read(vat t ex t : line);
cons t bel = ' (:7 :) ' ;
vat param: ioparam;

i: integer; c: char;
begin

wr i techar (be l) ;
pa r am.ope ra t i on := input ;
i: = 0;
r epea t

io(c, param, device);
if c = cancell ine then
begin

wr i techar(n l) ;
wr i t echar (' ? ') ;
i: = 0;

end else
i f c = cance lchar t h en
begin

i f i > 0 t h e n
begin

wr i t echar (' ? ') ;
i : = i - 1;

end;
end else
begin i: = i + 1; tex t (. i .) : = c end;

unt i l (c = nl) or (i = l inelimit);
if c < > nl t h en
begin

wri techar(nl) ;
t ex t (. l ine l imi t + 1.) := nl;

end;
end;

begin end;

Terminal

A terminal gives a single process exclusive access to a t ypewr i t e r , identi-
fies the process to the opera to r , and t ransfers a line to or f rom the device.

t ype terminal = class(access: typeresource)
The terminal uses a t ypew r i t e r resource to get exclusive access to the device.

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 109

procedure read(header: line; var text: line)
Writes a header (if necessary) on the typewriter and reads a text line from it.

procedure write(header, text: line)
Writes a header (if necessary) followed by a text line on the typewriter.

The header identifies the calling process. It is only ou tpu t if it is differ-
ent from the last header ou tpu t on the typewriter.

IMPLEMENTATION:

A class or moni tor can only call other classes or monitors if they are
declared as variables within it or passed as parameters to it during initializa-
tion. So a terminal can only call the moni tor access and the class unit. These
access rights are checked during compilation.

type terminal =
class (access: typeresource);

vat unit: typewriter;

procedure entry read(header: line; vat text: line);
var changed: boolean;
begin

access.request(header, changed);
if changed then unit.write(header);
unit .read(text);
access.release;

end;

procedure entry write(header, text: line);
var changed: boolean;
begin

access.request(header, changed);
if changed then unit.write(header);
unit. write(text);
access.release;

end;

begin init unit(typedevice) end;

110 THE SOLO OPERATING SYSTEM Chap. 5

Terminal Stream

A terminal s t ream enables a process to iden t i fy i tself once and for all
and then p roceed to read and wri te single characters on a terminal .

type terminalstream = class(operator: terminal)
A terminal s t ream uses a terminal to i npu t or o u t p u t a line at a t ime.

procedure read(var c: char)
Reads a charac te r f r o m the terminal .

procedure write(c: char)
Writes a charac te r on the terminal .

procedure reset(text: line)
Ident if ies the calling process.

I M P L E M E N T A T I O N :

The terminal s t ream uses two line buffers fo r inpu t and ou tpu t .

t yp e t e rmina l s t ream =
class(operator : terminal) ;

cons t l inel imit = 80;

var header : line; end inpu t : boo lean ;
inp, ou t : r ecord coun t : integer; text:: line end;

procedure in i t ia l ize(text : line);
begin

header : = t ex t ;
end inpu t : = t rue ;
o u t . c o u n t : = 0;

end;

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 111

procedure entry read(var c: char);
begin

with inp do
begin

if endinput then
begin

operator.read(header, text);
count := 0;

end;
count: = count + 1;
c := text(.count.) ;
endinput:= (c = nl);

end;
end;

procedure entry write(c: char);
begin

with out do
begin

count:= count + 1;
text(.count.) : = c;
if (c = nl) or (count = linelimit) then
begin

operator.write(header, text);
count:= O;

end;
end;

end;

procedure entry reset(text: line);
begin initialize(text) end;

begin initialize ('unidentified: (: 10:)') end;

Disk

A disk can transfer any page to or from a disk device.

t ype disk = class(typeuse: t yperesource)
A disk uses a typewriter resource to get exclusive access to
report disk failure.

a terminal to

112 THE SOLO OPERATING SYSTEM Chap. 5

procedure read(pageaddr: integer; var block: univ page)
Reads a page identified by its absolute disk address.

procedure write(pageaddr: integer; var block: univ page)
Writes a page identified by its absolute page address.

A page is declared as a universal type to make it possible to use the disk
to transfer pages of different types (and not just text).

IMPLEMENTATION:

After a disk failure, the disk writes a message to the operator and
repeats the operation when he types a NL character.

type disk =
class(typeuse: typeresource);

vat operator: terminal;

procedure transfer(command: iooperation;
pageaddr: univ ioarg; vat block: page);

vat param: ioparam; response: line;
begin

with param, operator do
begin

operation:= command;
arg:= pageaddr;
io(block, param, diskdevice);
while status < > complete do
begin

write ('disk:(: 10:)', 'error(: 10:)');
read('push return(: 10:)', response);
io(block, param, diskdevice);

end;
end;

e n d ;

procedure ent ry read(pageaddr: integer; var block: univ page);
begin transfer(input, pageaddr, block) end;

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 113

procedure entry write(pageaddr: integer; var block: univ page);
begin t ransfer(output , pageaddr, block) end;

begin init operator(typeuse) end;

Disk file

A disk file enables a process to access a disk file consisting of a fixed
number of pages (< 255). The disk file is identified by the absolute disk
address of a page map that defines the length of the file and the disk ad-
dresses of its pages. From the point of view of a calling process the pages of
a file are numbered 1, 2 , . . . , length.

type disk file = class(typeuse: typeresource)
A disk file uses a typewri ter resource to get exclusive access to the operator
after a disk failure. Initially, the file is closed (inaccessible).

procedure open(mapaddr : in teger)
Makes a disk file with a given page map accessible.

procedure close
Makes the disk file inaccessible.

function length: integer
Returns the length of the disk file (in pages). The length of a closed file is
zero.

procedure read(pageno : integer; var block: univ page)
Reads a page with a given number from the disk file.

procedure write(pageno : integer; var block: univ page)
Writes a page with a given number on the disk file.

A user of a file must open it before using it and close it afterwards. Read
and write have no effect if the file is closed or if the page number is outside
the range 1..length.

IMPLEMENTATION:

The variable length is prefixed with the word entry. This means that its
value can be used directly outside the class. It can, however, only be changed
within the class. So a variable entry is similar to a funct ion entry. Variable
entries can only be used within classes.

114 THE SOLO OPERATING SYSTEM Chap. 5

const maplength = 255;
type filemap = record

filelength: integer;
pageset: array (.1..maplength.) of integer

end;

type diskfile =
class(typeuse: typeresource);

vat unit: disk; map: filemap; opened: boolean;

entry length: integer;

function includes(pageno: integer): boolean;
begin

includes: = opened &
(1 <= pageno) & (pageno <= length);

end;

procedure entry open(mapaddr: integer);
begin

unit.read(mapaddr, map);
length := map.filelength;
opened: = true;

end;

procedure entry close;
begin

length := O;
opened:= false;

end;

procedure entry read(pageno: integer; vat block: univ page);
begin

if includes(pageno) then
unit.read(map.pageset(.pageno.), block);

end;

procedure entry write(pageno: integer; var block: univ page);
begin

if includes(pageno) then
unit.write(map.pageset(.pageno.), block);

end;

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 115

begin
init unit(typeuse);
length:= 0;
opened: = false;

end;

Catalog Structure

The disk contains a catalog of all files. The data types below define the
structure of the catalog.

The catalog is itself a file defined by a page map stored at the catalog
address. Every catalog page contains a fixed number of catalog entries. A
catalog entry describes a file by its identifier, attributes, and hash key. The
search length defines the number of files that have a hash key equal to the
index of this entry. It is used to limit the search for a nonexisting file name.

The attributes of a file are its kind (empty, scratch, ascii, sequential or
concurrent code), the address of its page map, and a boolean defining
whether it is protected against accidental deletion or overwriting. The latter
is checked by all system programs operating on the disk, but not by the
operating system. Solo provides a mechanism for protection, but does not
enforce it.

const idlength = 12;
type identifier = array (.1..idlength.) of char;

type filekind = (empty, scratch, ascii, seqcode, concode);

type fileattr = record
kind: filekind;
addr: integer;
protected: boolean;
notused: array (. 1.. 5.) of integer

end;

type catentry = record
id: identifier;
attr: fileattr;
key, searchlength: integer

end;

const catpagelength = 16;
type catpage = array (.1..catpagelength.) of catentry;

const cataddr = 154;

116 THE SOLO OPERATING SYSTEM Chap. 5

Disk Table

A disk table makes a disk catalog look like an al~ay of catalog entries
identified by numeric indices 1, 2 length.

type disktable --
class(typeuse : typeresource ; cataddr : in teger)
A disk table uses a typewri ter resource to get exclusive access to the operator
after a disk failure and a catalog address to locate a catalog on disk.

function length: integer
Defines the number of entries in the catalog.

procedure read(i: integer; var elem: catentry)
Reads entry number i in the catalog. If the entry number is outside the
range 1..length the contents of the entry are undefined.

IMPLEMENTATION:

A disk table stores the most recently used catalog page to make a se-
quential search of the catalog fast.

type disktable =
class(typeuse: typeresource; cataddr: integer);

var file: diskfile; pageno: integer; block: catpage;

entry length: integer;

procedure entry read(i: integer; vat elem: catentry);
vat index: integer;
begin

index:= (i - 1) div catpagelength + 1;
if pageno < > index then
begin

pageno:= index;
file.read(pageno, block);

end;
elem:= block(.(i - 1) rood catpagelength + 1.);

end;

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 117

begin
init file(typeuse);
file. open (cataddr);
length: = file.length * catpagelength;
pageno: = 0;

end;

Disk Catalog

The disk catalog describes all disk files by means of a set of named
entries that can be looked up by processes.

type diskcatalog =
monitor(typeuse: typeresource; diskuse: resource; cataddr: integer)
A disk catalog uses a resource to get exclusive access to the disk during a
catalog lookup and a typewri ter to get exclusive access to the operator after
a disk failure. It uses a catalog address to locate the catalog on disk.

procedure lookup(id: identifier; var attr: fileattr; var found: boolean)
Searches for a catalog entry describing a file with a given identifier and
indicates whether it found it. If so, it also returns the file attributes.

IMPLEMENTATION:

A disk catalog uses a disk table to make a cyclical search for an identi-
fier. The initial catalog entry is selected by hashing. The search stops when
the identifier is found or when there are no more entries with the same
hash key, The disk catalog has exclusive access to the disk during the lookup
to prevent compet ing processes from causing disk arm movement .

type diskcatalog =
moni tor(typeuse: typeresource; diskuse: resource;

cataddr: integer);

vat table: disktable;

118 THE SOLO OPERATING SYSTEM Chap. 5

func t ion hash(id: ident i f ier) : integer;
vat key, i: integer; c: char;
begin

key := 1 ; i : = 0 ;
r epea t

i: = i + 1; c: = id(.i.);
i f c < > ' ' t h e n

key: = key * ord(c) m o d table . length + 1;
un t i l (c = ' ') o r (i = idlength) ;
hash: = key ;

end;

p rocedu re e n t r y lookup(id : ident i f ier ; vat at t r : f i leat tr ;
var f o u n d : boolean) ;

vat key , more , index: integer; elem: ca t en t ry ;
begin

diskuse . request ;
key := hash(id);
t ab le . read(key , e lem);
more := e lem.searchlength;
index:= key ; f ound := false;
while no t f o u n d & (more > 0) do
begin

tab le . read(index , elem);
i f e lem.id = id t hen
begin a t t r := e lem.a t t r ; f ound : = t rue end
else
begin

i f e l em.key = key t h e n more : = m o r e - 1;
index: = index m o d tab le . length + 1;

end;
end;
diskuse.release;

end;

begin ini t t ab le (typeuse , ca taddr) end;

Data File

A data file enables a process to access a disk file by means of its name in
a disk catalog. The pages of a da ta file are n u m b e r e d 1, 2, ..., length.

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 119

type data file --
class(typeuse: typeresource; diskuse: resource; catalog: diskcatalog)
A data file uses a resource to get exclusive access to the disk dur ing a page
t ransfer and a t ypewr i t e r resource to get exclusive access to the ope ra to r
a f te r disk failure. I t uses a catalog to l o o k up the file. Init ial ly the data file
is inaccessible (closed).

procedure open(id: identifier; var found: boolean)
Makes a file with a given ident i f ier accessible if it is f o u n d in the catalog.

procedure close
Makes the file inaccessible.

procedure read(pageno : in teger; var block: univ page)
Reads a page with a given n u m b e r f rom the file. I t has no e f fec t if the file
is closed or if the page n u m b e r is outs ide the range 1.. length.

procedure write(pageno: integer; var block: univ page)
Writes a page wi th a given n u m b e r on the file. I t has n o e f fec t if the file is
closed or if the page n u m b e r is outs ide the range 1.. length.

function length: integer
Defines the n u m b e r o f pages in the file. The length o f a closed file is zero.

A user of a da ta file mus t open it be fore using it and close i t af terwards.
I f a process needs exclusive access to a da ta file while using it, this mus t be
ensured at h igher levels o f programming.

I M P L E M E N T A T I O N :

type dataf i le =
class(typeuse: t ype resource ; diskuse: resource;

catalog: diskcatalog);

var file: diskfile; opened : boo lean ;

e n t r y length: integer;

120 THE SOLO OPERATING SYSTEM

procedure entry open(id: identifier; var found:: boolean);
vat attr: fileattr;
begin

catalog.lookup(id, attr, found);
if found then
begin

diskuse.request;
file. open (attr. addr);
length:= file.length;
diskuse.release;

end;
opened:= found;

end;

procedure entry close;
begin

file.close;
length: = O;
opened:= false;

end;

procedure entry read(pageno: integer; vat bloc'k: univ page);
begin

if opened then
begin

diskuse.request;
file.read(pageno, block);
diskuse.release;

end;
end;

procedure entry write(pageno: integer; vat block: univ page);
begin

if opened then
begin

diskuse.request;
file.write(pageno, block);
diskuse.release;

end;
end;

Chap. 5

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 121

begin
init file(typeuse);
length := 0;
opened:= false;

end;

Program File

A program file can transfer a sequential program from a disk file into
core. The program file is identified by its name in a disk catalog.

type progfile =
class(typeuse: typeresource; diskuse: resource; catalog: diskcatalog)
A program file uses a resource to get exclusive access to the disk during
program loading and a typewri ter resource to get exclusive access to the
operator after disk failure. It uses a disk catalog to look up the file.

procedure open(id: identifier; vat state: progstate)
Loads a program with a given identifier from disk and returns its state.
The program state is one of the following: ready for execution, not found,
the disk file is not sequential code, or the file is too big to be loaded into
c ore.

function store: progstore
Defines the variable in which the program file is stored. A program store is
an array of disk pages.

IMPLEMENTATION:

A program file has exclusive access to the disk until it has loaded the
entire program. This is to prevent competing processes from slowing down
program loading by causing disk arm movement .

Solo uses two kinds of program files (progfilel and progfile2): one
for large programs and another one for small ones. They differ only in the
dimension of the program store used. The need to repeat the entire class
definit ion to handle arrays of different lengths is an awkward inheritance
from Pascal.

type progstate = (ready, not found, notseq, toobig);

const storelength = 40 "(or 8)";
type progstore = array (.1..storelength.) of page;

122 THE SOLO OPERATING SYSTEM Chap. 5

type progfile =
class(typeuse: typeresource; diskuse: resource;

catalog: diskcatalog);

vat file: diskfile;

entry store: progstore;

procedure entry open(id: identifier; vat state: progstate);
vat attr: ffleattr; found: boolean; pageno: integer;
begin

catalog.lookup(id, attr, found);
with diskuse, file, attr do
if not found then

state:= no t found else
if kind < > seqcode then

state:= notseq else
begin

request;
open(addr);
if length <= storelength then
begin

for pageno:= 1 to length do
read(pageno, store(.pageno.));

state:= ready;
end else

state: = toobig;
close;
release;

end;
end;

begin init file(typeuse) end;

Program Stack

A program stack maintains a last-in, first-out list of identifiers of pro-
grams that have called one another. It enables a process to keep track of
nested calls of sequential programs.

t y p e progstacl¢ = m o n i t o r

For historical reasons a program stack was defined as a monitor. In the
present version of the system it might as well have been a class.

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 123

function space: boolean
Tells whether there is more space in the program stack.

function any: boolean
Defines whether the stack contains any identifiers.

procedure push(id: identifier)
Puts an identifier on top of the stack. It has no effect if the stack is full.

procedure pop(var line, result: univ integer)
Removes a program identifier from the top of the stack and defines the line
number at which the program terminated as well as its result. The result
either indicates normal termination or one of several run-time errors as
explained in the Concurrent Pascal report (Chapter 8).

procedure get(vat id: identifier)
Defines the identifier stored in the top of the stack (without removing it).
It has no effect if the stack is empty.

IMPLEMENTATION:

A program stack measures the extent of the heap of the calling process
before pushing a program identifier on the stack. If a pop operation shows
abnormal termination, the heap is reset to its original point to prevent the
calling process from crashing due to lack of data space.

The standard routines

attribute setheap

are defined precisely in the Concurrent Pascal report (Chapter 8).

type resulttype = (terminated, overflow, pointererror,
rangeerror, varianterror, heaplimit,
stacklimit, codelimit, timelimit,
callerror);

type attrindex = (caller, heaptop, progline, progresult,
runtime);

type progstack =
monitor

const stacklength = 5;

124 THE SOLO OPERATING SYSTEM

vat stack: array (.1..stacklength.) of
record

progid: identifier;
heapaddr: integer

end;
top: O..stacklength;

function entry space: boolean;
begin space:= (top < stacklength) end;

function entry any: boolean;
begin any:= (top > O) end;

procedure entry push(id: identifier};
begin

if top < stacklength then
begin

top: = top + 1;
with stack(.top.) do
begin

progid: = id;
heapaddr: = attribute(heaptop);

end;
end;

end;

procedure entry pop(vat line, result: univ integer);
const terminated = O;
begin

line:= attribute(progline);
result: = attribute(progresult);
if result < > terminated then

setheap(stack(.top.) .heapaddr);
top:= t o p - 1;

end;

procedure entry get(vat id: identifier);
begin

if top > 0 then id: = stack(.top.).progid;
end;

Chap. 5

begin top: = 0 end;

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 125

Page Buffer

A page buffer transmits a sequence of data pages from one process to
another. Each sequence is terminated by an end of file mark.

type pagebuffer = monitor

procedure read(var text: page; var eof : boolean)
Receives a message consisting of a text page and an end of file indication.

procedure write(text: page; eof: boolean)
Sends a message consisting of a text page and an end of file indication.

If the end of file is true then the text page is empty.

IMPLEMENTATION:

A page buffer stores a single message at a time. It will delay the sending
process as long as the buffer is full and the receiving process until it becomes
full (0 ~< writes - reads ~. 1).

Solo also implements buffers for transmission of arguments (enumera-
tions and identifiers) and lines. They are similar to the page buffer (but use
no end of file marks). The need to duplicate the routines for each message
type is an inconvenience caused by the fixed data types of Pascal.

type pagebuffer =
monitor

vat buffer: page; last, full: boolean;
sender, receiver: queue;

procedure entry read(vat text: page; vat eof: boolean);
begin

if not full then delay(receiver);
text:= buffer; eof:= last; full:= false;
continue(sender);

end;

126 THE SOLO OPERATING SYSTEM Chap. 5

procedure entry write(text: page; eof: boo]Lean);
begin

if full then delay(sender);
buffer:= text; last:= eof; full:= true;
continue(receiver);

end;

begin full:= false end;

Character Stream

A character stream enables a process to communicate with another
process character by character.

type charstream = class(buffer: pagebuffer)
A character stream uses a page buffer to transmit one page of characters at
a time from one process to another.

procedure initread
Opens a character stream for reading.

procedure initwrite
Opens a character stream for writing.

procedure read(var c: char)
Reads the next character from
stream is not open for reading.

the stream. The effect is undefined if the

procedure write(c: char)
Writes the next character in the stream. The effect is undefined if the stream
is not open for writing.

A sending process must open its stream for writing before using it. The
last character transmitted in a sequence should be an end of medium (EM).

A receiving process must open its stream for reading before using it.

IMPLEMENTATION:

type charstream =
class(buffer: pagebuffer);

vat text: page; count: integer; eof: boolean;

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES

procedure entry read(vat c: char);
begin

if count = pagelength then
begin

buffer.read(text, eof);
count:= O;

end;
count: = count + 1;
c: = text(.count.);
ff c = em then
begin

while not eof do buffer.read(text, eof);
count: = pagelength;

end;
end;

procedure entry initread;
begin count: = pagelength end;

procedure entry write(c: char);
begin

count: = count + 1;
text(.count.) := c;
if (count = pagelength) or (c = em) then
begin

buffer.write(text, false); count: = O;
if c -- em then buffer.write(text, true);

end;
end;

procedure entry initwrite;
begin count:= 0 end;

begin end;

Tasks and Arguments

The following data types are used by several processes

type taskkind = (inputtask, jobtask, outputtask);

type argtag = (niltype, booltype, inttype,
idtype, ptrtype);

127

128 THE SOLO OPERATING SYSTEM Chap. 5

type argtype = record
tag: argtag;
arg: identifier

end;

c o n s t m a x a r g = 10;
type arglist = array (.1..maxarg.) of argtype;

type argseq = (inp, out);

The task k ind defines whether a process is performing an input task, a
job task, or an output task. It is used by sequential programs to determine
whether they have been called by the right kind of process. As an example,
a program that controls card reader input can only be called by an input
process.

A process that executes a sequential program passes a list of arguments
to it. A program argument consists of a tag field defining its type (boolean,
integer, identifier, or pointer) and another field defining its value. (Since
Concurrent Pascal does not include the variant records of Sequential Pascal
one can only represent a program argument by the largest one of its vari-
ants -- an identifier.)

A job process is connected to an input process and an output process
by two argument buffers called its input and ou tpu t sequences.

,.lob Process

A job process executes Sequential Pascal programs that can call one
another recursively. Initially, it executes a program called do. A job process
also implements the interface between sequential programs and the Solo
operating system defined in Section 5.2.

type jobprocess =
process(typeuse : typeresource ; ~diskuse : resource;

catalog: diskcatalog; inbuffer, outbuffer: pagebuffer;
inrequest, inresponse, outrequest, outresponse: argbuffer;
stack: progstack);

"program data space = " ÷ 16000
A job process needs access to the operator's console, the disk, and its cata-
log. i t is connected to an input and an output process by two page buffers
and four argument buffers as explained in Section 5.1. It uses a program
stack to handle nested calls of sequential programs.

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 129

It requires a data space of 16000 bytes for user programs and a code
space of 20000 bytes. This enables the Pascal compiler to compile itself.

IMPLEMENTATION:

The private variables of a job process give it access to a terminal stream,
two character streams for input and output , and two data files. It uses a
large program file to store the currently executed program. These variables
are inaccessible to other processes.

The job process contains a declaration of a sequential program that de-
fines the types of its arguments and the variable in which its code is stored
(the latter is inaccessible to the program). It also defines a list of interface
routines that can be called by a program. These routines are implemented
within the job process. They are defined in Section 5.2.

Before a job process can call a sequential program it must load it from
disk into a program store and push its identifier onto a program stack. After
termination of the program, the job process pops its identifier, line number,
and result from the program stack, reloads the previous program from disk
and returns to it.

A process can only interact with other processes by calling routines
within monitors that are passed as parameters to it during initialization
(such as the catalog declared at the beginning of a job process). These access
rights are checked at compile time.

type jobprocess =
process(typeuse: typeresource; diskuse: resource;

catalog: diskcatalog; inbuffer, outbuffer: pagebuffer;
inrequest, inresponse, outrequest, outresponse:
argbuffer; stack: progstack);

"program data space = " + 16000

const maxfile = 2;
type file = 1..maxfile;

vat operator: terminal; opstream: terminalstream;

instream, outstream: charstream;

files: array (.file.) of datafile;

code: progfile "(large)";

130 THE SOLO OPERATING SYSTEM

program job(var param: arglist; store: progstore);
entry read, write, open, close, get, put, length,

mark, release, identify, accept, display, readpage,
writepage, readline, writeline, readarg, write~cg,
lookup, iotransfer, iomove, task, run;

procedure call(id: identifier; vat param: arglist;
var line: integer; var result: resulttype);

var state: progstate; lastid: identifier;
begin

with code, stack do
begin

line: = 0;
open(id, state);
if (state = ready) & space then
begin

push(id);
job(param, store);
pop(line, result);

end else
if state = toobig then result:= codelimit

else result:= callerror;
if any then
begin get(lastid); open(lastid, state) end;

end;
end;

procedure entry read(vat c: char);
begin instream.read(c) end;

procedure entry write(c: char);
begin outstream.write(c) end;

procedure entry open(f: file; id: identifier;
vat found: boolean);

begin files(.f.).open(id, found) end;

procedure entry close(f: file);
begin files(.f.).close end;

procedure entry get(f: file; p: integer; vat block: page);
begin files(.f.).read(p, block) end;

Chap. 5

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 131

procedure entry put(f: file; p: integer; vat block: page);
begin files(.f.).write(p, block) end;

function entry length(f: file): integer;
begin length:= files(.f.).length end;

procedure entry mark(vat top: integer);
begin top: = attribute(heaptop) end;

procedure entry release(top: integer);
begin setheap(top) end;

procedure entry identify(header: text);
begin opstream.reset(header) end;

procedure entry accept(vat c: char);
begin opstream.read(c) end;

procedure entry display(c: char);
begin opstream.write(c) end;

procedure entry readpage(var block: page; vat eof: boolean);
begin inbuffer.read(block, eof) end;

procedure entry writepage(block: page; eof: boolean);
begin outbuffer.write(block, eof) end;

procedure entry readline(var text: line);
begin end;

procedure entry writeline(text: line);
begin end;

procedure entry readarg(s: argseq; vat arg: argtype);
begin

if s = inp then inresponse.read(arg)
else outresponse.read(arg);

end;

procedure entry writearg(s: argseq; arg: argtype);
begin

if s = inp then inrequest.write(arg)
else outrequest.write(arg);

end;

132 THE SOLO OPERATING SYSTEM

procedure entry lookup(id: identifier; vat attr: fileattr;
var found: boolean);

begin catalog.lookup(id, attr, found) end;

procedure entry iotransfer(device: iodevice;
vat param: ioparam; vat block: page);

begin
if device = diskdevice then
begin

diskuse.request;
io(block, param, device);
diskuse.release;

end else
io(block, param, device);

end;

procedure entry iomove(device: iodevice; vat param: ioparam);
begin io(param, param, device) end;

function entry task: taskkind;
begin task: = jobtask end;

procedure entry run(id: identifier; vat param: arglist;
vat line: integer; vat result: resulttype);

begin call(id, param, line, result) end;

procedure initialize;
vat i: integer; param: arglist;

line: integer; result: resulttype;
begin

init operator(typeuse), opstream(operator),
instream(inbuffer), outstream(outbuffer);

instream.initread; outstream.initwrite;
for i: = 1 to maxfile do

init files(.i.)(typeuse, diskuse, catalog);
init code(typeuse, diskuse, catalog);
with param(.2.) do
begin tag: = idtype; arg: = 'console ' end;
call('do ', param, line, result);

• , * operator.write(jobprocess:(:lO:), 'terminated (:10:)');
end;

Chap. 5

begin initialize end;

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 133

I0 Process

An io process executes Sequential Pascal programs that produce or
consume data for a job process. It also implements the interface between
these programs and the Solo operating system.

type ioprocess =
process(typeuse : typeresource ; diskuse : resource;

catalog: diskcatalog; slowio: linebuffer;
buffer: pagebuffer; request, response: argbuffer;
stack: progstack; iotask: taskkind);

"program data space = "÷2000
An io process needs access to the operator, the disk, and the catalog. It is
connected to a card reader (or a line printer) by a line buffer and to a job
process by a page buffer and two argument buffers. It uses a program stack
to handle nested calls of sequential programs.

It requires a data space of 2000 bytes for input /output programs and a
code space of 4000 bytes.

Initially, it executes a program called io.

IMPLEMENTATION:

The implementation details are similar to a job process.

type ioprocess =
process(typeuse: typeresource; diskuse: resource;

catalog: diskcatalog; slowio: linebuffer;
buffer: pagebuffer; request, response: argbuffer;
stack: progstack; iotask: taskkind);

"program data space = " + 2 0 0 0

type file = 1..1;

vat operator: terminal; opstream: terminalstream;

iostream: charstream; iofile: datafile;

code: progfile " (s m a l l) " ;

134 THE SOLO OPERATING SYSTEM

program driver(vat param: arglist; store: progstore);
entry read, write, open, close, get, put, length,

mark, release, identify, accept, display, readpage,
writepage, readline, writeline, readarg, writearg,
lookup, iotransfer, iomove, task, run;

procedure call(id: identifier; vat param: arglist;
vat line: integer; var result: resulttype);

vat state: progstate; lastid: identifier;
begin

with code, stack do
begin

line := 0;
open(id, state);
ff (state = ready) & space then
begin

push(id);
driver(param, store);
pop(line, result);

end else
if state = toobig then result: = codelimit

else result:= callerror;
if any then
begin get(lastid); open(lastid, state) end;

end;
end;

procedure entry read(vat c: char);
begin iostream.read(c) end;

procedure entry write(c: char);
begin iostream.write(c) end;

procedure entry open(f: file; id: identifier;
vat found: boolean);

begin iofile.open(id, found) end;

procedure entry close(f: file);
begin iofile.close end;

procedure entry get(f: file; p: integer; vat block: page);
begin iofile.read(p, block) end;

Chap. 5

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES

procedure entry put(f: file; p: integer; vat block: page);
begin iofile.write(p, block) end;

function entry length(f: file): integer;
begin length:= iofile.length end;

procedure entry mark(vat top: integer);
begin top:= attribute(heaptop) end;

procedure entry release(top: integer);
begin setheap(top) end;

procedure entry identify(header: line);
begin opstream.reset(header) end;

procedure entry accept(vat c: char);
begin opstream.read(c) end;

procedure entry display(c: char);
begin opstream.write(c) end;

procedure entry readpage(var block: page; vat eof: boolean);
begin buffer.read(block, eof) end;

procedure entry writepage(block: page; eof: boolean);
begin buffer.write(block, eof) end;

procedure entry readline(var text: line);
begin slowio.read(text) end;

procedure entry writeline(text: line);
begin slowio.write(text) end;

procedure entry readarg(s: argseq; vat arg: argtype);
begin request.read(arg) end;

procedure entry writearg(s: argseq; arg: argtype);
begin response.write(arg) end;

procedure entry lookup(id: identifier; vat attr: fileattr;
vat found: boolean);

begin catalog.lookup(id, attr, found) end;

135

136 THE SOLO OPERATING SYSTEM Chap. 5

procedure entry iotransfer(device: iodevice;
var param: ioparam; var block: page);

begin
if device = diskdevice then
begin

diskuse.request;
io(block, param, device);
diskuse.release;

end else
io(block, param, device);

end;

procedure entry iomove(device: iodevice; var param: ioparam);
begin io(param, param, device) end;

function entry task: taskkind;
begin task:= iotask end;

procedure entry run(id: identifier; vat param: arglist;
vat line: integer; vat result: resulttype);

begin call(id, parara, line, result) end;

procedure initialize;
vat param: arglist; line: integer; result: resulttype;
begin

init operator(typeuse), opstream(operator),
iostream(buffer),
iofile(typeuse, diskuse, catalog),
code(typeuse, diskuse, catalog);

if iotask = inputtask then iostream.initwrite
else iostream.initread;

call('io ', param, line, result);
operator, write ('ioprocess: (: 10:)', 'terminated (: 10:)');

end;

begin initialize end;

Card Process

A card process transmits cards from a card reader through a line buffer
to an input process.

Sec, 5.3 PROCESSES, MONITORS, AND CLASSES 137

type cardprocess =
process(typeuse: typeresource; buffer: linebuffer)
A card process can access the operator to report device failure and a line
buffer to transmit data. It is assumed that the card reader is controlled
only by a single card process. As long as the card reader is turned off or is
empty the card process waits. It begins to read cards as soon as they are
available in the reader. After a transmission error the card process writes
a message to the operator and continues the input of cards.

IMPLEMENTATION:

The standard procedure

wait

delays the card process for I sec. This reduces the processor time spent wait-
ing for operation intervention.

type cardprocess =
process(typeuse: typeresource; buffer: linebuffer);

var operator: terminal; text: line;
param: ioparam; ok: boolean;

138 THE SOLO OPERATING SYSTEM Chap. 5

begin
init operator(typeuse);
param.operation: = input;
cycle

repeat
io(text, param, carddevice);
case param.status of

complete:
ok:= true;

intervention:
begin ok:= false; wait end;

transmission, failure:
begin

operator.write('cards: (: 10 :)', 'error(: 10:)');
ok:= false;

end
end

until ok;
buffer.write(text);

end;
end;

Printer Process

A printer process transmits lines from an ou tpu t process to a line print-
er.

type prin terprocess =
process(typeuse: typeresource; buffer: linebuffer)
A printer process can access the operator to report device failure and a line
buffer to receive data. It is assumed that the line printer is controlled only
by a single printer process. After a printer failure the printer writes a message
to the operator and repeats the ou tpu t of the current line until it is success-
ful.

IMPLEMENTATION:

type printerprocess =
process(typeuse: typeresource; buffer: linebuffer);

vat operator: terminal; param: ioparam; text: line;

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 139

begin
init operator(typeuse);
param.operation:= output ;
cycle

buffer.read(text);
io(text, param, printdevice);
if param.status < > complete then
begin

operator.write('printer: (: 10:)' , 'inspect(:10:)');
repeat

wait;
io(text, param, printdevice);

until param.status = complete;
end;

end;
end;

Loader Process

A loader process preempts the operating system and reinitializes it when
the operator pushes the BEL key ('control g') on the console.

type loaderprocess =
process(diskuse : resource)
A loader process needs access to the disk to be able to reload the system.

IMPLEMENTATION:

A control operation on the typewriter delays the calling process until
the operator pushes the BEL key (Chapter 8).

The Solo operating system is stored on consecutive disk pages starting
at the Solo address. It is loaded by means of a control operation on the
disk as defined in the Concurrent Pascal report (Chapter 8). Consecutive
disk pages are used to make the system kernel unaware of the structure of
a particular filing system (such as the one used by Solo). The disk contains
a sequential program start that can copy the Solo system from a concurrent
code file into the consecutive disk segment defined above.

type loaderprocess =
process(diskuse: resource);

const soloaddr = 24;
vat param: ioparam;

140 THE SOLO OPERATING SYSTEM Chap. 5

procedure initialize(pageno: univ ioarg);
begin

with param do
begin

operation: = control;
arg: = pageno;

end;
end;

begin
initialize(soloaddr);
"await bel signal"
io(param, param, typedevice);
"reload solo sys tem"
diskuse.request;
io(param, param, diskdevice);
diskuse.release;

end;

Initial Process

The initial process initializes all other processes and monitors and de-
fines their access rights to one another. After initialization the operating sys-
tem consists of a fixed set of components: a card process, an input process,
a job process, an ou tpu t process, a printer process, and a loader process. They
have access to an operator, a disk, and a catalog of files. Process communica-
tion takes place by means of two page buffers, two line buffers, and four
argument buffers (see Fig. 5.1).

When a process, such as the initial process, terminates its execution, its
variables continue to exist (because they may be used by other processes).

IMPLEMENTATION:

v a t typeuse: typeresource;
diskuse: resource; catalog: diskcatalog;
inbuffer, outbuffer : pagebuffer;
cardbuffer, printerbuffer: linebuffer;
inrequest, inresponse, outrequest , outresponse: argbuffer;
instack, outstack, jobstack: progstack;
reader: cardprocess; writer: printerprocess;
producer, consumer: ioprocess; master: jobprocess;
watchdog: loaderprocess;

Sec. 5.3 PROCESSES, MONITORS, AND CLASSES 141

begin
init typeuse, diskuse,

catalog(typeuse, diskuse, cataddr),
inbuffer, outbuffer ,
cardbuffer, printerbuffer,
inrequest, inresponse, outrequest, outresponse,
instack, outstack, jobstack,
reader(typeuse, cardbuffer),
writer(typeuse, printerbuffer),
producer(typeuse, diskuse, catalog, cardbuffer,

inbuffer, inrequest, inresponse, instack, inputtask),
consumer(typeuse, diskuse, catalog, printerbuffer,

outbuffer , outrequest , outresponse, outstack, outputtask),
master(typeuse, diskuse, catalog, inbuffer, outbuffer ,

inrequest, inresponse, outrequest, outresponse,
jobstack),

watchdog(diskuse);

end.

Conclusion

The Solo system consists of 22 line printer pages of Concurrent Pascal
text divided into 23 component types (10 classes, 7 monitors, and 6 pro-
cesses). A typical component type is less than one page long and can be
studied in isolation as an (almost) independent piece of program. All pro-
gram components called by a given component are explicitly declared
within that component (either as permanent variables or as parameters
to it). To understand a component it is only necessary to know what other
components called by it do, but how they do it in detail is irrelevant.

The entire system can be studied component by component as one
would read a book. In that sense, Concurrent Pascal supports abstraction
and hierarchical structuring of concurrent programs very nicely.

It took 4 compilations to remove the formal programming errors from
the Solo system. It was then tested systematically from the bo t tom up by
adding one component type at a time and trying it by means of short test
processes. The whole program was tested in 27 runs (or about 1 run per
component type). This revealed 7 errors in the test processes and 2 trivial
ones in the system itself. Later, about one third of it was rewritten to speed
up program loading. This took about 1 week. It was then compiled and put
into operation in 1 day and has worked ever since.

I can only suggest two plausible explanations for this unusual testing
experience. It seems to be vital that the compiler prevents new components

142 THE SOLO OPERATING SYSTEM Chap. 5

from destroying old ones (since old components cannot call new ones,
and new ones can only call old ones through routines that have already
been tested). This strict checking of hierarchical access rights makes it
possible for a large system to evolve gradually through a sequence of inter-
mediate, stable subsystems.

I am also convinced now that the use of abstract data types which hide
implementation details within a fixed set of routines encourages a clarity of
design that makes programs practically correct before they are even tested.
The slight inconvenience of strict type checking is of minor importance
compared to the advantages of instant program reliability.

Although Solo is a concurrent program of only 1300 lines it does imple-
ment a virtual machine that is very convenient to use for program develop-
ment. The availability of cheap microprocessors will put increasing pressure
on software designers to develop special-purpose operating systems at very
low cost. Concurrent Pascal is one example of a programming tool that may
make this possible.

5.4 DISK SCHEDULING

In allocating program files on a slow disk an operating system designer is
faced with a dilemma: He can place a program on consecutive disk pages and
make loading of it fast. But at the same time file allocation (or deletion)
becomes painfully slow (since files must be compacted from time to time).

Or he can place a program on scattered pages (linked in some way) and
make file allocation fast. But program loading will now be slowed down
considerably (because random references to the disk require more disk revo-
lutions than sequential references do).

This section describes an algorithm that combines the best features of
consecutive and nonconsecutive disk allocation: fast sequential access and
fast allocation. The algorithm tries to place a file on consecutive pages (but
will scatter them somewhat if necessary). It then z'earranges these pages to
minimize rotational delay during a sequential sc~a of the file. Since this
is done once and for all before a program is compiled and stored in a file
it is called disk scheduling at compile time.

A Numerical Example

The Solo system for the PDP 11/45 computer uses a disk with 200
cylinders each holding 24 pages (distributed on two surfaces). The disk is
slow

DISK SCHEDULING 143

r
disk revolution
head movement
page transfer

45 msec
10 - 90 msec

4 msec

During a compilation of a Pascal program, 20 system programs of alto-
gether 300 pages are loaded from disk. If a file is allocated on consecutive
pages program loading will take about 3 sec per compilation. But file alloca-
tion can take up to 3 min.

If the pages of a file are scattered randomly over the disk, file alloca-
t ion will only take a second or so, but compiler loading will now last 16 sec.

The algorithm suggested here is a compromise between these extremes:
It makes it possible to allocate a file in a few seconds and load the com-
piler in 5 sec.

Disk Allocation

In the Solo system, the pages allocated to a single file are addressed
indirectly through a page map (Fig. 5.6). This map makes the pages appear
to be consecutive to the user but allows the operating system to place them
anywhere on disk.

The disk allocation algorithm takes advantage of the following knowl-
edge about program files

(1) A program file consists of a fixed set of disk pages throughout its
lifetime (that is, until recompilation).

(2) It is always loaded sequentially in a single operation (since demand
paging is not used).

PAGE MAP PAGES

PAGE 1

PAG E N

Fig. 5.6 A disk file

Sec. 5.4

144 THE SOLO OPERATING SYSTEM Chap. 5

These assumptions make it possible to simulate program loading at
compile time and schedule a fast sequence of page transfers once and for
all. The algorithm tries to place a file consecutively ,on neighboring cylinders
(but will make gaps between page segments whenever this is necessary to
skip existing files). It then rearranges the page addresses within the page
map to minimize the number of disk revolutions and head movements need-
ed to load the file.

Since one cannot always place a file on consecutive pages the problem
cannot be solved by formatt ing the entire disk once. It must be done piece-
meal each time a file is allocated because only then the set of available pages
is known.

Figure 5.7 illustrates the scheduling algorithm for the simple case of a
file placed on 16 consecutive pages, A to P, on two neighboring cylinders.

The algorithm selects page A as the page map of the new file. Now the
rotational gap between two neighboring pages is only 0.5 msec. This is too
little to allow the Solo system to start another page transfer. To avoid losing
a complete disk revolution the algorithm therefore skips page B and makes
C the first page of the file. It continues to select every second page and put
it in the page map. After two (simulated) disk revolutions all pages on the
first cylinder have been placed in the page map. (It takes four revolutions if
one considers that a cylinder is placed on two surfaces).

The disk head is now positioned after page H on cylinder 1 (correspond-
ing to page P on cylinder 2). The algorithm knows that a cylinder shift takes
enough time to move the disk head to page L. So this becomes the next
page in the map, and the scheduling now proceeds as before, selecting every

Fig. 5.7 Disk scheduling

)

Sec. 5.4 DISK SCHEDULING 145

PAGE NO PAGE ADDRESS

C

E

G

B

D

F

H

L

Fig. 5.8 Final page map

PAGE NO

9

10

11

12

13

14

15

PAGE ADDRESS

N

P

J

M

0

I

K

second page during two (or four) simulated revolutions. Figure 5.8 shows
the final page map.

When a file does not consist of consecutive pages the algorithm will
allocate a page and search for the nearest page following the next one on the
same cylinder until that cylinder is exhausted.

It is, of course, essential in a multiprogramming system to give a process
exclusive access to the disk during program loading. Otherwise, competing
processes could interrupt the fast loading sequence by disk arm movement.
Since program loading is an indivisible operation of finite duration, there is
no danger of processes monopolizing the disk (provided program loading is
handled by the operating system).

The Multiscan Algorithm

The following is an abstract version of the disk scheduling algorithm: It
scans the original page map cylinder by cylinder and rearranges it. In doing
so it keeps track of the set of pages allocated within the current cylinder
and the current position of the disk head.

Initially the disk head is positioned at the page map itself. When the
algorithm switches to another cylinder it uses a function distance to cylinder
to compute how far the disk turns while the head moves to that cylinder.
It then removes one page at a time from the cylinder, puts it in the new page
map, and searches for the nearest page following the next one.

The algorithm performs quite well even when a file consists of many
disjoint page segments scattered over a number of cylinders. In one extreme
case, a file of 255 pages (11 cylinders} was broken into 47 pieces scattered
over a distance of 50 cylinders (due to a flaw in the initial allocation algo-

146 THE SOLO OPERATING SYSTEM Chap. 5

rithm). The scheduling algorithm nevertheless made it possible to load
this file in 82 disk revolutions (which is 50 per cent of the best performance
obtainable on the given disk).

const cylinder length = 24 "pages";
sector_increment = 2 "pages";

type page index = 0..23;

vat pages: set of page_index;
size: 0..cylinder length;
position: page index;

begin
position := initial_position;
for every_cylinder of file do
begin

pages:= a l lpageson_cyl inder ;
size:= number of pages on_cylinder;
position:= position + distance_to_cylinder;
for size downto 1 do
begin

while not (position in pages) do
position:= (position + 1) rood cylinder length;

pages:= pages - (.position.);
put_position_in_page_map;
position:=

(position + sector_increment) rood cylinder_length;
end;

end;
end;

Conclusion

The use of a special disk scheduling algorithm for a frequent case (pro-
gram loading) illustrates a sound principle of operating system design: The
best operating systems are always highly specialized programs that take full
advantage of the expected usage of the computer resources [Brinch Hansen,
1973b].

By comparison, a more "general" disk scheduling algorithm, such as
the scan algorithm [Hoare, 1974], will have negligible effect in this case
simply because its only assumption about disk usage is the worst possible
one of unrestricted competition among concurrent processes.

Sec. 5.5 LIST OF SOLO COMPONENTS 147

The problem also illustrates a common temptat ion for software de-
signers: to make a theory of optimization out of a complicated device
instead of suggesting a simpler one. (The generation of excellent code for
computers with complicated instruction sets is another example of this).

5.5 LIST OF SOLO COMPONENTS

Arglist type, 81
Argseq type, 128
Argtag type, 81
Argtype, 81
Attrindex type, 123

Cardprocess, 136
Catentry type, 115
Catpage type, 115
Charstream class, 126
Copy program, 93

Datafile class, 118
Diskcatalog monitor, 117
Disk class, 111
Diskfile class, 113
Disktable class, 116

Fifo class, 102
Fileattr type, 115
Filekind type, 115
Filemap type, 114

Identifier type, 115
Initial process, 140
Ioarg type, 101
Iodevice type, 101
Iooperation type, 101
Ioparam type, 101

Ioprocess, 133
Ioresult type, 101

Jobprocess, 128

Line type, 102
Loaderprocess, 139

Multiscan algorithm, 145

Pagebuffer monitor, 125
Page type, 102
Prefix, 90
Printerprocess, 138
Processqueue type, 104
Progfile class, 121
Progresult type, 87
Progstack monitor, 122
Progstate type, 121
Progstore type, 121

Resource monitor, 103
Resulttype, 123

Taskkind type, 127
Terminal class, 108
Terminalstream class, 110
Typeresource monitor, 105
Typewriter class, 106

THE JOB STREAM SYSTEM

The operating system called job stream compiles and executes a stream
of user programs input from a card reader and ou tpu t on a line printer. Job
stream is writ ten in Concurrent Pascal and user programs are writ ten in
Sequential Pascal.

This chapter has another theme besides describing a particular kind of
operating system. It illustrates how one can build a system to achieve the
best possible performance on a given machine and predict its speed before
constructing it.

6.1 FUNCTION AND PERFORMANCE

The system gives informal access and fast response to short jobs such as
the ones writ ten by students in an in t roduc tory course on programming.

A job is a card deck consisting of a Sequential Pascal program and its
input data terminated by an end of file card. The lat ter is a card containing
the character # fol lowed by 79 blanks.

The system is run by the users themselves. To run a job a user places
a card deck in the reader and pushes a but ton. When the cards have been

148

Sec. 6.1 FUNCTION AND PERFORMANCE 149

read the user removes them and proceeds to a printer where the ou tpu t
appears shortly.

The ou tpu t of a job consists of a program listing followed by compiler
error messages or program results.

To avoid confusion at the printer, jobs are processed in their order of
arrival (first-come, first-served).

To ensure fast response, a user is limited to at most 1 min of compila-
tion and execution time per job.

The interface between a user program and the operating system is de-
fined by a piece of text called the job prefix (Section 5.2).

const nl = ' (:10:) ' ; f f = ' (:12:) ' ; em = ' (:25:) ' ;

const linelength = 132;
type line = array (.1..linelength.) o f char;

procedure read(vat c: char);
procedure write(c: char);
procedure readint(var value: integer);
procedure writeint(value, length: integer);
procedure wri tetext(text : line);

program job;

The prefix lists the operating system procedures that user programs
may call

read(c)

write(c)

readint(value)

writeint(value, length)

wri tetext(text)

Inputs a character c (if any). Returns
the character EM if a job has no more
input data.

Outputs a character c. After an EM
further ou tpu t of a job is ignored.

Inputs an integer value (if any). Returns
the value 0 if a job has no more numeric
input.

Outputs an integer with a given length
(in characters).

Outputs a text string terminated by the
character #. The latter is no t output .

150 THE JOB STREAM SYSTEM Chap. 6

PREFIX ~ f ~ PREFIX SOURCE I SINK

CARD LINE READER PRINTER
Fig. 6.1 Job input/output

The system automatically puts the prefix in front of a user program
before it is compiled and removes it again before it is printed (Fig. 6.1).

The system is designed for one purpose only: to execute short jobs
as fast as possible. The decision to emphasize performance rather than func-
tional scope is, of course, meaningless unless one can estimate in advance
how fast a proposed system will be. The following describes how the system
structure evolved from performance estimates.

Most s tudent jobs have few input data and produce little or no ou tpu t
during testing. So the system will mainly be reading, compiling, and printing
program text. For the purpose of predicting performance we will assume
that a typical s tudent program consists of 100 lines of 25 characters each.

The card reader and line printer can transfer 1000 and 600 lines/min
(corresponding to 60 and 100 msec/line). The user needs about 10 sec to
insert a card deck and remove a printer listing.

The compiler speed is 240 char/sec (or about 100 msec/line) (Chap-
ter 9). Compiler loading from disk takes 5 sec (Chapter 5). The compiler
needs another 2 sec to scan a job prefix of say 20 lines.

So a job must be processed in turn by three system components with
the following service times

card reader:
compiler:
line printer:

10 sec/job + 0.06 sec/line
7 sec/job + 0.1 sec/line

10 sec/job + 0.1 sec/line

The simplest (and slowest) system would be one in which input, com-
pilation, and ou tpu t of a job take place strictly one at a time. In such a
system the total service time would be

sequential system: 27 sec/job + 0.26 sec/line

or 53 sec for a program of 100 lines.
To reduce service time below this upper bound we must let input,

compilation, and ou tpu t take place simultaneously (Fig. 6.2). In a con-

Sec. 6.1 FUNCTION AND PERFORMANCE 151

BUFFERS

INPUT JOB OUTPUT
PROCESS PROCESS PROCESS

Fig. 6.2 Concurrent system

current system the line printer sets a lower limit on service time.

concurrent system: 10 sec/job + 0.1 sec/line
J

or 20 sec for 100 lines.
Let us assume that a user needs 5 min after a compilation to correct

trivial program errors before resubmitting a job. Now if a single user only
needs 20 sec of service time every 300 sec there will be practically no waiting
time as long as the system is shared by no more than (300 + 20)/20 = 16
people at a time. If more people use it simultaneously each additional user
will delay the others by 20 sec. So with 31 active users the response time
at the machine will be about 5 min.

So far we have derived the main process structure by examining the
desired average behavior of the system. To achieve the predicted perfor-
mance it is essential that the line printer can operate cont inuously at top
speed. The main problem of doing this is that the compiler produces its
ou tpu t tex t in short bursts followed by long pauses.

So we must now look at the buffers connecting the processes and make
sure that they are able to absorb temporary speed variations within the
system.

The compiler scans 100 lines of program tex t and outputs it in 4 sec. It
then uses another 13 sec to check the program tex t before output t ing error
messages or code. Since it takes t h e printer 10 sec to ou tpu t the program
text; the buffer connecting the job and ou tpu t processes must be large and
fast enough to absorb 100 lines (or 2500 characters) in 4 sec.

Similarly, to use the card reader continuously we need a large buffei:
between the input and job processes.

Since user jobs may vary in length both buffers should be large enough
to absorb up to one minute of tex t input /output . A buffer of 600 lines
(15,000 characters) is too large to keep in the core store of the available
computer . So we must use the dish to buffer input/output .

152 THE JOB STREAM SYSTEM Chap. 6

CORE DISK DISK CORE
BUFFER BUFFER BUFFER BUFFER

CA R D I NPUT JOB OUTPUT PRINTE R
PROCESS PROCESS PROCESS PROCESS PROCESS

Fig. 6.3 Final process structure

Each disk transfer (of about 20 lines) made by the ou tpu t process will
delay it by about 100 msec. This will slow the line printer down by 5 msec/
line (or 5 per cent). To reduce rotational delay, the job process has exclusive
access to the disk while it is loading the compiler (Section 5.4). These long
disk transfers will occasionally slow the ou tpu t process and the printer
down even more.

To enable the card reader and line printer to continue at full speed
during disk transfers we will introduce two more processes (Fig. 6.3).

The card process reads cards and transmits them through a buffer in
core store to an input process.

The input process puts a prefix in front of each job, packs the text
into blocks, and sends it through a disk buffer to a job process.

The job process compiles and executes programs sending their ou tpu t
through another disk buffer to an ou tpu t process.

The output process removes the prefix from each job, splits the rest of
the text into lines, and transmits them through another buffer in core
store to a printer process.

The printer process receives lines and prints them.
Each core buffer must be large enough to absorb text inpu t /ou tpu t

while a program is being loaded from the disk. Since this takes at most 1
sec, a buffer capacity of 10 lines (250 characters) is sufficient.

This completes the design of the system structure from performance
considerations. However crude this performance estimate may seem it
turned out to be accurate. When the system was finished it ran short jobs
continuously at the speed of the line printer.

To choose a system structure that makes performance prediction trivial
is one of the main goals of engineering design. In the job stream system the
use of suitable buffers made it possible to ignore the detailed dynamic
behavior of concurrent processes and describe them in terms of their average
properties only.

Sec. 6.2 SEQUENTIAL PROGRAMS AND FILES 153

6.2 SEQUENTIAL PROGRAMS AND FILES

The job stream system uses the disk to store its own system programs
and the temporary data of user jobs. Since users cannot store programs
and data permanently on the disk, the job stream system can consider
itself the owner of the disk. It can therefore use the file system developed
for the Solo operating system (Chapter 5).

The disk files used by job stream are called

jobstream
jobinput
]observice
joboutput
jobprefix
lob
]obbuffer l
jobbuffer2

Job stream is a concurrent program that is started by giving the com-
mand

start(jobstream)

to the Solo system (Section 5.1). Job stream returns to the Solo system
when the BEL key is pushed on the teletype.

The input, job, and output processes of job stream execute three se-
quential programs called job input, lob service, and job output.

The job prefix is a text file described earlier. The generated code is
stored temporarily in the job file.

Job buffers 1 and 2 are the disk buffers used for input /output of
user text.

In addition, the job process uses the Sequential Pascal compiler. It con-
sists of seven programs (spassl to spass7) which use two scratch files (templ
and temp2). The compiler is described in Chapter 9.

We will now look at each of the job stream programs mentioned above.

Job Input

Job input is a Sequential Pascal program that adds the prefix to user
programs and copies them from cards to disk

154 THE JOB STREAM SYSTEM Chap. 6

begin
initprefix; initblank;
repeat

copyprefix;
copycards;

until false;
end.

The input program can call four operating system routines (defined in its
own prefix)

~refixlength

readprefix(pageno, block)

readline(text)

writestream(block)

Defines the length of the job pre-
fix (in disk pages).

Reads a given disk page from the
job prefix.

Receives a line from the card pro-
cess.

Sends a disk page to the job pro-
cess.

The variables used to ou tpu t text to the disk are the current disk page
and its length as well as the length of the last page of the prefix file (both in
characters)

vat block: page; blocklength, initlength: integer;

Initially, the input program scans the last page of the job prefix to
define its length (excluding the final EM character)

procedure initprefix;
begin

readprefix(prefixlength, block);
initlength: = O;
while block(.initlength + 1.) < > em do

initlength: = initlength + 1;
end

Sec. 6.2 SEQUENTIAL PROGRAMS AND FILES 155

The following procedure puts the prefix in front of a job

procedure copyprefix;
vat pageno: integer;
begin

for pageno:= 1 to prefixlength - 1 do
begin

readprefix(pageno, block);
writestream(block);

end;
readprefix(prefixlength, block);
blocklength:= initlength;

end

The beginning of the job text will be copied from cards into the last page
of the prefix before it is transmitted to the job process.

The variables used to input text from the card reader are the current
input line and its length (in characters)

vat card: line; cardlength: integer;

The program packs input lines into disk pages and sends them to the
job process

r

I

156 THE JOB STREAM SYSTEM Chap. 6

procedure copycards;
vat blockspace, i: integer;
begin

repeat
readcard;
blockspace: = pagelength - blocklength;
if blockspace < cardlength then
begin

for i:= 1 to blockspace do
block(.blocklength + i. } := card(.i.);

writestream(block);
blocklength := cardlength - blockspace;
for i:= 1 to blocklength do

block(.i.):= card(.blockspace + i.);
end else
begin

for i:= 1 to cardlength do
block(.blocklength + i.):= card(.i.);

blocklength: = blocklength + cardlength;
end

until block(.blocklength.) = em;
writestream(block);
blocklength:= O;

end

After receiving a line from the card process the input process eliminates
trailing blanks from it and terminates it with a NL character.

A job deck is terminated by a card consisting of the character # only.
It is converted into an EM character

Sec. 6.2 SEQUENTIAL PROGRAMS AND FILES 157

procedure readcard ;
begin

readl ine(card) ;
cardlength: = cardl imit (card, blank);
ff card length > 0 then

while card(.cardlength .) = ' ' do
cardlength := cardlength - 1;

if (cardlength = 1) & (card(.1.) = ' # ')
then card(.1 .) := em else
begin

cardlength:= cardlength + 1;
card(.cardlength .) := nl;

end;
end

The p rogram uses a b lank line to e l iminate trailing blanks fast

var blank: line;

p rocedu re ini tblank;
var charno: integer;
begin

for charno := I to l inelength do
blank(.charno .) := ' ' ;

end

where a line is def ined as

cons t l inelength = 132;
t ype line = array (.1. . l inelength.) o f char;

A b o u t 55 characters o f each line are trailing blanks [Har tmann , 1 9 7 5] .
T h e y can be scanned charac te r by charac te r by a simple loop

while (card(.cardlength.) = ' ') & (cardlength > 1) do
cardlength: = c a r d l e n g t h - 1;

But this takes a b o u t 10 per cen t of the processor t ime (10 msec/ l ine) .
This overhead can be r educed by an order o f magn i tude by compar ing

158 THE JOB STREAM SYSTEM Chap. 6

longer strings of input text directly with blanks. The input program tries
to eliminate first 40 blanks at once, then 20, and finally 10.

To be able to access character strings within a line directly, the program
uses an alternative type definition of a line

type headtype = array (.1..2, 1..2, 1..2, 1..10.) of char;
tail type = array (.1..52.) o f char;
image = record head: headtype; taft: tail type end;

The first 80 characters of a line image (the line head) are now accessible as
an array of strings of lengths 40, 20, and 10. An image is scanned as follows

funct ion cardlimit(card, blank: univ image): integer;
vat i, j, k: integer;
begin

ff card.head(.2.) < > blank.head(.2.)
then i:= 2 else i:= 1;

if card.head(.i, 2.) < > blank.head(.i , 2.)
t h e n j:= 2 else j:= 1;

ff card.head(.i, j, 2.) < > blank.head(.i, j, 2.)
then k := 2 else

if card.head(.i, j, 1.) < > blank.head(.i, j, 1.)
then k: = 1 else k := 0;

cardlimit:= (((i - 1) ' 2 + (j - 1)) ' 2 + k)*10;
end

The rest of the input program must still be able to do fast scanning, charac-
ter by character, of the beginning of a line to be able to copy it into a disk
page. The use of the key word univ makes it possible to call the function
card limit with arguments that are declared elsewhere to be of type line (and
not of type image) (Section 3.7)

cardlength:= cardlimit(card, blank)

Job Service

Job service is a Sequential Pascal program that compiles and executes
user jobs. The service program calls seven compiler passes one at a time and
executes the generated code (if it is correct)

Sec. 6.2 SEQUENTIAL PROGRAMS AND FILES 159

begin
initialize;
if ok then callpass(passl);
if ok then callpass(pass2);
if ok then callpass(pass3);
if ok then callpass(pass4);
if ok then callpass(pass5);
if ok then callpass(pass6);
if ok then open(2, job, ok);
if ok then callpass(pass7);
if ok then calljob;
terminate;

end.

The service program can call the following operating system routines
(defined in its own prefix)

read(c)
write(c)
writeint(value, length)
writetext(text)

open(fileno, identifier, found)
close(fileno)
get(fileno, pageno, block)
put(fileno, pageno, block)
length(fileno)

runpass(identifier, param,
lineno, result)

runjob(lineno, result)

Input and ou tpu t of text buffered on
disk as defined in Section 6.1.

Input and ou tpu t of compiler scratch
files as defined in Section 5.2.

Calls a compiler pass with a given identi-
fier and a parameter list. Defines where
and how the pass terminated.

Calls a compiled job and defines where
and how it terminated.

The types of the parameters and results of programs are defined in Chapter 5.
The service program uses the following file identifiers

const t e m p l = ' t emp l '; t emp2 = ' temp2 ';
passl = 'spassl '; pass2 = 'spass2 ';
pass3 = 'spass3 '; pass4 = 'spass4 ';
pass5 = 'spass5 '; pass6 = 'spass6 ';
pass7 = 'spass7 ' ; job = 'job ';

160 THE JOB STREAM SYSTEM Chap. 6

and two variables

var ok: boolean; list: arglist;

One is a boolean defining whether compilation was successful; the other is a
parameter list for the compiler passes.

The compiler uses three parameters: a boolean defining whether com-
pilation was successful, a pointer to a symbol table constructed by one pass
for another, and an integer defining the length of the generated code (if
any).

The service program starts compilation by opening the scratch files and
initializing the compiler parameters

procedure initialize;
begin

open(l , t empl , ok);
if ok then open(2, temp2, ok);
with list(.1.) do
begin tag: = booltype; bool:= false end;
with list(.2.) do
begin tag:= ptr type; ptr: = nfl end;
with list(.3.) do
begin tag:= inttype; int:= 0 end;

end

It then calls the seven passes one at a time using the following procedure

procedure callpass(id: identifier);
vat lineno: integer; result: progresult;
begin

runpass(id, list, lineno, result);
if result < > terminated

then writeerror(id, lineno, result)
else ok: = list(.1.).bool;

end

After a successful compilation the user program is executed

Sec. 6.2 SEQUENTIAL PROGRAMS AND FILES 161

procedure calljob;
vat lineno: integer; result: progresult;
begin

runjob(l ineno, result);
if result < > terminated then

writeerror(job, lineno, result);
end

The service program terminates a job by closing the scratch files

procedure terminate;
begin close(l); close(2) end

If the compiler or user program fails or exceeds the t ime limit of I min
the service program writes a message of the form

spass3: line 1215 stack limit

O r

job: line 58 pointer error

procedure writeerror(id: identifier;
lineno: integer; result: progresult);

begin
write(nl);
writeid(id);
writetext(' : line # ') ;
writeint(l ineno, 4);
write(' ');
writeresult(result);
write(nl);
ok:= (result = terminated);

end;

162 THE JOB STREAM SYSTEM Chap. 6

procedure writeresult(result: progresult);
begin

case result of
terminated:
overflow:
pointererror:
rangeerror:
varianterror:
heaplimit:
stacklimit:
eodelimit:
timelimit:
callerror:

end;
end;

writetext(' terminated #');
writetext('overflow #');
writetext('pointer error#');
writetext('range error#');
writetext('variant error#');
writetext('heap limit #');
writetext('stack limit#');
wntetext('code limit #');
writetext(' t ime limit #');
writetext('system error #')

procedure writeid(id: identifier);
vat charno: integer;
begin

for charno:= 1 to idlength do
if id(.charno.) < > ' ' then

write(id(.charno.));
end;

Job Output

Job output is a Sequential Pascal program that removes the prefix from
user jobs and copies them from the disk to the printer

The output program can
its own prefix)

prefixlength

begin
initprefix; initline;
repeat

skipprefix;
print file;

until false;
end.

call four operating system routines (defined by

Defines the length of the job prefix
file (in disk pages).

Sec. 6.2 SEQUENTIAL PROGRAMS AND FI LES 163

readprefix(pageno, block)

readstream(block)

writeline(text)

Reads a given disk page from the job
prefix file.

Receives a disk page from the job pro-
cess.

Sends a line to the printer process.

The variables used to input text from the disk are the current disk page
and its length (in characters)

var block: page; blocklength: integer;

The compiler adds a line number of 5 characters to each line of the
program text (including the prefix). The prefix (as output by the compiler)
is defined by its length (in disk pages) and the length of its last disk page (in
characters)

vat prefixpages, initlength: integer;

Initially, the output program scans the prefix file (as stored on the
disk) to define its length (as output by the compiler)

164 THE JOB STREAM SYSTEM Chap. 6

procedure initprefix;
vat c: char;

pageno, charno, chars: integer;
begin

chars: = 0;
for pageno:= 1 to prefixlength do
begin

readprefix(pageno, block);
charno:= 0;
repeat

charno: = charno + 1;
c: = block(.charno.);
if c = nl then

chars:= chars + 5;
until (charno = pagelength)

or (c = era);
chars:= chars + charno;

end;
prefixpages: =

(chars + pagelength - 1) div pagelength;
initlength:= (chars - 1) rood pagelength;

end

The following procedure skips the prefix in front of a job

procedure skipprefix;
vat pageno: integer;
begin

for pageno:= 1 to prefixpages do
readstream(block);

blocklength := initlength;
end

The job text begins on the last disk page of the prefix.
A job file is printed as follows

procedure printfile;
vat endfile: boolean;
begin

endfile:= false;
repeat printpage(endfile)
until endfile;

end

Sec. 6.2 SEQUENTIAL PROGRAMS AND FILES 165

A printed page consists of a blank line followed by at most 60 lines of
text

const firstline = 2; lastline = 61;

procedure printpage(var endfile: boolean);
vat lineno: integer; endpage: boolean;
begin

endpage:= false;
for lineno := 1 to firstline - 1 do

printchar(nl);
lineno := firstline - 1;
repeat

lineno:= lineno + 1;
printline(endpage, endfile);

until (lineno = lastline)
or endpage;

printchar(ff);
end

A printed line consists of a left margin of 23 blanks followed by at most
86 characters and terminated by a control character (CR, NL, or FF)

const firstchar = 24; lastchar = 109;

var image: line; controlchar: set of char;

The line image is initialized as follows

procedure initline;
vat charno: integer;
begin

for charno:= 1 to firstchar - 1 do
image(charno):= ' ' "

image(.lastchar + 1.) := nl;
controlchar:= (.cr, nl, ff, em.);

end

166 THE JOB STREAM SYSTEM Chap. 6

and output as shown below

procedure,printline(var endpage, endfile: boolean);
vat charno: integer; c: char;
begin

charno:= f i rs tchar- 1;
repeat

ff blocklength = pagelength t h e n
begin

readstream(block);
blocklength:= 0;

end;
blocklength:= blocklength + 1;
c: = block(.blocklength.);
charno:= charno + 1;
image(.chamo.):= c;

until (c in controlchar)
or (charno = lastchar);

if c = ff then
begin writeline(image); endpage:= true end
else
i f c = em then
begin endpage:= true; endfile:= true end
else

writeline(image);
end

The following procedure outputs a blank line terminated by a NL or
FF character

procedure printchar(c: char);
begin

image(, firstchar.): = c;
writeline(image);

end

6.3 CONCURRENT PROGRAM

Job stream is a Concurrent Pascal program consisting of 24 abstract data
types

Sec. 6.3 CONCURRENTPROGRAM 167

class fifo
monitor resource
monitor typeresource
class typewriter
class terminal
class disk
class diskfile
class disktable
monitor diskcatalog
process loaderprocess
class datafile
monitor pagebuffer
class inputstream
class outputstream
class progfile
monitor progtimer
process clockprocess
monitor linebuffer
process cardprocess
process inputprocess
process jobprocess
process outputprocess
process printerprocess
process initial process

Of these components, 14 are taken from the Solo system (Section 5.3). The
other 10(marked *) are new and will be described in the sequel.

The job stream uses two line buffers (in core store) and two page buffers
(on disk) as shown in Fig. 6.3. The following defines the function and imple-
mentat ion of these buffers.

Page Buffer

A page buffer transmits data pages from one process to another. It is
stored on disk as a data file.

type page buffer =
monitor(typeuse: typeresource; diskuse: resource; catalog: diskcatalog)
A page buffer needs access to a teletype, a disk, and a catalog. Initially,
the buffer is inaccessible (closed).

procedure read(vat block: page)
Receives a page from the buffer. It has no effect if the buffer is closed.

168 THE JOB STREAM SYSTEM Chap. 6

procedure write(block: page)
Sends a page through the buffer. It has no effect if the buffer is closed.

procedure open(id: identifier)
Makes a disk file with a given identifier accessible as a page buffer (if it is
found in the disk catalog). It has no effect if the buffer already has been
opened.

IMPLEMENTATION:

A page buffer is represented by two data structures: a data file on disk
and a fifo that keeps track of the indices of its first and last pages. The
buffer delays receiving and sending processes as long as it is empty and
full, respectively.

type pagebuffer =
monitor(typeuse: typeresource; diskuse: resource;

catalog: diskcatalog);

var opened: boolean;
buffer: datafile; next: fifo;
sender, receiver: queue;

procedure entry read(var block: page);
begin

with buffer, next do
ff opened then
begin

if empty then delay(receiver);
read(departure, block);
continue(sender);

end;
end;

procedure entry write(vat block: page);
begin

with buffer, next do
if opened then
begin

ff full then delay(sender);
write(arrival, block);
continue(receiver);

end;
end;

Sec. 6.3 CONCURRENT PROGRAM 169

procedure entry open(id: identifier);
begin

with buffer do
if not opened then
begin

open(id, opened);
init next(length);

end;
end;

begin
init buffer(typeuse, diskuse, catalog);
opened: = false;

end;

Input Stream

An input stream enables a process to receive text sequences character
by character from another process. Each sequence is terminated by an EM
character.

type inputstrearn = class(buffer: pagebuffer)
An input stream uses a page buffer to transmit one page of characters at a
time from one process to another. Initially, the stream is inaccessible.

procedure read(var c: char)
Gets the next character from the present sequence (if any). After an EM
character the stream becomes inaccessible. Further reads will return EMs
until the stream is made accessible for input of the next sequence.

procedure nex t
Makes the stream accessible for input of the next sequence.

IMPLEMENTATION:

type inputstream =
class(buffer: pagebuffer);

vat text: page; count: integer;
more: boolean;

170 THE JOB STREAM SYSTEM Chap. 6

procedure entry read(vat c: char);
begin

if more then
begin

if count = pagelength then
begin

buffer . read(text) ;
count := 0;

end;
count := count + 1;
c: = text(.count .) ;
more:= (c < > era);

end else
c: = em;

end;

procedure entry next;
begin

more:= true;
buffer . read(text) ;
count := 0;

end;

begin more:= false end;

Output Stream

An output stream enables a process to send tex t sequences character
by character to another process. Each sequence is terminated by an EM
character.

type outputstream = class(buffer: pagebuffer)
An ou tpu t stream uses a page buffer to transmit one page of characters at
a time from one process to another. Initially, the stream is inaccessible.

procedure write(c: char)
Puts the next character into the present sequence. After an EM character
the stream becomes inaccessible. Fur ther writes have no effect until the
stream is made accessible again for ou tpu t of the next sequence.

procedure next
Makes the stream accessible for ou tpu t of the next sequence.

Sec. 6.3 CONCURRENT PROGRAM 171

IMPLEMENTATION:

type outputstream =
class(buffer: pagebuffer);

var text: page; count: integer;
more: boolean;

procedure entry write(c: char);
begin

if more then
begin

count: = count + 1;
text(.count.) := c;
if (count = pagelength) or (c = em) then
begin

buffer, write (text);
count:= 0;
more:= (c < > em)

end;
end;

end;

procedure entry next;
begin more:= true; count:= 0 end;

begin more:= false end;

Line Buffer

A line buffer has the same function as in the Solo system (Section 5.3),
but is implemented differently in the job stream system.

IMPLEMENTATION:

The buffer is represented by an array of lines and a fifo that keeps
track of the indices of its first and last lines.

type linebuffer =
monitor

172 THE JOB STREAM SYSTEM Chap. 6

const maxline = 20;
type lines = array (.1..maxline.) o f line;

vat buffer: lines; next: fifo;
sender, receiver: queue;

procedure entry read(var text: line);
begin

with next do
begin

if empty then delay(receiver);
text: = buffer(.departure.);
continue(sender);

end;
end;

procedure entry write(text: line);
begin

with next do
begin

if full then delay(sender);
buffer(.arrival.) := text;
continue(receiver);

end;
end;

begin init next(maxline) end;

Preemption

A user job is preempted if its compilation and execution time exceeds a
certain limit. In the Solo system, which only serves a single user at a time, a
job is preempted simply by restarting the whole operating system (Sec-
tion 5.3).

The job stream system, however, is serving several users at the same
time by output t ing one job while another job is being compiled and a third
one is being input. So one must take care that preemption of one job does
not interrupt the input and ou tpu t of other jobs; otherwise, data stored
temporarily in core store could be lost. Figure 6.4 shows how this is done.

At the beginning of a job the job process calls a moni tor (called a
program timer) and defines its time limit. The job process also calls the
program timer before and after executing a compiler pass or user program.

Sec. 6.3 CONCURRENT PROGRAM 173

PROGTIMER

CLOCK JOB
PROCESS PROCESS

Fig. 6.4 Program preemption

A clock process calls the program timer every second to check whether
the job process is executing a program that should be preempted. In that
case, the program timer forces the program to terminate and return to the
point where it was called by the job process.

Program Timer

A program timer enables a job process to limit the real time during
which a user job is being compiled and executed. (Notice that it limits the
real time of the service phase and not the processor time. This is accurate
enough as long as the rest of the operating system activities consume a
reasonably small and constant fraction of processor time.)

type progtimer = monitor
Initially the job process is not executing a preemptible program.

procedure l imit(maxtime: integer)
Defines the time limit of a job in seconds.

procedure tick
Assumes that 1 sec has passed and checks whether the job process is execut-
ing a program that should be preempted.

procedure enterprog
Marks the beginning of a preemptible program executed as part of the pres-
ent job.

procedure endprog
Marks the end of a preemptible program executed as part of the present
job.

174 THE JOB STREAM SYSTEM Chap. 6

IMPLEMENTATION:

The identity of the job process is defined by the standard function

attribute(caller)

type progtimer =
monitor

vat who, timeleft: integer; running: boolean;

procedure entry limit(maxtime: integer);
begin

who: = attribute(caller);
timeleft: = maxtime;

end;

procedure entry tick;
begin

timeleft: = timeleft - 1;
ff (timeleft <= 0) & running then
begin

stop(who, timelimit);
running: = false;

end;
end;

procedure entry enterprog;
begin running:= true end;

procedure entry endprog;
begin running:-- false; start end;

begin timeleft: = 0; running: = false end;

The standard procedure

stop(who, timelimit)

causes the virtual machine to terminate the sequential program executed by
the job process with the result timelimit. If stop is called while a sequential

Sec. 6.3 CONCURRENT PROGRAM 175

program is executing an operating system routine then preemption is de-
layed until the routine call has been completed.

The standard procedure

start

prevents preemption of the next sequential program to be called by the
job process (until another s top operation is executed).

These standard procedures are defined precisely in the Concurrent
Pascal report (Chapter 8).

Clock Process

A clock process calls a program timer every second to check whether a
sequential program should be preempted.

type clockprocess = process(timer: progtimer)
A clock process must have access to a program timer.

IMPLEMENTATION:

The standard procedure

wait

delays the clock process until the next second signal is produced by the
machine.

type clockprocess =
process(timer: progtimer);

begin
cycle

wait; timer.tick;
end;

end;

Input Process

An input process executes a sequential program job input which pro-
duces data for a job process.

176 THE JOB STREAM SYSTEM Chap. 6

type inputprocess =
process(typeuse: typeresource; disleuse: resource;

catalog: diskcatalog; inbuffer: linebuffer;
outbuffer: pagebuffer);

"program data space = " ÷ 1000
An input process needs access to a teletype, a disk, and a catalog. It is con-
nected to a card reader by a line buffer and to a job process by a page
buffer.

It uses a data space of 1000 bytes for the job input program and a code
space of 2000 bytes.

IMPLEMENTATION:

Initially, the process opens the job prefix file and calls the job input
program.

type inputprocess =
process(typeuse: typeresource; diskuse: resource;

catalog: diskcatalog; inbuffer: linebuffer;
outbuffer: pagebuffer);

"program data space = " + 1000

vat operator: terminal; prefix: datafile;

code: progfile "(small)";

program driver(store: progstore);
entry prefixlength, readprefix,

readline, writestream;

function entry prefixlength: integer;
begin prefixlength: = prefix.length end;

procedure entry readprefix(pageno: integer;
var block: page);

begin prefix.read(pageno, block) end;

procedure entry readline(var text: line);
begin inbuffer.read(text) end;

procedure entry writestream (vat block: page);
begin outbuffer.write(block) end;

Sec. 6.3 CONCURRENT PROGRAM 177

procedure initialize;
var found: boolean; state: progstate;
begin

init operator(typeuse),
prefix(typeuse, diskuse, catalog),
code(typeuse, diskuse, catalog);

prefix.open(jobprefix, found);
code.open(jobinput , state);
if state = ready then driver(code.store);
operator.write(' job input: (:10:) ' ,

' terminated (: 10:)');
end;

begin initialize end;

Job Process

A job process executes a sequential program job service which in turn
compiles and executes user programs.

type jo bprocess =
process(typeuse: typeresource; diskuse: resource;

catalog: diskcatalog; inbuffer, outbuffer: pagebuffer;
timer: progtimer) ;

"program data space = "" + 16000
A job process needs access to a teletype, a disk, and a catalog. It is con-
nected to an input and an ou tpu t process by two page buffers. It uses a
program timer to preempt user jobs that exceed their time limit.

It uses a data space of 16000 bytes and a code space of 20000 bytes
for Sequential Pascal programs.

IMPLEMENTATION:

A user job is processed as follows: First, its input and ou tpu t sequences
are made accessible. (This delays the job process until input data are avail-
able.) Then the time limit of the job is set to 60 sec and the job service pro-
gram is called.

The job service program compiles and executes the user program before
returning to the job process. (If the user program fails to terminate the
program timer stops it.)

Finally, the job process skips the rest of the job input data (if any) and
completes its ou tpu t by an EM character (unless that has already been done).
The job process is now ready to process the next job.

178 THE JOB STREAM SYSTEM Chap. 6

Notice the use o f dif ferent program declarations and prefixes to give
different access rights to different sequential programs executed by the same
process (in this case, the job service program, the compiler passes, and the
user programs).

Notice also that compiler passes and user programs are made preempti-
ble by calling the program timer before and after their execution. The job
service program, however, is not preemptible since it must be able to output
a termination message to the user.

type jobprocess =
process(typeuse: typeresource; diskuse: resource;

catalog: diskcatalog; inbuffer, outbuffer:
pagebuffer; timer: progtimer);

"program data space = " + 16000

const maxfile = 2;
type file = 1..maxfile;

var instream: inputstream; outstream: outputstream;

files: array (.file.) of datafile;

code: progfile "(large)";

digits, sign, numeric: set of char;
mininteger: integer;

program pascal(store: progstore);
entry read, write, writeint, writetext,

open, close, get, put, length,
runpass, runjob;

program pass(vat param: arglist; store: progstore);
entry read, write, open, close, get, put, length,

mark, release;

program user(store: progstore);
entry read, write, readint, writeint, writetext;

procedure ent ry read(vat c: char);
begin instream.read(c) end;

Sec. 6.3 CONCURRENT PROGRAM

p r ocedu re en t ry wri te(c : char) ;
begin ou t s t r eam.wr i t e (c) end;

p rocedu re en t ry readin t (var value: integer);
var posit ive, overf low: boo lean ;

c: char; digit: integer;
begin

with ins t ream do
begin

r epea t read(c) unt i l c in numer ic ;
if c in sign t hen
begin posit ive: = (c = '+'); read (c) end
else posit ive := t rue ;
overf low: = false; value: = O;
while no t over f low & (c in digits) do
begin

digit: = ord(c) - ord('O') ;
if value < (minin teger + digit) div 10

t hen overf low: = t rue
else value: = lO*value - digit;

read(c) ;
end;
while c in digits do read(c) ;
if posi t ive t h e n

if value = min in teger t hen overf low: = t rue
else value: = - value;

end;
if over f low then s top(a t t r ibu te(ca l le r) , rangeerror) ;

end;

179

180 THE JOB STREAM SYSTEM

procedure entry writeint(value, length: integer);
var number: array (.1..6.) of char;

digits, remainder, i: integer;
begin

with outstream do
begin

remainder:= value; digits:= O;
repeat

digits:= digits + 1;
number(.digits.) :=

chr(abs(remainder rood 10) + ord('O'));
remainder: = remainder div 10;

until remainder = O;
for i:= 1 to length - digits - 1 do

write(' ');
if value < 0 then write('- ') else write(' ');
for i: = digits downto 1 do

write(number(J.)) ;
end;

end;

procedure ent ry writetext(text: line);
vat charno: integer; c: char;
begin

with outstream do
begin

charno: = 1; c := text(. 1.);
while (c < > '# ') & (charno < linelength) do
begin

write(c); charno: = charno + 1;
c: = text(.charno.);

end;
end;

end;

procedure ent ry open(fileno: file; id: identifier;
vat found: boolean);

begin files(.fileno.).open(id, found) end;

procedure entry close(fileno: file);
begin files(.fileno.).close end;

Chap. 6

Sec. 6.3 CONCURRENTPROGRAM

procedure entry get(fileno: file; pageno: integer;
vat block: page);

begin files(.fileno.).read(pageno, block) end;

procedure entry put(fileno: file; pageno: integer;
vat block: page);

begin files(.fileno.).write(pageno, block) end;

function entry length(fileno: file): integer;
begin length: = files(.fileno.).length end;

procedure entry mark(vat top: integer);
begin top: = attribute(heaptop) end;

procedure entry release(top: integer);
begin setheap(top) end;

procedure entry runpass(id: identifier; vat param: arglist;
vat line, result: univ integer);

const terminated = O;
vat state: progstate; heapaddr: integer;
begin

with code, timer do
begin

open(id, state);
enterprog;
heapaddr:= attribute(heaptop);
pass(param, store);
line:= attribute(progline);
result: = attribute(progresult);
if result <> terminated then setheap(heapaddr);
endprog;
open(jobservice, state);

end;
end;

181

182 THE JOB STREAM SYSTEM Chap. 6

procedure entry runjob(var line, result: univ integer);
vat state: progstate; heapaddr: integer;
begin

with code, timer do
begin

open(job, state);
enterprog;
heapaddr:= attribute(heaptop);
user(store);
line := attribute(progline);
result:= attribute(progresult);
setheap (heapaddr);
endprog;
open(jobservice, state);

end;
end;

procedure nextjob;
const maxtime = 60 "seconds";
vat state: progstate; heapaddr: integer; c: char;
begin

with code, timer do
begin

instream.next; outstream.next;
limit(maxtime);
open(jobservice, state);
heapaddr: = attribute(heaptop);
pascal(store);
setheap(heapaddr);
repeat instream.read(c) until c = em;
with outstream do
begin write(nl); write(em) end;

end;
end;

Sec. 6.3 CONCURRENTPROGRAM 183

procedure initialize;
vat f: file;
begin

init instream(inbuffer), outstream(outbuffer);
for f:= 1 to maxfile do

init files(.f.)(typeuse, diskuse, catalog);
init code(typeuse, diskuse, catalog);
digits:= (.'0', '1', '2', '3', '4',

• '5' , '6' , '7' , '8' , '9 ' .) ;
sign:= (.'+', '- ' .);
numeric:= digits or sign or (.em.);
mininteger:= -32767 - 1;

end;

begin
initialize;
cycle nextjob end;

end;

Output Process

An output process executes a sequential program job output that con-
sumes data for a job process.

type outputprocess =
process(typeuse: typeresource; diskuse: resource;

catalog: diskcatalog; in buffer: pagebuffer;
outbuffer: linebuffer);

"program data space = " +1000
An output process needs access to a teletype, a disk, and a catalog. It is con-

• nected to a job process by a page buffer and to a line printer by a line buffer.
It uses a data space of 1000 bytes for the job output program and a

code space of 2000 bytes.

IMPLEMENTATION:

Initially, the process opens
program.

the job prefix file and calls the job output

184 THE JOB STREAM SYSTEM Chap. 6

type outputprocess =
process(typeuse: typeresource; diskuse: resource;

catalog: diskcatalog; inbuffer: pagebuffer;
outbuffer: linebuffer);

"program data space = "+1000

vat operator: terminal; prefix: datafile;

code: progfile "(small)";

program driver(store: progstore);
entry prefixlength, readprefix,

readstream, writeline;

function entry prefixlength: integer;
begin prefixlength:= prefix.length end;

procedure entry readprefix(pageno: integer;
vat block: page);

begin prefix.read(pageno, block) end;

procedure entry readstream(var block: page);
begin inbuffer.read(block) end;

procedure entry writeline(text: line);
begin outbuffer.write(text) end;

procedure initialize;
var found: boolean; state: progstate;
begin

init operator(typeuse),
prefix(typeuse, diskuse, catalog),
code(typeuse, diskuse, catalog);

prefix.open(jobprefix, found);
code.open(joboutput, state);
if state = ready then driver(code.store);
operator, write('j ob output: (: 10:) ',

'terminated (: 10:)');
end;

begin initialize end;

Sec. 6.3 CONCURRENT PROGRAM 185

Initial Process

The initial process checks whether the disk contains all the job stream
files. It then initializes the other processes and monitors defining their
access rights to one another.

IMPLEMENTATION:

v a r diskuse: resource;
typeuse: typeresource;
operator: terminal;
catalog: diskcatalog;
watchdog: loaderprocess;
inbuffer, outbuffer: pagebuffer;
timer: progtimer;
clock: clockprocess;
cardbuffer, printerbuffer: linebuffer;
reader: cardprocess;
producer: inputprocess;
master: jobprocess;
consumer: outputprocess;
writer: printerprocess;

function exists(file: identifier;
kind: filekind): boolean;

vat attr: fileattr; found: boolean;
begin

catalog.lookup(file, attr, found);
exists: = found & (attr.kind = kind);

end;

186 THE JOB STREAM SYSTEM

begin
init diskuse, typeuse, operator(typeuse),

catalog(typeuse, diskuse, cataddr),
watchdog(diskuse);

if exists(jobprefix, ascii) &
exlsts(jobinput, seqcode) &
exists(jobservice, seqcode) &
exlsts(joboutput, seqcode) &
exists(job, seqcode) &
exists(jobbufferl, scratch) &
exists(jobbuffer2, scratch) &
exists(tempi, scratch) &
exists(temp2, scratch) then

begin
init inbuffer(typeuse, diskuse, catalog),

outbuffer(typeuse, diskuse, catalog);
inbuffer.open(jobbufferl);
outbuffer.open(jobbuffer2);
init timer, clock(timer),

cardbuffer, printerbuffer,
reader(typeuse, cardbuffer),
producer(typeuse, diskuse, catalog,

cardbuffer, inbuffer),
master(typeuse, diskuse, catalog,

inbuffer, outbuffer, timer),
consumer(typeuse, diskuse, catalog,

outbuffer, printerbuffer),
writer(typeuse, printerbuffer);

end else
operator, write ('job stream: (: 10:) ',

'files missing(: 10:)');
end.

Chap. 6

6.4 FINAL REMARKS

The job stream system consists of 1800 lines of program text

Program Lines K Words

job stream 1360 4
job input 130 1
job service 160 1
job output 150 1

1800 7

Sec. 6.5 LIST OF JOB STREAM COMPONENTS 187

700 lines of the job stream system were taken directly from the Solo system.
So the total programming effort was only 1100 lines.

The job stream system requires 38 K words of core store for programs
and data

kernel 4 K words
operating system 16 K words
user program 18 K words

core store 38 K words

I designed, programmed, and tested the job stream system in 10 days.
It was tested in the following steps

(1) The job input, service, and output programs were tested under
the Solo system (using a slight modification of the interface routines).

(2) The job stream program was derived from the Solo program (using
page buffers in the core store) and tested by compiling small programs.

(3)
program.

(4)

(5)

Job preemption was turned on and tested on an endless user

Page buffers were moved from the core store to the disk.

Line buffers were changed from a single to several line slots.

In summary, the Solo and job stream systems have shown that it is possible
to design operating system components that can be used in different operat-
ing systems. Testing is, of course, simplified considerably when one oper-
ating system is derived from another by gradual replacement of program
components.

6.5 LIST OF JOB STREAM COMPONENTS

Arglist type, 81
Attrindex type, 123

Cardprocess, 136
Clockprocess, 175

Datafile class, 118
Diskcatalog monitor, 117
Disk class, 111
Diskfile class, 113
Disktable class, 116

Fifo class, 102
Fileattr type, 115
Filekind type, 115

Identifier type, 115
Image type, 158
Initial process, 185
Inputprocess, 175
Inputstream class, 169

Jobinput prefix, 154

188 THE JOB STREAM SYSTEM Chap. 6

Jobinput program, 153
Joboutput prefix, 162
Joboutput program, 162
Job prefix, 149
Jobprocess, 177
Jobservice prefix, 159
Jobservice program, 158

Linebuffer monitor, 171
Line type, 149
Loaderprocess, 139

Outputprocess, 183
Outputstream class, 170

Pagebuffer monitor, 167
Page type, 102
Printerprocess, 138
Progfile class, 121
Progresult type, 87
Progstate type, 121
Progstore type, 121
Progtimer monitor, 173

Resource monitor, 103

Terminal class, 108
Typeresource monitor, 105
Typewriter class, 106

7
A REAL-TIME SCHEDULER

This chapter describes a simple real-time scheduler for process control
applications in which a fixed number of concurrent tasks are carried out
periodically with frequencies chosen by a human operator.

The real-time scheduler is inspired by an existing process control system
[Brinch Hansen, 1967]. It is written in Concurrent Pascal.

The design of any nontrivial program begins with an a t tempt to define
the purpose of the program and its gross structure. It is then written as a
sequence of program components which can be tested systematically, one
at a time. This is a description of each of these development phases: design,
programming, and testing.

7.1 PURPOSE AND DESIGN

A creative programmer will try to use a particular application as an
inspiration to look for program structures that can be used in a class of simi-
lar applications. And that is what we will try to do here.

189

190 A REAL-TIME SCHEDULER Chap. 7

A Process Control Application

The application that inspired this concurrent program was a small
process control system built by Peter Kraft and myself in 1967 for an
ammonia nitrate plant.

The plant is operated manually under supervision of an RC4000 com-
puter with 4 K words of core store (Fig. 7.1). The computer uses an analog
to digital converter to measure more than 500 temperatures, pressures, and
flow rates. About 150 digital inputs register single pulses from kilowatt-hour
meters and bag filling devices as well as the state of alarm contacts in the
plant. A digital output register controls a light panel that shows the operator
in which part of the plant alarm conditions exist.

Regular alarm and data logging reports are printed on two typewriters.
The operator uses a third typewriter to communicate with the computer.
During normal operation, digital pulses are input every second and accumu-
lated in a table. Analog flow values are measured every 5 min and accu-
mulated in another table.

The state of all alarm contacts is examined every 5 min also. At the
same time analog values are scanned and checked against alarm limits.

Every hour, a log report is printed as a snapshot of how the plant
operates. Every 8 hours another report is printed showing the consump-
tion of electricity and production of ammonia nitrate during this period.
It also includes the total flow of materials, such as natural gas, steam, am-
monia, and nitric acid.

When a section of the plant is being started up after repair the operator
may want some of these tasks carried out more frequently. So the com-
puter system makes it possible to specify for each task when it should be
started and how often it should be repeated.

DIGITAL INPUT

o
I
I
I
I

o

o
I
I
, - - C I
I
o

ANALOG INPUT

COMPUTER

o ½ I D IGITAL OUTPUT
I
o

LOG PRINTER

ALARM PRINTER

OPERATOR CONSOLE

PAPER TAPE READER

PAPER TAPE PUNCH

Fig. 7.1 Process control application

Sec. 7.1 PURPOSE AND DESIGN 191

Task Scheduling

From this specific description of a single application we can now start
looking for a more general characterization of the real-time scheduling
required.

We have a single computer that must perform a number of more or less
independent tasks, each having its own real-time requirements. The tasks are
executed cyclically with periods chosen by an operator. This means that
one task cannot make assumptions about the relative speed of other tasks.
So conceptually we must regard them as concurrent processes coordinated
by a real-time scheduler (Fig. 7.2).

Now the task processes will clearly be different in each application, but
we can try to write a real-time scheduler that can be used in many applica-
tions of this kind. This scheduler should enable the operator to do three
things

(1) Tell the system what time it is

t ime(16:27:18)

in hours, minutes, and seconds.

(2) Say when a task should be executed for the first time

start(log, 18:35:00)

and how often it should be repeated

period(log, 1:00:00)

OPERATOR CONSOLE

REAL-TIME SCHEDULER

TASK PROCESSES

Fig. 7.2 Task scheduling

192 A REAL-TIME SCHEDULER Chap. 7

(3) Stop further execution of a task

stop(log)

The scheduler must know the names and real-time requirements of the
tasks, but need not know what they do.

Program Structure

Having extracted the essence of the problem, we must then break the
real-time scheduler down into components that are so small that they can
be programmed and tested separately.

How does one invent program structure? I do it by drawing pictures
of it from different viewpoints over and over again until a simple and con-
vincing pattern emerges. Perhaps, there are more systematic ways of invent-
ing s t r u c t u r e - I don ' t know. But I do recognize a good program when I find
one.

A good program can be read like a book, from the beginning to the end
without turning pages back and forth looking elsewhere for an explanation
of what is going on. Its parts are no more than a page long so they can be
comprehended at a glance. And each part only interacts with a very small
number of other parts. It can therefore be studied in isolation from the rest
of the system.

To discover a program structure that comes close to this ideal, I ask
myself three questions

(1) Which activities must take place simultaneously to handle this
application?

(2) What are the major data structures needed to solve the problem
on a computer?

(3) Can these data structures be split into smaller ones by introducing
the known requirements one at a time?

The real-time system must be able to do the following things at the
same time

keep track of the time
talk to the operator
execute tasks

So we can start by recognizing three kinds of program components: a c lock
process , an o p e r a t o r process , and some task processes (Fig. 7.3).

Sec. 7.1 PURPOSE AND DESIGN 193

Q Q Q
TASK C LOCK OPE flATO fl

PROCESS P R O C E S S PROCESS

Fig. 7.3 Concurrent processes

Whenever a process uses a peripheral device or cooperates with another
process (by exchanging data or timing signals) we need a data structure to
control this interaction. It is fairly easy to identify the following kinds of
interactions in the real-time system

(1) The operator process needs access to a console to be able to input
commands.

(2) The operator process needs access to a time schedule of all tasks,
so that it can change it. The tasks must use this table to await their turn.
And the clock process must examine it regularly (say, every second) to
resume tasks that are due.

We can therefore extend the picture with a console class and a time
schedule moni tor (Fig. 7.4). This kind of picture shows which data struc-
tures can be used by each process. It is an access graph (Section 2.5).

We must now try to find simpler aspects of the problems solved by
these main data structures. Let us take the operator 's console first. At the
lowest level of programming in Concurrent Pascal this dev ice i s seen as a
combinat ion of a typewriter that can input and ou tpu t one character at a
t ime and a bell key used by the operator when he needs the a t tent ion of
the operator process. To make the typewri ter a little easier to use at higher
levels of programming, we will add a terminal componen t on top of the
typewri ter component . It can ou tpu t textstrings and integers as well as
single characters (Fig. 7.5).

So the operator process waits for the operator to push the bell key,

TIME SCHEDULE CONSOLE

TASK CLOCK OPERATOR
PROCESS P R O C E S S PROCESS

Fig. 7.4 Major data structures

194 A REAL-TIME SCHEDULER Chap. 7

Q TYPEWRITER

~ TERMINAL

OPERATOR
PROCESS

BELL KEY

Fig. 7.5 Console components

inputs a command from the terminal, executes it, and responds with a
short message on the terminal. It then waits for the bell again and repeats
the cycle.

At this point it seems useful to make it possible for several processes
to share a single console. So we will add a resource moni tor that process-
es must call to get exclusive access to the console. Waiting processes will be
served in their order of requesting console access. (But this policy will
be hidden inside the resource componen t and will be easy to modify .)

Figure 7.6 shows this arrangement that gives each process the illusion of
having its own private console. This is a useful programming technique
for implementing virtual peripherals by means of a single, shared device.

Breaking the time schedule down into smaller parts is a little harder.
First, we may notice that task processes only need to know that they will
be asked to go through a single processing cycle every now and then. But
there is no reason why they should worry about how often they are exe-
cuted. (The operator may indeed change that.)

This insight makes it natural to introduce a simple task queue in which
a task process can await its turn until it is signalled by another part of the
scheduler (Fig. 7.7). In implementing the task queue, we will assume that
an a t tempt to resume a task process before it has completed its last turn
will have no effect. (But that too could be changed wi thout influencing the
rest of the program.) What we are trying to do is to hide a small number of
design decisions within each program component .

Somewhere in the system there is a counter representing the present
time. This counter is incremented by one every second thanks to the clock
process. The time schedule must know what time it is when it decides to
resume a task process. The task processes, however, may also need to know
what time it is and print it on the various reports produced by them. The

Sec. 7.1 PURPOSE AND DESIGN 195

(

(

(

• • •

• • •

TYPEWRITER

TERMINAL

RESOURCE

PROCESSES

Fig. 7.6 Shared console

QUEUE

TIME TABLE

TASK fat PROCESS ~ --

CLOCK OPERATOR
PROCESS PROCESS

Fig. 7.7 Scheduler components

TASK SET

most practical thing then is to separate a clock componen t defining what
t ime it is from the components that use it. These other components are:
The operator process that initializes the clock, the clock process that up-
dates it, and the tasks which print it on their reports. A t imetable defines
the start times and periods of all tasks.

Finally, we may realize that although the operator prefers to identify
task processes by names, it may be more convenient elsewhere to represent
them by numbers that can be used to look up the t imetable and the task
queue. This means that the operator process needs a task set to convert
names to numbers.

Let me summarize what this system does:
A task process is a cyclical process that waits in the task queue until

196 A REAL-TIME SCHEDULER Chap. 7

C) C
TASK TASK

QUEUE RESOURCE SET

TASK PROCESS

D TYPEWRITER

TERMINAL

BELL KEY

TIMETABLE

)
CLOCK PROCESS OPERATOR PROCESS

Fig. 7.8 Program structure

it is resumed by a signal f rom the timetable. It then performs its task and
waits again. (Although Fig. 7.7 only shows one task process there will be
several of them in practice. But they will all use the same task queue.)

The clock process is a cyclical process that waits for 1 sec, updates
the clock, and examines the t imetable looking for tasks waiting in t h e
queue to be resumed.

The operator process is a cyclical process that waits for a bell key signal,
inputs a command from the terminal, and executes it. The command either
sets the clock or changes the time schedule of a task. In the latter case, the
operator process looks up its name in the task set to see if it exists and
what number it has in the t imetable and task queue.

This completes the rough definit ion of program structure. For demon-
stration purposes, a task process will just print its name and the present
t ime on the console each t ime it runs. A task therefore needs access both
to the clock and the task set.

If we put all program components and their access rights together we get
a rather confusing picture (Fig. 7.8). Evidently one should no t insist on
seeing the whole t ruth in one picture. Pictures (like program components)
are useful only if they show a small part of a hierarchical system.

Sec. 7.2 PROGRAMMING 197

7,2 PROGRAMMING

So far we have only outlined the purpose Of the abstract data structures
in a suggestive manner. We will now go through them one at a time and de-
fine first what operations one can perform on each data structure and then
program them in detail.

Starting with the requirements of the application itself, we outlined a
program structure from the top down (by first identifying the major data
structures and then splitting them into minor ones). We will now work from
the bot tom up to write an executable program for a computer (starting with
those program components that do not depend on others).

I nput /Output Types

The data types used in elementary input /output operations define the
identifiers of peripheral devices, input /output operations, and their results
as well as the data types to be transferred (text lines).

type iodevice = (typedevice);

type iooperation = (input, output, move, control);

type ioresult = (complete, intervention, transmission,
failure);

type ioparam = record
operation: iooperation;
status: ioresult;
arg: integer

end;

const bel = '(:7:) ' ; nl = '(:10:) ' ;

const linelength = 72;
type line = array (.1..linelength.) of char;

Similar types are used in the Solo operat ingsystem (Chapter 5). The details
of input /output operations are explained in Chapters 4 and 8 but are not
essential for understanding the following.

198 A REAL-TIME SCHEDULER Chap. 7

Typewriter

A typewriter can transfer a single character to or from a typewriter
device. It does not give the calling process exclusive access to the device.

type typewriter = class

procedure write(c: char)
Writes a character on the typewriter.

procedure read(var c: char)
Reads a character from the typewriter.

IMPLEMENTATION:

type typewriter =
class

procedure entry write(c: char);
var param: ioparam; x: char;
begin

x: = c; param.operation:= output;
io(x, param, typedevice);

end;

procedure entry read(var c: char);
vat param: ioparam;
begin

param.operation: = input;
io(c, param, typedevice);

end;

begin end;

Terminal

A terminal can write characters, text strings, and unsigned integers
on a typewriter and read characters from it. It does not give the calling
process exclusive access to the device.

Sec. 7.2 PROGRAMMING 199

type terminal = class

procedure write(c: char)
Writes a character on the typewriter.

procedure wri te rex t(tex t: line)
Writes a text string (terminated by the character #) on the typewriter. The
terminating character is not output.

procedure writeint(int: univ integer)
Writes an unsigned integer on the typewriter. (The integer is of universal
type to make it possible during testing to ou tpu t boolean values, false and
true, as 0 and 1.)

procedure read(vat c: char)
Reads a character from the typewriter.

IMPLEMENTATION:

type terminal =
class

var device: typewriter;

procedure entry write(c: char);
begin device.write(c) end;

procedure entry wri tetext(text: line);
var i: integer; c: char;
begin

i:= 1; c: = text(.1.);
w h i l e c < > '# ' d o
begin

device.write(c);
i: = i + 1;
c:= text(.i.);

end;
end;

200 A REAL-TIME SCHEDULER Chap. 7

procedure ent ry writeint(int: univ integer);
var digits: array (.1..6.) of char;

rem, length: integer;
begin

rem:= int; length: = 0;
repeat

length := length + 1;
digits(.length.) := chr(rem rood 10 + ord('0'));
rem:= rem div 10;

until rem = 0;
for length: = length downto 1 do

device, write (digits(. length.));
end;

procedure ent ry read(vat c: char);
begin device.read(c) end;

begin init device end;

Bell Key

A bell key enables a process to wait until the operator types a BEL
character on the typewriter.

t ype be l lkey = class

p rocedure awai t
Delays the calling process until the BEL character is pushed.

IMPLEMENTATION:

type bellkey =
class

var param: ioparam;

procedure entry await;
begin io(param, param, typedevice) end;

begin param.operation: = control end;

Fifo Queue

I

A fifo keeps track of the length and the head and tail indices of an array
used as a first-in, first-out queue (but does not contain the queue elements
themselves).

The fifo queue was also used in the Solo system (see Section 5.3). It
is used to implement a resource scheduler.

R esou rce

A resource gives processes exclusive access to a computer resource (but
does not perform any operations on the resource itself).

The resource component was taken from the Solo system (Section 5.3)
and used with a somewhat larger number of processes

const processcount = 10;
type processindex = 1..processcount;

processqueue = array (.processindex.) of queue;

Task Queue

A task queue enables task processes to preempt themselves until re-
sumed again. An a t tempt to resume a task process when it is not waiting
in the task queue has no effect.

type taskqueue = monitor
Initially, the task queue is empty.

procedure preempt
Delays the calling process until it is resumed again.

procedure resume(task: processindex)
Continues a given task process if it is waiting in the queue.

IMPLEMENTATION:

Processes are identified by unique integers 1, 2, 3 assigned by the
virtual machine. A standard function

attribute(caller)

Sec. 7.2 PROGRAMMING 201

202 A REAL-TIME SCHEDULER Chap. 7

defines the index of the calling process. So task processes need not be
aware of their indices.

const caller = 0;

type taskqueue =
monitor

vat waiting: processqueue;

procedure entry preempt;
begin delay(waiting(.attribute(caller).)) end;

procedure entry resume(task: processindex);
begin continue(waiting(.task.)) end;

begin end;

Task Set

A task set associates the names of task processes with their process
indices.

type taskset = monitor
Initially, the task set is empty.

procedure include(id: identifier; task: processindex)
Includes a task with a given identifier and process index in the set.

function member(id: identifier): boolean
Defines whether the set includes a task with a given identifier.

function task(id: identifier): processindex
Defines the process index of a task with a given identifier. (Undefined if
the task is not in the set.)

procedure me(var id: identifier)
Defines the identifier of the calling process. (Undefined if that process is
not in the set).

Sec. 7.2 PROGRAMMING 203

IMPLEMENTATION:

The task set is represented by an array of identifiers that is looked up
by means of the corresponding process indices.

const idlength = 12;
type identifier = array (.1..idlength.) of char;

type taskset =
moni tor

vat table: array (.processindex.) of identifier;

procedure initialize;
vat task: processindex;
begin

for task:= 1 to processcount do
table(.task.) := ' "

end;

function index(id: identifier): processindex;
var i, j: processindex;
begin

i:= 1; j := processcount;
whi le i < j do

if table(.i.) = id then j := i
else i : - - i + 1 ;

index := i;
end;

procedure entry include(id: identifier; task: processindex);
begin table(.task.):= id end;

function entry member(id: identifier): boolean;
begin member: = (table(.index(id).) = id) end;

function entry task(id: identifier): processindex;
begin task: = index(id) end;

procedure entry me(var id: identifier);
begin id := table(.attribute(caller).) end;

begin initialize end;

204 A REAL-TIME SCHEDULER Chap. 7

Clock

A clock keeps track of real-time.

type clock -- moni tor
Initially, the time is zero (midnight).

function value: real
Defines the present value of time (in seconds elapsed since midnight).

procedure correct(time: real)
Sets the time to a given value.

procedure tick
Increments time by 1 sec (modulo 24 hours).

IMPLEMENTATION:

Integers on the given machine are not large enough to represent the
number of seconds in 24 hours, so time is represented by real values.

const onemin = 60.0 "seconds";
onehour = 3600.0 "seconds";
halfday = 43200.0 "seconds";
oneday = 86400.0 "seconds";

type Clock =
monitor

vat seconds: real;

funct ion entry value: real;
begin value:= seconds end;

procedure entry correct(time: real);
begin seconds: = time end;

procedure entry tick;
begin

seconds: = seconds + 1.0;
if seconds >= oneday then

seconds: = seconds - oneday;
end;

begin seconds:= 0.0 end;

Sec. 7.2 PROGRAMMING 205

Task Process

A task process performs its task every time it is resumed by the real-
time scheduler.

For demonstration purposes, at most three processes should be used.
Each task process writes its name and the current time in a separate column
on the operator's console when it runs. These task processes can be replaced
by others in particular applications.

type taskprocess =
process(typeuse : resource; waiting: taskqueue;

tasklist: taskset; watch: clock)
A task process needs access to a typewriter resource, a task queue, a task
set, and a clock.

IMPLEMENTATION:

type taskprocess =
process(typeuse: resource; waiting: taskqueue;

tasklist: taskset; watch: clock);

vat operator: terminal; id: identifier;

procedure writeid(id: identifier);
vat i: integer;
begin

with tasklist, operator do
begin

for i:= 1 to (task(id) - 2)*24 do write(' ');
for i: = 1 to idlength do write(id(.i.));
write(' '); write(bel);

end;
end;

206 A REAL-TIME SCHEDULER Chap. 7

procedure writetime(time: real);
var hour, min, sec: integer; rem: real;
begin

hour:-- t runc(t ime/onehour) ;
rem:= time - conv(hour) * onehour;
min:= trunc(rem/onemin);
sec:= t r u n c (r e m - conv(min) * onemin);
with operator do
begin

writeint(hour); write(': ');
writeint(min); write(': ');
writeint(sec); write(nl);

end;
end;

begin
init operator; tasklist.me(id);
cycle

waiting.preempt;
typeuse.request;
writeid(id);
writetime(watch.value);
typeuse.release;

end;
end;

Timetable

A timetable holds the start time and period of all tasks. It also schedules
the execution of all active tasks. The period of a task cannot exceed 12
hours. An a t tempt to start a task process before it has completed its last
cycle has no effect.

type timetable -- monitor(waiting: taskqueue)
A timetable needs access to the task queue in which task processes are wait-
ing to be resumed. Initially, all tasks are inactive.

procedure start(task: processindex; time: real)
Makes a task active and defines its start time.

procedure period(task: processindex; time: real)
Defines the period of a task.

Sec. 7.2 PROGRAMMING 207

procedure stop(task: processindex)
Makes a task inactive.

procedure examine(time: real)
Examines all active tasks and resumes them if the current time equals or
exceeds their start times. When a task is resumed its start time is incre-
mented by its period (modulo midnight).

IMPLEMENTATION:

type taskschedule = record
active: boolean;
start, period: real

end;

type timetable =
monitor(waiting: taskqueue);

vat table: array (.processindex.) of taskschedule;

procedure initialize;
var task: processindex;
begin

for task:= 1 to processcount do
table (.task.).active: = false;

end;

function reached(time, start: real): boolean;
vat diff: real;
begin

diff: = time - start;
if abs(diff) >= halfday

then reached: = (diff < 0.0)
else reached: = (diff >= 0.0);

end;

procedure entry start(task: processindex; time: real);
begin

with table(.task.) do
begin active:= true; start:= time end;

end;

208 A REAL-TIME SCHEDULER

procedure entry period (task: processindex; time: real);
begin table(.task.).period := time end;

procedure entry stop(task: processindex);
begin table(.task.).active:= false end;

procedure entry examine(time: real);
vat task: processindex;
begin

for task:= 1 to processcount do
with table(.task.) do
if active then

if reached(time, start) do
begin

waiting.resume(task);
start:= start + period;
if start > = oneday then

start:= start - oneday;
end;

end;

begin initialize end;

Chap. 7

Clock Process

A clock process increments a clock every second and examines a time-
table of task processes waiting to be resumed.

type clockprocess =
process(watch: clock; schedule: timetable)
A clock process needs access to a clock and a timetable.

IMPLEMENTATION:

The standard procedure

wait

delays the calling process for 1 sec.

type clockprocess =
process(watch: clock; schedule: t imetable);

Sec. 7.2 PROGRAMMING 209

begin
with watch, schedule do
cycle wait; tick; examine(value) end;

end;

Operator Process

An operator process executes commands input from a typewriter. The
human operator must push the BEL key on the typewriter before typing
a command. The commands are

start(task, hour:min:sec)
Defines the start time of a task and makes it active.

period(task, hour:min:sec)
Defines the period of a task.

stop(task)
Makes a task inactive.

time(hour : min :sec)
Sets the current time.

The arguments of these commands are of the following types

task: identifier; hour: 0..23; min, sec: 0..59;

type operatorprocess =
process(typeuse: resource; tasklist: taskset;

watch: clock; schedule: timetable)
An operator process needs access to a typewriter resource, a task set, a
clock, and a timetable.

IMPLEMENTATION:

type operatorprocess =
process(typeuse: resource; tasklist: taskset;

watch: clock; schedule: timetable);

var operator: terminal; bell: bellkey;
letters, digits: set of char;
ok: boolean; ch: char; command: identifier;

210 A REAL-TIME SCHEDULER

procedure help;
begin

if ok then
with operator do
begin

write(nl);
wri tetext(' t ry again (: 10:)#');
writetext('
writetext('
writetext('
writetext('
ok: = false;

end;
end;

start(task, hour:min:sec) (:10:)# ') ;
period(task, hour:min:sec) (:10:)# ') ;
stop(task) (:10:)# ') ;
t ime(hour:min:sec) (:10:)# ') ;

procedure nextchar;
begin

if ok then
repeat operator.read(ch) until ch < > ' ';

end;

procedure skipchar(delim: char);
begin

if ch = delim then nextchar else help;
end;

procedure readint(var int: integer);
const maxint = 32767;
var digit: integer;
begin

int: = O;
if not (ch in digits) then help else
while (ch in digits) & ok do
begin

digit:= ord(ch) - ord('O');
if int > (maxint - digit) div 10

then help
else int:= 10 * int + digit;

nextchar;
end;

end;

Chap. 7

Sec. 7.2 PROGRAMMING 211

procedure readid(var id: identifier);
vat length: integer;
begin

id := , ,.
if not (ch in letters) then help else
begin

length := O;
while (ch in (letters or digits)) &

(length < idlength) do
begin

length := length + 1;
id(.length.) := ch;
nextchar;

end;
end;

end;

procedure readtime(var time: real);
vat hour, min, sec: integer;
begin

readint(hour); skipchar(': ');
readint(min); skipchar (': ');
readint(sec);
if (hour > 23) or (min > 59) or (sec > 59)

then help;
if ok then time:= onehour*conv(hour) +

onemin*conv(min) + conv(sec);
end;

procedure start;
var id: identifier; time: real;
begin

skipchar('('); readid(id);
skipchar(', '); readtime(time);
skipchar(')');
if ok then
with tasklist, schedule, operator do
if member(id) then start(task(id), time)

else writetext(' task unknown (:10:)#');
end;

212 A REAL-TIME SCHEDULER Chap. 7

procedure period;
vat id: identifier; time: real;
begin

skipchar('('); readid(id);
skipchar(', '); readtime(time);
skipchar(')');
if ok then
with tasklist, schedule, operator do
if member(id) then period(task(id), time)

else writetext(' task unknown (: 10 :) #');
end;

procedure stop;
vat id: identifier;
begin

skipchar('('); readid(id);
skipchar(')');
if ok then
with tasklist, schedule, operator do
if member(id) then stop(task(id))

else writetext(' task unknown (: 10:)#');
end;

procedure correct;
vat time: real;
begin

skipchar('('); readtime(time);
skipchar(')');
if ok then watch.correct(time);

end;

Sec. 7.2 PROGRAMMING 213

begin
init opera to r , bell;
let ters:= (. 'a ' , 'b ' , 'c', 'd ' , 'e', 'f ' , 'g', 'h ' , 'i',

'j', 'k ' , '1', 'm ' , ' n ' , 'o ' , 'p ' , 'q ' , 'r',
's', ' t ' , 'u ' , 'v', 'w ' , ' x ' , ' y ' , 'z', '_'.);

digits:= (. '0 ' , '1 ' , '2 ' , '3 ' , '4 ' ,
'5 ' , '6 ' , '7 ' , '8 ' , '9 ' .);

wi th typeuse , opera tor , bell do
cycle

await;
reques t ;
ok := t rue;
wr i t e t ex t (' t ype c o m m a n d (: 7:) (: 10:) # ') ;
nex tchar ;
r e a d i d (c o m m a n d) ;
if c o m m a n d = 's tart
if c o m m a n d = 'per iod
if c o m m a n d = ' s top
if c o m m a n d = ' t ime

wri te(nl) ;
release;

end ;
end;

' t h e n start else
' t h e n per iod else
' t h e n s top else
' t h e n correc t

else help;

Initial Process

The initial process initializes all o the r processes and m o n i t o r s and
defines their access rights to one another .

Fo r d e m o n s t r a t i o n purposes , th ree task processes (called scan, flow,
and log) are used.

I M P L E M E N T A T I O N :

vat typeuse : resource; wait ing: t a skqueue ;
tasklist: taskset ; watch : c lock;
scan, f low, log: taskprocess ;
schedule: t imetab le ;
c lockpulse : c lockprocess ;
opera to r : opera torprocess ;

214 A REAL-TIME SCHEDULER Chap. 7

De,J1
init typeuse, waiting, tasklist, watch;
with tasklist do
begin

include('scan ', 2);
init scan(typeuse, waiting, tasklist, watch);
include('f low ', 3);
init f low(typeuse, waiting, tasklist, watch);
include('log ', 4);
init log(typeuse, waiting, tasklist, watch);

end;
init schedule(waiting),

clockpulse(watch, schedule),
operator(typeuse, tasklist, watch, schedule);

end.

7.3 TESTING

In my experience it is not difficult to make a large program very reliable
by testing it. But you must know before writing the program how you
intend to test it. Otherwise, there is no guarantee that the structure of the
program will make stepwise testing possible and easy.

The least one can do is to make sure that all statements of a program
are executed at least once. In addition, one can use insight into the nature
of the problem to select certain extreme test cases.

Since a program may be modified later one should be able to repeat test
cases to see if the rest of it still works. So test cases must be well document-
ed and reproducible.

If a program is writ ten in an abstract language it should be possible also
to understand its behavior during testing in machine-independent terms.

This at t i tude to program testing clearly rules out spontaneous key-
board artistry and octal dumping. It also makes a special "debugging"
program completely unnecessary. During 12 years of programming in indus-
try and universities I have never used these traditional techniques for testing
compilers and operating systems.

Systematic techniques for testing compilers and system kernels are
described in Naur [1963] and Brinch Hansen [1973a] . The following
describes a simple method for testing an operating system consisting of a
hierarchy of abstract data types (classes, monitors, and processes). The
real-time scheduler is used as an example. It was tested from the bo t tom up
by adding one component at a time and replacing the initial process by a
test process that calls the top component and prints test results. The same
method was used to test the Solo operating system.

Sec. 7.3 TESTING 215

During testing the Concurrent Pascal compiler checks that new (un-
tested) components do not make old (tested) components fail. The con-
trolled access to existing components makes the source of most programming
errors obvious.

The following is a list of all test cases used for the real-time scheduler
and of the ou tpu t produced by them.

Typewriter Test

The typewri ter is tested by an initial process that reads characters and
writes them back.

vat device: typewriter; c: char;
begin

init device;
with device do
cycle read(c); write(c) end;

end.

TEST OUTPUT ~.

aabbcc ...

Terminal Test

The terminal is tested by an initial process that outputs a text string,
copies a character, and writes the smallest and largest unsigned integers.

vat operator: terminal; c: char;
begin

init operator;
with operator do
begin

wri te text (' type a character # ') ;
read(c); write(c); write(nl);
writeint(O); write(nl);
writeint(32767); write(nl);

end;
end.

216 A REAL-TIME SCHEDULER Chap. 7

TEST OUTPUT:

type a character xx
0
32767

Bell Key Test

The bell key is tested by a cyclical process that prints a message every
time the BEL key is pushed on the typewriter.

var operator: terminal; bell: bellkey;
begin

init operator, bell;
with operator, bell do
cycle await; writetext ('here i am (: 10 :) # ') end;

end.

TEST OUTPUT:

here i am
here i am

Fifo Queue Test

A fifo queue with a limit of two elements is tested by a cyclical process
that fills the queue with arrivals and empties it again by departures. After
each operation three integers are printed. They define the queue index of
the arrival (or departure) and specify whether the queue is empty or full.
(The latter two are boolean values represented by false = 0 and true = 1.)

vat next: fifo; operator: terminal;

Sec. 7.3 TESTING 217

procedure writestate(index: integer);
begin

with next, operator do
begin

writeint(index); write(' ');
writeint(empty); write(' ');
writeint(full); write(nl);

end;
end;

begin
init next(2), operator;
writestate(0);
with next, operator do
cycle

writestate(arrival);
writestate(arrival);
writestate(departure);
writestate(departure);

end;
end.

TEST OUTPUT:

Queue index Empty Full

0 1 0
1 0 0
2 0 1
1 0 0
2 1 0
. . .

Resource Test

An initial process requests a resource, writes a message, and releases it
again. This tests the case in which the resource is free when requested and
becomes free again upon release.

Afterwards three cyclical processes a, b, and c compete for the resource.
This tests the case in which the resource is busy when requested and be-
comes busy again upon release.

218 A REAL-TIME SCHEDULER Chap. 7

type userprocess =
process(me: char; typeuse: resource);

vat operator: terminal;

begin
init operator;
with typeuse, operator do
cycle

request;
write(me); write(nl);
release;
wait;

end;
end;

vat typeuse: resource; operator: terminal;
user: userprocess;

begin
init typeuse, operator;
with typeuse, operator do
begin

request;
writetext('ready (: 10:) #');
release;

end;
init user('a', typeuse),

user('b', typeuse), user('c', typeuse);
end.

TEST OUTPUT:

ready
• a

L C

Task Queue Test

The task queue is tested by means of three task processes a, b, and c,
scheduled alternately in alphabetic and reverse order by an initial process.

Sec. 7.3 TESTING 219

type userprocess =
process(me: char; typeuse: resource;

waiting: taskqueue);

vat operator: terminal;

begin
init operator;
with typeuse, waiting, operator do
cycle

preempt;
request; write(me); write(nl); release;

end;
end;

vat typeuse: resource; waiting: taskqueue;
user: userprocess; task: processindex;

begin
init typeuse, waiting,

user('a', typeuse, waiting),
user('b', typeuse, waiting),
user('c', typeuse, waiting);

with waiting do
cycle

for task:= 2 to 4 do
begin wait; resume(task) end;
for task: = 4 downto 2 do
begin wait; resume(task) end;

end;
end.

TEST OUTPUT:

a

b
c

c

b
a

• • •

220 A REAL-TIME SCHEDULER Chap. 7

Task Set Test

A task set is tested by an initial process that enters three process names
in the set. It prints for each name whether it is in the set before and after
its inclusion. It also prints its task index. Finally, the initial process tests
whether it can retrieve its own name from the set.

var operator: terminal; tasklist: taskset;
id: identifier;

procedure test(id: identifier; who: processindex);
begin

with operator, tasklist do
begin

w ri teint(member(id)); write(' ');
include(id, who);
writeint(member(id)); write(' ');
writeint(task(id)); write(nl);

end;
end;

begin
init operator, tasklist;
test('initial ', 1);
test('scan ', 2);
test(' f low ', 3);
with operator, tasklist do
begin

me(id);
if id = 'initial '

then writetext('ok(: 1 O:)#')
else writetext(' t rouble (: 10:)#') ;

end;
end.

TEST OUTPUT:

Member before

0
0
0
ok

Mere ber after

1
1
1

Task index

1
2
3

Sec. 7.3 TESTING 221

Clock Test

The clock is tested by an initial process that prints its initial value, sets it
to 1 min before midnight, and makes it tick for 2 min. (This is also a test of
the procedure writetime used by a task process.)

vat operator: terminal; watch: clock; sec: integer;

procedure writetime(time: real);
vat hour, min, sec: integer; rem: real;
begin

hour: = t runc(t ime/onehour);
rem:= time - cony(hour) * onehour;
min: = trunc(rem/onemin);
sec: = trunc(rem - conv(min) * onemin);
with operator do
begin

writeint(hour); write(' :');
writeint(min); write(': ');
writeint(sec); write(nl);

end;
end;

begin
init operator, watch;
with watch do
begin

writetime(value);
correct(onehour*23.0 + onemin*59.0 + 0.0);
writetime(value);
for sec: = 1 to 120 do
begin tick; writetime(value) end;

end;
end.

222

TEST OUTPUT:

A REAL-TIME SCHEDULER Chap. 7

0:0:0
23:59:0
23:59:1
. , .

23:59:59
0:0:0
0:0:1
. . .

0:0:59
0:1:0

Task Process Test

A task process is tested by an initial process that resumes the task every
second.

var bell: bellkey; typeuse: resource;
waiting: taskqueue; tasklist: taskset;
watch: clock; task: taskprocess;

begin
init bell, typeuse, waiting, tasklist, watch;
tasklist.include('task ', 2);
init task(typeuse, watch, waiting, tasklist);
with watch, waiting, bell do
cycle await; tick; resume(2) end;

end.

TEST OUTPUT:

task
task
task
° . °

0:0:1
0:0:2
0:0:3

Sec. 7.3 TESTI NG 223

Timetable and Clock Process Test

The timetable and clock process are tested by means of three task
processes a, b, and c, which start after 10, 15, and 20 sec and run every 5,
9, and 13 sec. Process a stops after 25, b after 30, and c after 35 sec.

vat typeuse: resource waiting: taskqueue;
tasklist: taskset; watch: clock;
a, b, c: taskprocess; schedule: timetable;
clockpulse: clockprocess;

begin
init typeuse, waiting, tasklist, watch,

schedule(waiting);
with tasklist do
begin

include('a 2);
include('b 3);
include('c 4);
init a(typeuse, watch, waiting, tasklist),

b(typeuse, watch, waiting, tasklist),
c (typeuse, watch, waiting, tasklist),
clockpulse(watch, schedule);

end;
with watch, schedule do
begin

start(2, 10.0); period(2, 5.0);
start(3, 15.0); period(3, 9.0);
start(4, 20.0); period(4, 13.0);
while value < 25.0 do wait; stop(2);
while value < 30.0 do wait; stop(3);
while value < 35.0 do wait; stop(4);

end;
end.

224 A REAL-TIME SCHEDULER Chap. 7

TEST OUTPUT:

a 0:0:10
b 0:0:15
a 0:0:15
c 0:0,'.20
a 0:0:20
b 0:0:24
a 0:0:25
c 0:0:33

Operator Process Test

The operator process is tested by giving commands to the complete
system. These commands contain all possible syntactic and semantic errors.
Finally, the system is tested under normal operation.

Sec. 7.3 TESTING

type the following commands:

blah
time
time(
time(zero
time(23
time(23:one
time(23:59
time(23:59 :two
time(23:59:59
time(24: 59: 59)
time(23:60:59)
time(23: 59: 60)
time(123456789)
stop
stop(
stop(scan
stop(thisistoomuch
stop(alb2c3d4)
start
start(
start(scan
start(scan,
start(scan, 23:59: 59
start(what, 23:59:59)
... similar commands for period ...
time(23: 58: 00)
start(scan, 23:59:50)
period(scan, 0:0:1)
start(flow, 0:0:5)
period(flow, 0:0: 5)
start(log, 0:1:0)
period(log, 0: 0:1 O)
... wait a few minutes ...
stop(scan)
stop(flow)
stop(log)

225

226 A REAL-TIME SCHEDULER Chap. 7

TEST OUTPUT:

A command error makes the operator process print the message

t ry again
start(task, hour:min:sec)
period(task, hour:min:sec)
stop(task)
t ime(hour:min: sec)

Under normal operation, a task process prints its name and the t ime
each time it runs, for example

scan 16:20:38

7.4 FINAL REMARKS

The real-time scheduler and its test cases were writ ten by me in 3 days.
It t ook 3 hours of machine time to test it systematically. Two initial com-
pilations revealed 12 errors. After that 3 more errors were found in 21 test
runs (plus 6 errors in the test cases). Writing this description took another
couple of days. So the whole program was developed in less than a week.
The compiled program is about 4 K words long.

The original real-time scheduler for the ammonia nitrate plant was
writ ten in assembly language. It was only half as long, but took half a year
to make.

It is interesting to compare the following figures for the Concurrent
Pascal program

program 400 lines
test cases 200 lines
manual 600 lines

The test cases are half as long as the program, but for tunate ly they are
trivial to write down.

It is more significant that the description of the program is longer than
the program itself. I have come to regard this as normal and would like to
make the following suggestion to professional programmers: One way to
improve the quality o f programs drastically is to take the view that the main
purpose o f a programming project is to write a highly readable manual

Sec. 7.5 LIST OF REAL-TIME COMPONENTS 227

describing a program. The program itself is merely a useful byproduct o f
this effort.

7.5 LIST OF REAL-TIME COMPONENTS

Bellkey class, 200
Bellkey test, 216

Clock monitor, 204
Clockprocess, 208
Clockprocess test, 223
Clock test, 221

Operatorprocess test, 224

Processindex type, 201
Processqueue type, 201

Resource monitor, 103
Resource test, 217

Fifo class, 102
Fifo test, 216

Identifier type, 203
Initial process, 213
Iodevice type, 197
Iooperation type, 197
Ioparam type, 197
Ioresult type, 197

Line type, 197

Operatorprocess, 209

Taskprocess, 205
Taskprocess test, 222
Taskqueue monitor, 201
Taskqueue test, 218
Taskset monitor, 202
Taskset test, 220
Terminal class, 198
Terminal test, 215
Timetable monitor, 206
Timetable test, 223
Typewriter class, 198
Typewriter test, 215

LANGUAGE DETAILS

8
CONCURRENT PASCAL REPORT

8.1 INTRODUCTION

This report defines Concurrent Pascal--an abstract programming lan-
guage for structured programming of computer operating systems. It extends
the sequential programming language Pascal with concurrent processes,
monitors, and classes.

The central part of this report is a section on data types. It is based on
the assumption that data and operations on them are inseparable aspects
of computing that should not be dealt with separately. For each data type I
define the constants that represent its values and the operators and state-
ments that apply to these values.

Concurrent Pascal has been implemented for the PDP 11/45 computer.
Section 8.15 defines the additional restrictions and extensions of this imple-
mentation.

Chapters 3-7 contain examples of the language constructs of Concurrent
Pascal.

231

232 CONCURRENT PASCAL REPORT Chap. 8

8.2 S Y N T A X G R A P H S

The language syntax is defined by means of syntax graphs of the form

while statement

--'-'l='-- WH I LE ~ ex p r ' ~ - Ib ' - - D 0 -'---lID- statem en t - ' -~1~ ' -

A syntax graph defines the name and syntax of a language construct. Basic
s y m b o l s are represented by capitals and special characters, for example

W H I L E D O + ;

Construc ts defined by other graphs are represented by their names written
in small letters, for example

Correct sequences of basic
a r r o w s .

expr s ta tement

symbols and constructs are represented by

8.3 CHARACTER SET

Concurrent programs are written in a subset of the ASCII character set

character

graphic character

~ control character

graphic character

special character

letter

digit

space

+

:1

Sec. 8.4 BASIC SYMBOLS 233

A graphic character is a printable character.
The special characters are

v , , # $ % & , () * +

, - / : ; < = > ? @

The letters are

A B C D E F G
L M N O P Q R
W X Y Z

The digits are

H I J K
S T U V

0 1 2 3 4 5 6 7 8 9

control character

-..---.1~--(: ~ digits ~ :)-~!~,-

A control character is an unprintable character. It is represented by an
integer constant called the ordinal value of the character (Section 8.16). The
ordinal value must be in the range 0..127.

digits

~ digit I =

8 . 4 B A S I C S Y M B O L S

A program consists of symbols and separators.

symbol

I ~ special symbol ~
i ~ word symbol

identifier I
I = constant - - I

234 CONCURRENT PASCAL REPORT Chap. 8

The special symbols are

+ - * I & = < > < > < = > =
() (. .) := , ; : , . .

They have fixed meanings (except within string constants and comments).
The word symbols are

ARRAY BEGIN CASE CLASS CONST
CYCLE DIV DO DOWNTO ELSE
END ENTRY FOR FUNCTION IF
IN INIT MOD MONITOR NOT
OF OR PROCEDURE PROCESS PROGRAM
RECORD REPEAT SET THEN TO
TYPE UNIV UNTIL VAR WHILE
WITH

They have fixed meanings (except within string constants and comments).
Word symbols cannot be used as identifiers.

identifier

.~,l~.--letter

k - - l e t t e r ~

digit

An identifier is introduced by a programmer as the name of a constant,
type, variable, or routine.

identifiers

identifier

Two constants, identifiers, or word symbols must be separated by at
least one separator or special symbol. There may be an arbitrary number of
separators between two symbols, but separators may not occur within
symbols.

separator

space

I ~ new line ~ ' t
1~ -~ , - - , , - ~ - comment ~ ,,

Sec 8.6 CONSTANTS 235

A c o m m e n t is a n y sequence of graphic charac te rs (excep t ") enc losed
in quotes . I t has no e f fec t o n the e x e c u t i o n of a p rog ram.

8.5 BLOCKS

The basic p r o g r a m uni t is a block.

block

declarations compound statement

I t consists o f dec la ra t ions o f c o m p u t a t i o n a l objec ts and a c o m p o u n d state-
m e n t t h a t opera tes on them.

declarations

I const definitions ~ I ~ var declarations

type definitions ~ I

'~ routines

A declaration def ines a cons t an t , type , variable, or rou t ine and intro-
duces an ident i f ie r as its name.

compound statement

~-ID,-- B EG I N '~ statement ~ END

A c o m p o u n d s t a t e m e n t defines a sequence of s t a t e m e n t s to be exe-
cu t ed one at a t ime f r o m lef t to right.

8.6 CONSTANTS

A cons tan t represen ts a value t ha t can be used as an o p e r a n d in an ex-
pression.

const definitions

~ identifier ~ = ~ constant ~ ; - - 7

236 CONCURRENT PASCAL REPORT Chap. 8

A constant definition in t roduces an ident i f ier as the name of a cons tan t .

constant

identifier

I = enumeration constant ~ +

I ~ real constant

I ~ string constant

8.7 TYPES

A data type defines a set of values which m a y be assumed by a variable
or an expression.

type definitions

TYPE ~ identifier ~ = ~ type

A type definition in t roduces an ident i f ier as the name o f a data type .
A da ta t ype c a n n o t re fe r to its own t y p e identif ier .

type

identifier

I ~ enumeration type I
REAL

I ~ array type
record type

set type
system type

QUEUE

r

E n u m e r a t i o n types , reals, and queues can only be ope ra t ed u p o n as a
whole. T h e y are simple types.

Arrays, records, sets, and sys tem types are de f ined in te rms of o the r
types. T h e y are structured types conta in ing component types.

A data t ype tha t ne i ther conta ins sys tem types n o r queues is a passive
type. All o the r types are active types.

An opera t ion can on ly be p e r f o r m e d on two operands if the i r da ta
types are compatible (in the sense de f ined in Sec t ion 8.9).

Sec. 8.7 TYPES 237

8.7.1 Enumeration Types

An enumeration type consists of a finite, ordered set of values.

enumeration type

CHAR

INTEGER I

' ~ (~ identifiers ~) ~ 1

I constant ~ .. ~ constant

r

The types char, boolean, and integer are standard enumeration types.
A nonstandard enumeration type is defined by listing the identifiers

that denote its values in increasing order.
An enumeration type can also be defined as a subrange of another

enumeration type by specifying its min and max values (separated by a
double period). The min value must not exceed the max value, and they
must be compatible enumeration constants (Section 8.9).

enumeration constant

identifier

I ~ char constant ~
I -[i ~ boolean constant

integer constant

The basic operators for enumerations are

:= (assignment)
< (less)
= (equal)
> (greater)
<= (less or equal)
< > (not equal)
>= (greater or equal)

The result of a relation (such as <) is a boolean value.
An enumeration value can be used to select one of several statements

for execution

case statement

CASE ---.ll,- expr ~ OF ~ labeled statements END

238 CONCURRENT PASCAL REPORT Chap. 8

A case s t a t e m e n t defines an enumerat ion expression and a set of state-
ments. Each s ta tement is labeled by one or more constants of the same
type as the expression. A case s ta tement executes the s ta tement which is
labeled with the current value of the expression. (If no such label exists,
the effect is unknown.)

labeled statements

~ enumeration constant I : .~ statement

The case expression and the labels must be of compatible enumerat ion
types, and the labels must be unique.

The following standard func t ions apply to enumerations

succ(x) The result is the successor value of x (if it exists).

pred(x) The result is the predecessor value of x (if it exists).

An enumerat ion type can be used to execute a s ta tement repeatedly
for all the enumerat ion values

for statement

FOR '~ identif ier I~ : = ~ expr ~ TO

I statement ~ DO ~ expr

A for s t a t emen t consists of an identifier of a control variable, two ex-
pressions defining a subrange, and a s ta tement to be executed repeatedly
for successive values in the subrange.

The control variable can either be incremented from its min value to
its max value or be decremented from its max value d o w n t o its min value. If
the min value is greater than the max value, the s ta tement is no t executed.
The value of the control variable is undefined after complet ion of the for
statement.

The control variable and the expressions must be of compatible enumer-
ation types. The control variable may no t be a constant parameter, a record
field, a funct ion identifier, or a variable entry referenced by selection (Sec-
tions 8.7.4, 8.8.2, and 8.11). The repeated s ta tement may no t change the
value of the control variable.

Sec. 8.7 TYPES 239

8.7.1.1 Characters

The type char is a standard enumeration type. Its values are the set of
ASCII characters represented by char constants

char constant

' ~ character ..~ '

The following standard function applies to characters

ord(x) The result (of type integer) is the ordinal value of the
character x.

The ordering of characters is defined by their ordinal values (Section 8.16).

8.7.1.2 Booleans

The type boolean is a standard enumerat ion type. Its values are repre-
sented by boolean constants

boolean constant

I FALSE----C--
TRUE

where false < true.
The fo l lowing operators are defined for booleans

& (and)
o r

not

The result is a boolean value.
A boolean value can be used to select one of two statements for execu-

tion. It can also be used to repeat the execut ion of a s ta tement while a
condit ion is true (or until it becomes true).

if statement

IF ~ expr ~ THEN ~ statement i ~ ELSE ~- statement T

An if statement defines a boolean expression and two statements. If

240 CONCURRENT PASCAL REPORT Chap. 8

the expression is true then the first s tatement is executed, else the second
statement is executed. The second statement may be omit ted in which case
it has no effect.

The expression value must be a boolean.

while statement

WHI LE ~ expr ~ DO ~ statement

A while statement defines a boolean expression and a statement. If the
expression is false the statement is not executed; otherwise, it is executed
repeatedly until the expression becomes false.

The expression value must be a boolean.

repeat statement

• ~iD,.--REPEAT ~ statement ~ UNTIL-.-..--Im,..-expr

,f ; _ I

A repeat statement defines a sequence of statements and a boolean
expression. The statements are executed at least once. If the expression is
false, they are executed repeatedly until it becomes true.

The expression value must be a boolean.

8.7.1.3 Integers

The type integer is a standard enumeration type. Its values are a finite
set of successive, whole numbers represented by integer constants

integer constant

digits

The following operators are defined for integers

+ (plus sign or add)
- (minus sign or subtract)
* (multiply)
div (divide)
rood (modulo)

The result is an integer value.

Sec. 8.7 TYPES 241

The following standard functions apply to integers

abs(x) The result (of type integer) is the
absolute value o f the integer x.

chr(x) The result (of type char) is the charac-
ter with the ordinal value x.

conv(x) The result is the real value correspond-
ing to the integer x.

8.7.2 Reals

The standard type real consists of a finite subset of the real numbers
represented by real constants

real constant

• ~-lP-digits- I~..,~-IP-- digits i '~''~ E _ _ ~

The letter e represents the scale factor 10.
The following operators are defined for reals

:= (assignment)
< (less)
= (equal)
> (greater)
<= (less or equal)
< > (not equal)
>= (greater or equal)
+ (plus sign or add)

- (minus sign or subtract)
* (multiply)
/ (divide)

The result of a relation (such as <) is a boolean value. The result of an
arithmetic operation (such as +) is a real value.

The following standard functions apply to reals

242 CONCURRENT PASCAL REPORT Chap. 8

abs(x)

trunc(x)

The result (of type real) is the abso-
lute value of the real x.

The result is the truncated integer
value corresponding to the real x.

8.7.3 Array Types

An array consists of a fixed number of components of the same type.
An array component is selected by one or more index expressions.

array type

• --.ll.'- A R RAY --I~-- (. ~ enumeration type

- I
.) ~ OF ~ type

The index types must be enumeration types. The componen t type can
be any type. The number of index types is called the dimension of the array.

array component

variable ~ {. ~ ~-- expr, ~' I ~ ') "~

A componen t of an n-dimensional array variable is selected by means
of its variable identifier followed by n index expressions (enclosed in brack-
ets and separated by commas).

The number of index expressions must equal the number of index types
in the array type definition, and the expressions must be compatible with
the corresponding index types.

The basic operators for arrays are

:= (assignment)
= (equal)
< > (not equal)

The operands must be passive, compatible arrays. The result of a relation
(such as =) is a boolean value.

A one-dimensional array of m characters is called a string type of length
m. Its values are the string constants of length m

string constant

' ~ character ~.~

Sec. 8.7 TYPES 243

The ordering of characters defines the ordering of strings.
The following operators are defined for strings (in addition to those

defined for all array types)

< (less)
> (greater)
<= (less or equal)
>= (greater or equal)

The operands must be strings of the same length. The result of a relation
(such as <) is a boolean value.

8.7.4 Record Types

A record consists of a fixed number of components of (possibly) differ-
ent types

record type

RECORD ~ identifiers ; 4 ~ : ~ type - - - - - 7 - END

The components of a record type are called its fields. A field of a
record variable is selected by means of its variable identifier followed by
the field identifier (separated by a period).

record component

variable ~ . ~ identifier

The basic operators for records are

:= (assignment)
= (equal)
< > (not equal)

The operands must be passive, compatible records. The result of a relation
(such as =) is a boolean value.

A with s tatement can be used to operate on the fields of a record
variable

with statement

WITH ~ variable ~ DO ~ statement

244 CONCURRENT PASCAL REPORT Chap. 8

A wi th s t a t e m e n t consists o f one or m o r e r ecord variables and a state-
men t . This s t a t e m e n t can refer to the r eco rd fields by the i r ident i f iers
on ly (w i t h o u t qua l i fy ing t h e m wi th the ident i f iers o f the r eco rd variables) .

The s t a t e m e n t

wi th v l , v2, ... , vn d o $

is equ iva len t to

wi th v l do
wi th v2 , vn do S

8.7.5 Set Types

The set t y p e o f an e n u m e r a t i o n t y p e consis ts o f all the subsets t ha t
can be f o r m e d of the e n u m e r a t i o n values

set type

S E T - - D - OF ~ type

The component t y p e of a se t t y p e is cal led its base type. I t m u s t be an
e n u m e r a t i o n type .

Set values are c o n s t r u c t e d as fo l lows

set constructor

--~-(. I ~ r~ .)---~- ,.~ expr

A set constructor consis ts o f zero or m o r e express ions enc losed in b racke t s
and sepa ra ted b y c o m m a s . I t c o m p u t e s the set o f these express ion values.
The set expressions m u s t be of c o m p a t i b l e e n u m e r a t i o n types .

The empty set is d e n o t e d

(..)

Sec. 8.7 TYPES 245

The basic operators for sets are

:= (assignment)
= (equal)
< > (not equal)
<= (contained in)
>= (contains)
- (difference)
& (intersection)
or (union)

The operands must be compatible sets. The result of a relation (such
as =) is a boolean value. The result of the other operators is a set value that
is compatible with the operands.

in (membership)

The first operand must be an enumerat ion type and the second one must
be its set type. The result is a boolean value.

8.7.6 System Types

A concurrent program consists of three kinds of system types

system type

PR°cESS

ONITOR ' ~ I ~ parameters ~ ; ~ block

LASS '~

(1) A process type defines a data structure and a sequential s ta tement
that can operate on it.

(2) A monitor type defines a data structure and the operations that
can be performed on it by concurrent processes. These operations can
synchronize processes and exchange data among them.

(3) A class type defines a data structure and the operations that can
be performed on it by a single process or monitor . These operations provide
control led access to the data.

246 CONCURRENT PASCAL REPORT Chap. 8

A system type consists of the following components :
Parameters that represent constants and other system types on which

the system type can operate. They are called the access rights of the system
type.

Constants, data types, variables, and routines defined within a system
type are accessible within it (but generally not outside it). (The variable en-
tries defined in Section 8.8.2 are the only exception to this rule.)

Routine entries defined within a system type are accessible outside it
(but not within it). These routines define meaningful operations on the
system type that can be performed by other system types.

The initial statement of a system type is to be executed when a variable
of that type is initialized.

In general, a system type parameter must be a constant parameter of
type enumeration, real, set, or monitor (Section 8.11). In addition, a class
type can be a parameter of another class type.

A system type can only be defined within another system type (but not
within a record type or routine).

A process type can repeat the execution of a set of statements forever
by means of a cycle statement

cycle statement

• ---It"CYCLE ,~ ;statement I ~ END'~- ' I~ ' -

8.8 VARIABLES

A variable is a named abstract store location that can assume values of a
single type. The basic operations on a variable are assignment of a new
value to it and a reference to its current value.

var declarations

'm'l~ VA R l i ~ E N T R Y ~ identifiers : .~lb-.- type ---]~-- ; -~T - -~ -

A variable declaration defines the identifier and type of a variable.
The meaning of a variable entry is defined in Section 8.8.2.
The declaration

vat v l , v2, vn: T;

Sec. 8.8 V A R I A B L E S 247

is equivalent to

vat vl: T; v2: T; ... ; vn: T;

var iable

i den t i f i e r
J

array c o m p o n e n t v

record componen t r

class componen t

r

A variable is referenced by means of its identifier. A variable component
is selected by means of index expressions or field identifiers (Sections 8.7.3,
8.7.4, and 8.8.2).

assignment

var iable : = --.-1~.-- ex p r -~--I1.-.-

An assignment defines the assignment of an expression value to a vari-
able. The variable and the expression must be compatible. The variable must
be of passive type. It may no t be a constant parameter or a variable entry
referenced by selection (Sections 8.7, 8.8.2, and 8.11).

8.8.1 System Components

A variable of system type is called a system component. It is either a
process, a monitor, or a class.

System components are initialized by means of init statements.

init statement

INIT ~ variable ~ arguments

An init s ta tement defines the access rights of a system componen t (by means
of arguments), allocates space for its variables, and executes its initial state-
ment.

The s ta tement

init v l , v2 , vn

248 CONCURRENT PASCAL REPORT Chap. 8

is equ iva len t to

init v l ; ini t v2 , vn

The initial s tatement of a class or m o n i t o r is e x e c u t e d as a nameless
rou t ine . T h e initial s t a t e m e n t of a process is e x e c u t e d as a sequent ia l pro-
cess. This process is e x e c u t e d c o n c u r r e n t l y wi th all o the r processes (includ-
ing the one t h a t ini t ial ized it).

The p a r a m e t e r s and variables o f a sys t em c o m p o n e n t exis t fo reve r
a f t e r ini t ia l izat ion. T h e y are permanent variables. A s y s t e m c o m p o n e n t m u s t
be dec lared as a p e r m a n e n t var iable wi th in a sy s t em type . I t c a n n o t be
dec lared as a t e m p o r a r y var iable wi th in a rou t ine .

A s y s t e m c o m p o n e n t can on ly be ini t ial ized once. This m u s t be done
in the initial s t a t e m e n t o f the s y s t e m t y p e in which it is declared.

8.8.2 Variable Entries

A var iable p r e f i xed wi th the w o r d entry is a variable entry

va t e n t r y f: T

I t m u s t be dec lared as a p e r m a n e n t var iable o f passive t y p e wi th in a class
type .

A class t y p e can re fe r to one o f its o w n var iable entr ies b y m e a n s o f its
ident i f ie r f

Outs ide the class type , a var iable e n t r y f o f a class var iable v can be selected
e i ther b y m e a n s o f the class ident i f ie r v fo l l owed b y the e n t r y ident i f ie r f
(separa ted b y a pe r iod)

v . f

or b y means o f a with s tatement

with v do begin ... f ... end

Sec. 8.9 EXPRESSIONS 249

A class type can make assignment to its variable entries, but outside it
they can only be referenced (but not changed) by selection. So a variable
entry is similar to a function entry (Section 8.11).

8.9 EXPRESSIONS

An expression defines a computation of a value by application of
operators to operands. It is evaluated from left to right using the following
priority rules:

First, factors are evaluated; second, terms are evaluated; third, simple
expressions are evaluated; fourth, complete expressions are evaluated.

expr

simple expr

= < > < < = > > = IN simple expr

simple expr

~ term " ~ ~r ~t ~r

term + - OR

÷ I
term

.~-I~,'-factor ÷ ~ + + + +=
factor * / DIV MOD &

+ t 'f t t I
factor

constant

variable ~ l

routine call

• ~ - - (-~'1~- ex p r "---I~--) ~ 1 : 1

NOT ~ factor
/ set constructor ~

250 CONCURRENT PASCAL REPORT Chap. 8

Type Compatibility

An operation can only be performed on two operands if their data types
are compatible. They are compatible if one of the following conditions is
satisfied

(1) Both types are defined by the same type definition or variable
declaration (Sections 8.7 and 8.8).

(2) Both types are subranges of a single enumeration type (Section
8.7.1).

(3) Both types are strings of the same length (Section 8.7.3).
(4) Both types are sets of compatible base types. The empty set is

compatible with any set (Section 8.7.5).

8.10 STATEMENTS

Statements define operations on constants and variables.

statement

compound statement

case statement

for statement

i f statement r

,.~ while statement r

repeat statement

with statement

~.~ cycle statement

assignment

init statement

routine call

Section

8.5

8.7.1

8.7.1

8.7.1.2

8.7.1.2

8.7.1.2

8.7.4

8.7.6

8.8

8.8.1

8.11

Empty statements, assignments, and routine calls cannot be divided into
smaller statements. They are simple statements. All other statements are
structured statements formed by combinations of statements.

An empty statement has no effect.

Sec. 8.11 ROUTINES 251

8.11 ROUTINES

A routine defines a set of parameters and a compound statement that
operates on them.

routines

' I '1 procedure ~' I ~
function

• ~ ~ T~ sequential program

A routine can only be defined within a system type (but not within
another routine).

A system component cannot refer to the variables of another system
component (except if they are variable entries of a class as defined in Sec-
tion 8.8.2).

A system component can, however, call routine entries defined within
other system types. There are four kinds of routine entries

(1) A process entry is a routine entry defined within a process type. It
can only be called by sequential programs executed by processes of that
type (but it cannot be called by system components).

(2) A moni tor entry is a routine entry defined within a monitor type.
It can be called by one or more system components that wish to operate
on a monitor of that type. A monitor entry has exclusive access to perma-
nent monitor variables while it is being executed. If concurrent processes
simultaneously call monitor routines which operate on the same permanent
variables, the calls will be executed strictly one at a time.

(3) A class entry is a routine entry defined within a class type. It can
only be called by one system component. So a class entry also has exclusive
access to permanent class variables while it is being executed. But, in con-
trast to a monitor entry, the exclusive access of a class entry call can be
ensured during compilation (and not during execution).

(4) An initial s t a t emen t of a system type is a nameless routine entry
called by means of the init s tatement (Section 8.8.1).

There are three kinds of routines: procedures, functions, and sequential
programs.

procedure

--IP'-PROCEDURE J ~ ENTRY t identifier ~ parameters [
I block ~ ;

252 CONCURRENT PASCAL REPORT Chap. 8

A procedure consists of a procedure identifier, a parameter list, and a
block to be executed when the procedure is called.

function

FUNCTION I ~ ENTRY ~' ~ identifier ~ parameters I

.-'91"m-block ~ ; ~. identifier 4 • ~,

A function consists of a function identifier, a parameter list, a function
type identifier, and a block to be executed when the function is called.

A function computes a value. The value e of a function f is defined by
an assignment

f := e

within the function block.
The funct ion and its value must be of compatible enumeration types

or of type real.
A process that controls the execution of a compiled sequential program

is called a lob process. The process type must include a declaration of the
sequential program.

sequential program

PROGRAM identifier

t

parameters

identifiers ~ ENTRY ~ ;

A program declaration consists of a program identifier, a parameter list,
and a set of access rights.

Program parameters must be of passive types. The rightmost parameter
represents the variable in which the code of the sequential program is stored.
It cannot be referenced by the sequential program during its execution.

The access rights of a program are a list of identifiers of routine entries
defined within the job process in which the program is declared. The sequen-
tial program may call these routines during its execution.

parameters

identifiers .m..lb,- : - - L ~ U N I V - - L ~ - identifier ~) r

Sec. 8.11 ROUTINES 253

A parameter list defines the type Of parameters on which a routine can
operate. Each parameter is specified by its parameter and type identifiers
(separated by a colon).

A variable parameter represents a variable to which the routine may
assign a value. It is prefixed by the word var. The parameter declaration

var v l , v2 , ... , vn : T

is equivalent to

var v l : T; var v2, vn: T

A constant parameter represents an expression that is evaluated when
the routine is called. Its value cannot be changed by the routine. A constant
parameter is not prefixed with the word var.

The parameter declaration

vl , v2, . . . , vn : T

is equivalent to

v l : T; v2, . . . , vn: T

A parameter is of universal type if its type identifier is prefixed by the
word univ. The meaning of universal types will be defined later.

The parameters and variables declared within a routine exist only while
it is being executed. They are temporary variables.

The permanent parameters of a system type define all other system
types with which it can interact. A system type interacts with another sys-
tem type when it calls a routine entry defined within the other system type.

Permanent parameters of system types must be constant parameters
of type enumeration, real, set, or monitor. In addition, a class type can be
a parameter of another class type.

Parameters of routine entries may not contain queues as components.
Function parameters must be constant.
Program parameters and parameters of universal type must be passive

(Section 8.7).

254 CONCURRENT PASCAL REPORT Chap. 8

Universal Parameters

The prefix univ suppresses compatibil i ty checking of parameter and
argument types in rout ine calls (Section 8.9).

An argument of type T1 is compatible with a parameter of universal
type T2 if both types are passive and represented by the same number of
store locations.

The type checking is only suppressed in routine calls. Inside the given
routine the parameter is considered to be of nonuniversal type T2, and
outside the rout ine call the argument is considered to be of nonun~versal
type T1.

routine call

I ~ variable ~-~ • ~' ~ identifier ~-- arguments

A rout ine call specifies the execut ion of a rout ine with a set of argu-
ments. It can be either a f unc t ion call, a p rocedure call, or a program call.

A rout ine that is not prefixed by the word en t ry is a s imple routine.
A system type can call one of its own simple routines by means of its identi-
fier P followed by a list of arguments al , an

P(al , ... , an)

A system type can call a rout ine en t ry defined within another system
type T by qualifying the call with the identifier v of a variable of type T

v.P(al , ... , an)

or by using a wi th s t a t e m e n t

with v do begin ... P(a l , an) ... end

A routine may not call itself, and a system type may no t call its own
routine entries.

A routine call used as a fac tor in an expression must be a funct ion call.
A rout ine call used as a s t a t e m e n t must be a procedure call (Sections 8.9
and 8.10).

Sec. 8.12 QU EU ES 255

arguments

'~ expr

An argument list defines the arguments used in a routine call. The
number of arguments must equal the number of parameters specified in the
routine. The arguments are substi tuted for the parameters before the routine
is executed.

Arguments corresponding to variable and constant parameters must be
variables and expressions, respectively. The selection of variable arguments
and the evaluation of constant arguments are done once only (before the
routine is executed).

The argument t ypes must be compatible with the corresponding para-
meter types with the following exceptions:

An argument corresponding to a constant string parameter may be a
string of any length.

An argument corresponding to a universal parameter may be of any
passive type that occupies the same number of store locations as the para-
meter type.

8.12 QUEUES

The standard type queue may be used within a monitor type to delay
and resume the execution of a calling process within a rout ine entry (Sec-
tions 8.7.6 and 8.11).

At any t ime no more than one process can wait in a single queue. A
queue is either empty or nonempty . Initially, it is empty.

A variable of type queue can only be declared as a permanent variable
within a moni tor type.

The following standard function applies to queues

empty(x) The result is a boolean value defining
whether or no t the queue is empty.

The following standard procedures are defined for queues

256

delay(x)

cont inue(x)

CONCURRENT PASCAL REPORT

The calling process is delayed in the
queue x and loses its exclusive access
to the given moni tor variables. The
moni tor can now be called by other pro-
cesses.

The calling process returns from the
moni tor rout ine that performs the con-
t inue operation. If another process is
waiting in the queue x that process
will immediately resume its execut ion
of the moni tor rout ine that delayed it.
The resumed process now again has ex-
clusive access to the moni tor variables.

Chap. 8

8.13 SCOPE RULES

A scope is a region of program text in which an identifier is used with a
single meaning. An identifier must be introduced before it is used. (The only
except ion to this rule is a sequential program declaration within a process
type: It may refer to rout ine entries defined later in the same process type.
This allows one to call sequential programs recursively.)

A scope is either a system type, a routine, or a with statement. A system
type or routine introduces identifiers by declaration; a with s tatement does
it by selection (Sections 8.5, 8.7.4, 8.7.6, 8.8.2, and 8.11).

When a scope is defined within another scope, we have an outer scope
and an inner scope tha t are nested. An identifier can only be int roduced with
one meaning in a scope. It can, however, be int roduced with another mean-
ing in an inner scope. In that case, the inner meaning applies in the inner
scope and the outer meaning applies in the outer scope.

System types can be nested, but routines can not. Within a routine, with
statements can be nested. This leads to the following hierarchy o f scopes

(nested system types
(nonnested routines

(nested with statements)))

A system type can use

(1) all constant and type identifiers introduced in its outer scopes.

(2) all identifiers in t roduced within the system type itself (except its
rout ine entry identifiers).

Sec. 8.15 PDP 11/45 SYSTEM 257

A rout ine can use

(1), (2) defined above and

(3) all identifiers introduced within the routine itself (except the
routine identifier).

A wi th s t a t e m e n t can use

(1), (2), (3) defined above and

(4) all identifiers introduced by the with statement itself and by its
outer with statements.

The phrase "all identifiers introduced in its outer scopes" should be
qualified with the phrase "unless these identifiers are used with different
meanings in these scopes. In that case, the innermost meaning of each
identifier applies in the given scope."

8.14 CONCURRENT PROGRAMS

The outermost scope of a concurrent program is an anonymous, para-
meterless process type, called the initial process.

concurrent program

block ~ .

An instance of this process is automatically initialized after program
loading. Its purpose is to initialize other system components.

8.15 PDP 11/45 SYSTEM

This section defines the additional restrictions and extensions of Con-
current Pascal for the PDP 11/45 computer.

8.15.1 Language Restrictions

A nonstandard enumera t ion t ype cannot consist of more than 128
constant identifiers.

The range of integers is -32768..32767.
Integer case labels must be in the range 0..127.

258 CONCURRENT PASCAL REPORT Chap. 8

The range of reals is approximately -103s ..1038 . The smallest absolute
real value that is nonzero is approximately 10 -38 . The relative precision of a
real is approximately 10 -16 .

A string must contain an even number of characters.
Enumerat ion types and system types cannot be defined within record

types.
A set of integers can only include members in the range 0..127.
A process componen t can only be declared within the initial process.
The standard procedure continue can only be called within a rout ine

entry of a moni tor type.

8.15.2 Store Allocation

The compiler determines the store requirements of system components
under the assumption that rout ine calls are no t recursive. The scope rules
prevent recursion within concurrent programs, but no t within sequential
programs.

The programmer must estimate an additional data space needed to
execute sequential programs within a job process. The data space of a se-
quential program (in bytes) is defined by an integer constant after the
process parameters.

process type

PROCESS I ~-~ parameters.HIP--; ~ I ~ + ~ integer constant t

block ~ I

8.15.3 Process Attributes

The standard function

at t r ibute(x)

defines an at t r ibute x of the calling process. The index and value of the
at t r ibute are universal enumerations.

The attribute index x is of the following type

type at t r index =
(caller, heaptop, progline, progresult, runtime)

Sec. 8.15 PDP 11/45 SYSTEM 259

The meaning of these attributes is defined in the sequel.
The attribute function can be used to identify the calling process

attribute(caller) The result is an integer that identifies
the calling process. The machine asso-
ciates consecutive integers 1, 2, ... with
processes during their initialization start-
ing with the initial process.

8.15.4 Heap Control

Associated with every process is a heap in which Sequential Pascal pro-
grams can allocate semipermanent data structures (by means of a standard
procedure new that is not available in Concurrent Pascal).

A process can measure the extent of its heap by means of the standard
function attribute

attribute(heaptop) The result is an integer defining
the top address of the heap.

The heap top can be reset to a previous value by means of the standard
procedure

setheap(x) The top address of the heap is set
equal to the integer x (defined by
a previous call of attribute)

x := attribute(heaptop)

This crude mechanism is intended mainly to enable a job process to
measure the initial extent of its heap before it executes a sequential program,
and to reset the heap when the program terminates.

8.15.5 Program Termination

When a sequential program terminates, its job process can call the
standard function attribute to determine the number of the line on which
the program terminated, and its result

attribute(progline)
attribute(progresult)

260 CONCURRENT PASCAL REPORT Chap. 8

The line attr ibute is an integer and the program result is of the following
type

type result type = (terminated, overflow, pointererror,
rangeerror, varianterror, heaplimit,
stacklimit)

The result values have the following meaning

terminated Correct termination.

overflow An integer or real is out of range.

pointererror A variable is referred to by means of a pointer
with the value nil.

rangeerror An enumeration value is ou t of range.

varianterror A reference to a field of a variant record is in-
compatible with its tag value.

heaplimit The heap capacity is exceeded.

stacklimit The stack capacity is exceeded.

These are the standard results of Sequential Pascal programs generated
by the machine. A concurrent program may, however, extend the result type
with nonstandard values, for example

type result type = (terminated, overflow, pointererror,
rangeerror, varianterror, heaplimit,
stacklimit, codelimit, timelimit,
callerror)

Nonstandard program results can be used as arguments to the standard pro-
cedure stop (defined below).

The following standard procedures control program preempt ion

start Prevents preemption of a sequential program to be
executed by the calling process.

Sec. 8.15 PDP 11/45 SYSTEM 261

stop(x, y) Preempts a sequential program called by process
x with the result y. The process identity x must have
been defined earlier by a call of attribute

x := attribute(caller)

Start should be called before a sequential program is executed. If stop
is called while a sequential program is executing a routine entry within its
job process, preemption is delayed until the routine call has been com-
pleted.

8.15.6 Real-Time Control

The standard routines for real-time control are

wait The calling process, is delayed until the machine
produces the next 1-sec signal. (If the waiting is done
within a monitor this will delay other calls of the
same monitor.)

realtime The result is an integer defining the real time (in sec-
onds) since system initialization.

The standard function attr ibute can be used to define the run t ime of
the calling process

attribute(runtime) The result is an integer defining the proces-
sor time (in seconds) used by the calling
process since its initialization. (This is only
accurate on a machine with a readable
clock.)

8.15.7 Input/Output

Input /ou tput is handled by means of the following standard procedure

io(x, y, z) Peripheral device z performs the operat ion y on
variable x. The calling process is delayed until the
operation is completed. (If the io is done within a
monitor, it will delay other calls of the same moni-
tor.) x and y are variable parameters of arbitrary

262 CONCURRENT PASCAL REPORT Chap. 8

passive types, z is a constant parameter of arbitrary
enumeration type.

The machine assumes that the io device z and the io p a r a m e t e r y are
of the following types

type iodevice = (typedevice, diskdevice, tapedevice,
printdevice, carddevice)

type ioparam = record
operation: iooperation;
status: ioresult;
arg: ioarg

end

where

The io resutts have the

complete

intervention

type iooperation = (input, output , move, control)

type ioresult = (complete, intervention, transmission,
failure, endfile, endmedium, startmedium)

following meaning

The operation succeeded.

The operation failed, but can be re-
peated after manual intervention.

transmission The operation failed due to a transmis-
sion error, but can be repeated imme-
diately.

failure The operation failed and cannot be
repeated until the device has been re-
paired.

endfile An end of file mark was reached.

endmedium An end of medium mark was reached.

startmedium A start of medium mark was reached.

Sec. 8.15 PDP 11/45 SYSTEM 263

The types of the data block x and the io argument within the io para-
meter y vary from device to device.

A concurrent program must ensure that a device is used by no more
than one process at a time (wherever this rule applies).

8.15.7.1 Terminal

device name typedevice

block type char

input Inputs a single character and echoes it back as
output . The character CR is input as LF and
echoed as CR, LF. The character BEL cannot
be input (see below).

ou tpu t Outputs a single character. The character LF is
ou tpu t as CR, LF.

control Delays the calling process until the BEL key is
depressed. The BEL key can be depressed at
any time (whether the terminal is passive, in-
putting, or outputt ing); it has no effect unless
one or more processes are waiting for it.

result complete

One or more control operations can be executed simultaneously with
a single inpu t /ou tpu t operation. A B E L signal continues the execution of all
processes waiting for it.

8.15.7.2 Disk

device name diskdevice

block type univ array (.1..512.) o f char (called a disk
page)

argument type 0..4799 (called a page index)

input Inputs a disk page with a given page index.

ou tpu t Outputs a disk page with a given page index.

264 CONCURRENT PASCAL REPORT Chap. 8

control Starts the execution of a concurrent program
stored on consecutive disk pages identified
by the first page index.

result complete, intervention, transmission, or failure

A disk can only perform one operation at a time.
The system uses the following algorithm to convert a page index to

a physical disk address consisting of a surface number, cylinder number,
and sector number

8.15.7.3

device name

block type

surface:= pageno div 12 mod 2;
cylinder:= pageno div 24;
sector:= pageno mod 12;

Magnetic tape

tapedevice

univ array (.1..512.) of char (called a tape
block)

argument type (writeeof, rewind, upspace, backspace) The
argument defines four possible move opera-
tions.

input Inputs the next block from tape (if any).

output Outputs the next block on tape (if there is
room for it).

move Moves the tape as defined by the argument:

writeeof: outputs an end of file mark (if
there is room for it).

rewind: rewinds the tape.

upspace: moves the tape forward one block
(or file mark), whichever occurs first.

backspace: moves the tape backwards one
block (or file mark), whichever occurs first.

Sec. 8.15 PDP 11/45 SYSTEM

result complete, intervention, transmission,
endfile, endmedium, or startmedium

A tape station can only perform one operation at a time.

8.15.7.4 Line printer

device name printdevice

block type array (.1..132.) of char (called a

output Outputs a line of 132 characters (or
line of less than 132 characters must
minated by a CR, LF, or FF character.

result complete or intervention

A line printer can only perform one operation at a time.

8.15.7.5 Card reader

device name carddevice

block type

input

failure,

printer line)

less). A
be ter-

array (.1..80.) of char (called a punched card)

Inputs a card of 80 characters. Characters that
have no graphic representation on a key punch
are input as SUB characters.

result

A card reader can only perform one operation at a time.

complete, intervention, transmission, or failure

265

8.15.8 Compiler Characteristics

The compiler consists of 7 passes. It requires a code space of 9 K words
and a data space of 7 K words. After an initial time of 7 sec the compilation
speed is 240 char/sec (or about 9-10 lines/sec).

The programmer may prefix a program with compiler options enclosed
in parentheses and separated by commas

(number, check, test)

266 CONCURRENT PASCAL REPORT Chap. 8

The opt ions have the fol lowing effec t

n u m b e r The generated code will only ident i fy line
numbers of the program tex t at the be-
ginning of routines. (This reduces the code
by a b o u t 25 per cent , bu t makes error
loca t ion more difficult .)

check The code will n o t make range checks of
cons tan t enumera t ion arguments .

test The compi ler will pr in t the in te rmedia te
o u t p u t o f all passes. (This facili ty is used as
a diagnostic aid to locate compi le r errors.)

8.15.9 Program Characteristics

Table 8.1 gives the execution times of operand references,
opera tors , and s ta tements in psec (measured on a PDP 11 /45 c o m p u t e r
with 850 nsec core store). They exceed the figures s ta ted in the c o m p u t e r
p rog ramming manua l by 25 per cent.

TABLE 8.1

Set Structure
Enumeration Real (n members) (n words)

7 39 53 + 32 n 17
10 32 46 10
27 40 54 18
4 0 + e 5 3 + e 6 7 + e 31+ e

8 0 0 10+ 5n
12 32 67 16 + 6 n
12 32 74 16 + 11 n

31

constant c
variable v
field v.f
indexed v(.e.)
: =

= < >
< > < = >=
in
succ pred
&
o r

not
+ -

$

div rnod /
abs
C O n Y

trunc

7
10

8
10

9
16
20

7
21

38
45
46
17

22

82
58

58

Sec. 8.16 ASCII CHARACTER SET 267

(n iterations)

case e of. . . c: S; ... end 28
for v: = 1 to n do S 82
if B then S else S 16
while B do S (20
repeat S until B (13
with v do S 16
cycle S end (7
simple routine call (no parameters) 58
process entry call (no parameters) 75
class entry call (no parameters) 80
monitor entry call (no parameters) 200
empty 10
delay, continue (processor switching) 600
clock interrupt (every 17 msec) 900
io 1500

+ e + S
+ (69 + S) n
+ B + S
+ B + S) n
+ B + S) n
+ S
+S) n

The compiler generates about 5 words of code per
ing line numbers and range checks).

The store requirements of data types are

program line (includ-

enumeration
real
set
string (m characters)

1 word(s)
4
8

m/2

8.16 ASCII CHARACTER SET

268 CONCURRENT PASCAL REPORT Chap. 8

TABLE 8.2

0 nul
1 soh
2 stx
3 e tx
4 eo t
5 enq
6 ack
7 bel
8 bs
9 h t

10 If
11 v t
12 ff
13 cr
14 so
15 si
16 dle
17 d c l
18 dc2
19 dc3
20 dc4
21 nak
22 syn
23 e tb
24 can
25 em
26 sub
27 esc
28 fs
29 gs
30 rs
31 us

32 64 @
33 t 65 A
34 " 66 B
35 # 67 C
36 $ 68 D
37 % 69 E
38 & 70 F
39 ' 71 G
40 (72 H
41) 73 I
42 * 74 J
43 + 75 K
44 , 76 L
45 - 77 M
46 78 N
47 / 79 O
48 0 80 P
49 1 81 Q
50 2 82 R
51 3 83 S
52 4 84 T
53 5 85 U
54 6 86 V
55 7 87 W
56 8 88 X
57 9 89 Y
58 : 90 Z
59 ; 91 [
60 < 92 \
61 = 93]
62 > 94
63 ? 95

96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

a

b
c

d
e

f
g
h
i

i
k
1
m
n

o

p
q
r

s

t
u

v

W

X

y
z

{
I
}

7
del

8.17 INDEX OF REPORT

Abs, 2 4 1 - 4 1
Access r ights , 246, 252
Act ive t ype , 236
And , 2 3 9 , 2 4 5
A r g u m e n t , 2 4 7 , 2 5 5
A r i t h m e t i c , 2 4 0 - 4 1
Array c o m p o n e n t , 242

Array type , 2 4 2 - 4 3
Ascii cha rac t e r set , 268
Ass ignmen t , 2 3 7 - 4 7 , 2 5 2
A t t r i b u t e , 2 5 8 - 6 1

Base t y p e , 244
Basic s y m b o l , 2 3 2 - 3 4

Sec. 8.17 INDEX OF REPORT 269

Block, 235
Boolean, 239-40

Card reader, 265
Case statement, 237-38
Character, 232,239
Chr, 241
Class, 247
Class entry, 251
Class parameter, 253
Class type, 245,248
Comment, 235
Comparison, 237-45
Compatible types, 250,255
Compiler, 265-66
Component type, 236,242-.44
Compound statement, 235
Concurrent program, 257
Constant, 235-42
Constant parameter, 253,255
Const definition, 236
Continue, 256,258
Control character, 233
Cony, 241
Cycle statement, 246

Declarations, 235
Delay, 256
Digit, 233
Dimension, 242
Disk, 263
Div, 240

Empty, 255
Empty set, 244,250
Empty statement, 250
Enumeration constant, 237
Enumeration type, 237-41,257
Exclusive access, 251
Execution time, 266-67
Expression, 249

Factor, 249,254
False, 239
Field, 243
For statement, 238
Function, 252-55

Function call, 254-55

Graphic character, 233

Heap, 259

Identifier, 234
If statement, 239-40
In, 245
Index expression, 242
Index type, 242
Initial process, 257-58
Initial statement, 246,248
Init statement, 247
Input/output, 261-65
Integer, 240--41,257
Interaction, 253
Io, 261-62

Job process, 252,258-61

Label, 238,257
Letter, 233
Line printer, 265

Magnetic tape, 264
Mod, 240
Monitor, 247
Monitor entry, 251
Monitor parameter, 253
Monitor type, 245,255

Nested scopes, 256
New line, 234
Not, 239

Operator priority, 249
Options, 265
Or, 239,245
Ord, 239
Ordinal value, 233

Parameter, 246,252-54
Passive type, 236
Permanent parameter, 253
Permanent variable, 248,253
Pred, 238

270 CONCURRENT PASCAL REPORT Chap. 8

Procedure, 251-55
Procedure call, 254-55
Process, 247,258
Process attribute, 258-59
Process entry, 251
Process parameter, 253
Process type, 245
Program, 251-52,258-61
Program call, 254-55
Program loading, 252,264
Program parameter, 252-53
Program preemption, 260-61
Program termination, 259-60

Queue, 253,255-56

Real, 241-42,258
Realtime, 261 '
Record component, 243
Record type, 243-44,258
Repeat statement, 240
Routine, 251-55,257
Routine call, 254-55
Routine entry, 246,251,254

Scale factor, 241
Scope rules, 256-57
Selection, 242-44
Separator, 234
Sequential program, 251-52,258-61
Set constructor, 244
Set expression, 244
Setheap, 259
Set type, 244-45,250,258
Simple expression, 249
Simple routine, 254
Simple statement, 250
Simple type, 236
Space, 234
Special character, 233
Special symbol, 234

Standard function, 238-42,255-61
Standard procedure, 256-65
Standard type, 237-41,255
Start, 260
Statement, 250
Stop, 261
Store allocation, 258
String type, 242-43,250,255,258
Structured statement, 250
Structured type, 236
Subrange type, 237-38,250
Succ, 238
Symbol, 233
Syntax graph, 232
System component, 247-48
System type, 245-46,251-56

Temporary variable, 253
Term, 249
Terminal, 263
Test output, 214-26
True, 239
Trunc, 242
Type, 236-46
Type compatibility, 250,255
Type conversion, 241-42,254
Type definition, 236

Universal parameter, 254-55

Var declaration, 246
Variable, 246-49
Variable component, 247
Variable entry, 248-49
Variable parameter, 253,255

Wait, 261
While statement, 240
With statement, 243-44,248,254,257
Word symbol, 234

9
CONCURRENT PASCAL MACHINE

The Concurrent Pascal compiler generates code for a virtual machine
that can be simulated by microprogram or machine code on different com-
puters. This chapter describes the implementat ion of Concurrent Pascal
on the PDP 11/45 computer.

9.1 STORE ALLOCATION

We will begin by looking at the allocation of core store among the
processes of a concurrent program.

Core Store

A Concurrent Pascal program defines a fixed number of processes.
Figure 9.1 shows the core store during the execution of a program. It con-
tains code and data segments. The lengths of these are fixed during compila-
tion.

The code segments consist of virtual code generated by the Concurrent

271

272 CONCURRENT PASCAL MACHINE Chap. 9

[CODE SEGMENTS

DATA SEGMENTS

Fig. 9.1 Core store

KERNEL

INTERPRETER

VIRTUAL CODE

Fig. 9.2 Code segments

Pascal compiler, an interpreter that executes the virtual code, and a kernel
that schedules the execution of concurrent processes (Fig. 9.2).

The interpreter and kernel are assembly language programs which im-
plement the virtual machine. These two programs of 1 and 3 K words are
loaded from disk into core by means of the operator's control panel. They
in turn load the virtual code of a Concurrent Pascal program into core and
start executing it as a single process, called the initial process. The latter
can now create a fixed number of child processes. The kernel multiplexes the
processor among these processes.

Each process has a data segment in core (Fig. 9.3). Data segments have
fixed lengths determined during compilation. They exist forever during
execution. This makes store allocation trivial: segments are allocated contig-
uously in their order of creation.

The segment length of the initial 'process and the start address of its
code are defined at the beginning of the virtual code. The store require-
ments and code addresses of child processes are defined by initprocess in-
structions (corresponding to the init statements in the program).

Virtual Store

On the PDP 11/45 computer, the storage space of a process consists of
up to 8 segments of at most 4 K words each. These segments can be placed

Sec. 9.1 STORE ALLOCATION 273

INITIAL PROCESS

CHI LD PROCESS

CHILD PROCESS

Fig. 9.3 Data segments

COMMON SEGMENT

PRIVATE SEGMENT

Fig. 9.4 Virtual store

anywhere in core. An addressing mechanism makes them appear contiguous
to the process.

This mechanism is not used by Concurrent Pascal to enforce the access
rights of processes. That is done during compilation. It is just a (rather in-
convenient) way of extending the addressing capability of a computer with
a short word length by letting each process see a part of a larger core store.
The addressing mechanism would be unnecessary on a machine that can
address the whole store directly.

The virtual store of a process gives it access to a common segment
shared by all processes and to its own data segment (called a private seg-
ment) (Fig. 9.4).

The common segment consists of the interpreter, the virtual code, and
the data segment of the initial process. The latter contains the monitors
that processes communicate through (Fig. 9.5).

The initial process has no private data segment. Its data segment is in-
cluded in the common segment.

Data Segments

A data segment contains the stack and heap of a process (Figs. 9.3 and
9.6).

274 CONCURRENT PASCAL MACHINE Chap. 9

INTERPRETER

VIRTUAL CODE

INITIAL PROCESS

Fig. 9.5 Common segment

HEAP

STACK

Fig. 9.6 Data segment

The stack contains the permanent variables (and parameters) of a pro-
cess as well as its temporary variables used within procedures (Fig. 9.7).

The initial process is created by the kernel. It has no parameters. When a
child process is created, its parameters are copied from the parent 's stack
(in the common data segment) into the child's stack (in a private segment).

The heap is only accessible to Sequential Pascal programs executed by
a Concurrent Pascal process.

Permanent Variables

Figure 9.8 shows the representat ion of the permanent variables and
parameters of a class, monitor, or process.

A monitor contains an address of a data structure called a gate. The
gate is stored in the kernel. It is used to give a process exclusive access to
the monitor . The gate address has no significance for classes and processes.

A process can only operate on one set of permanent variables at a time.
They are addressed relative to a global base address g. When a process is
created its global base register points to its own permanent variables. When
it calls a moni tor (or class) procedure the current base address is pushed
onto its stack, and the global base register is used to point to the permanent

Sec. 9.1 STORE ALLOCATION 275

TEMPORARY
VARIABLES

PERMANENT
VARIABLES

Fig. 9.7 Stack

VARIABLES

GATE ADDRESS

PARAMETERS

G (GLOBAL BASE)

Fig. 9.8 Permanent variables

variables of that moni tor (or class). Upon return from the procedure the
previous base address is popped from the stack.

Temporary Variables

Figure 9.9 shows the representation of the parameters, variables, and
temporaries of a procedure call. A dynamic link connects the procedure to
the contex t in which it was called.

A process can only operate on one set of temporary variables (and para-
meters) at a time. They are addressed relative to a local base address b.
Temporaries are addressed relative to a stack top s.

The dynamic link defines the stack addresses g, b, and s used by a
process before a procedure call and a return address q in the virtual code.
The link also contains the current line number within the procedure to
facilitate location of run-time errors.

When a process is created its global and local base registers both point
to the permanent variables of that process. It is initialized with no tempo-
raries and an empty heap.

When a process calls one of its own procedures, the local base register
will point to the temporary variables of that procedure, while its global
base address remains unchanged.

276 CONCURRENT PASCAL MACHINE Chap. 9

TEMPORARIES

VARIABLES

DYNAMIC LINK

PARAMETERS

S (STACK TOP)

B (LOCAL BASE)

Fig. 9.9 Temporary variables

When a process calls a moni tor (or class) procedure, the global base
register will point to the permanent variables of that moni tor (or class),
and the local base register will point to the temporary variables of the
moni tor (or class) procedure.

Upon return from a procedure its temporary variables are popped
from the stack and the previous values of the base registers are reestablished
by means of the dynamic link.

Disk Allocation

The disk used by the Solo operating system contains 4800 pages of
256 words each. The beginning of the disk contains 5 contiguous segments

kernel segment The machine code of the kernel and the in-
terpreter (6 K words).

Solo segment The virtual code of the Solo operating sys-
tem (16 K words).

other OS segment

free page list

The virtual code of another operating sys-
tem (16 K words). It is used by the Sequen-
tial Pascal program start to execute another
Concurrent Pascal program (Section 5.1).

The set of free disk pages (0.5 K words).
It is used by the Sequential Pascal program
file to allocate disk files (Section 5.1).

Sec. 9.1 STORE ALLOCATION 277

catalog page map A disk page which defines the length of the
disk catalog and the location of its pages
(Fig. 5.4).

The first three of these segments are larger than they need to be to
permit future expansion of the kernel and the operating systems. The
rest of the disk contains catalog pages and disk files. The organization
of these is described in Sections 5.1 and 5.4.

The kernel is loaded from disk into core by means of the operator's
control panel. The kernel in turn loads the Solo system from disk and
starts it. The operating systems are loaded from a fixed set of consecu-
tive disk pages to make the system kernel unaware of the structure of a
particular filing system (such as the one used by Solo).

The sequential program start can copy a concurrent program from
a disk file into one of the operating system segments and load it by
means of a control operation on the disk device (Section 8.15.7.2).

Compromises

In implementing Concurrent Pascal I followed one simple guideline:
A computer should only do obvious things and should do them well. Where
compromise was needed I firmly put simplicity first, efficiency second, and
generality third. Like any other design rule it needs no justification other
than the success it leads to in practice.

It takes strong nerves to follow this advice on a machine that invites a
software designer to optimize register usage and use sliding addressing
windows. I decided to simplify code generation by ignoring the instruction
set and different registers of the PDP 11/45 and simulate a simple stack
machine instead.

The virtual addressing mechanism is more difficult to ignore since it
determines the amount of core store that can be used by a Concurrent
Pascal program. The virtual store of the PDP 11/45 consists of two address
spaces: one for machine code and another for data. Since the only machine
code executed by a process is an interpreter of 1 K words, it is no t worth
keeping it in a separate address space. So I let the two address spaces be
identical.

Concurrent Pascal makes it possible to check the access rights of pro-
cesses before they are executed. Consequently, monitor calls can be made
almost as fast as simple procedure calls. To gain this efficiency, the virtual
code and data of monitors were included in the address of every process.
(Otherwise, it would have been necessary to change address spaces and copy
parameters back and forth between these spaces during monitor calls.)

278 CONCURRENT PASCAL MACHINE Chap. 9

However, by putting simplicity and efficiency first, we have undoubted-
ly lost generality; a process must divide its address space of 32 K words
between its private data and the code and common data of all processes.
To avoid fragmentation of the virtual address space, processes have only a
single segment in common. This is achieved by the following language re-
striction: Only the initial process can create other processes and give them
access to common data (Section 8.15.1).

Segmentation of address space can be helpful when it supports the
scope rules of a high-level language by associating data segments with pro-
cedures and classes. But when it arbitrarily cuts physical store into eight
parts, segmentation becomes an obstacle to straightforward language im-
plementation.

9.2 CODE INTERPRETATION

The Concurrent Pascal compiler generates code for a virtual machine
simulated by machine code on the PDP 11/45 computer. This section
describes the virtual code which is similar to the one used by Wirth's group
for Sequential Pascal [Nori, 1974]. T h e programming technique used to
interpret the virtual code is called threaded code [Bell, 1973].

The use of virtual code designed directly to support a high-level language
makes code generation straightforward and the compiler portable. (The
Sequential Pascal compiler for the PDP 11/45 was moved to another mini-
computer in one man-month.)

Virtual Code

We will use a programming example to illustrate the virtual code. The
example is a monitor that defines a send operation on a message buffer.

type page = array (.1..length.) of integer;

type buffer =
monitor

vat contents: page; empty: boolean;
sender, receiver: queue;

Sec. 9.2 CODE INTERPRETATION 279

procedure entry ser~d(message: page);
begin

if not empty then delay(sender);
contents: = message;
empty: = false;
continue(receiver);

end;
o o . . o

begin ... end

(The rest of the moni tor can be ignored here.)
The virtual code generated for the send procedure is

a :

entermonitor(stacklength, paramlength,
linenumber, varlength)

pushglobal(empty)
not
falsejump(a)
globaladdr(sender)
delay
globaladdr(contents)
pushlocal(message)
copystructure(length)
globaladdr(empty)
pushconst(false)
copyword
globaladdr(receiver)
continue
exi tmonitor

An enter monitor instruction defines the total amount of stack needed
by the procedure, the length of its parameters and local variables, and the
number of the program line on which it begins.

The next instruction pushes the global variable empty onto the stack.
The program then performs a not operation on it, and jumps to the label
a if the result is false; otherwise, it pushes the address of the global variable
sender on the stack and performs a delay operation on it.

After this, the addresses of the buffer contents and the message are
pushed onto the stack. (The message parameter is represented by a local
variable that contains a reference to the actual argument.) A copy structure
instruction moves the message into the buffer.

280 CONCURRENT PASCAL MACHINE Chap. 9

This is followed by an assignment of the constant false to the global
variable empty. The procedure ends with a continue operation on the
global variable receiver followed by an exit monitor instruction.

An instance of a buffer moni tor can be declared and used as follows

vat channel: buffer; data: page;

..... channel.send(data)

This monitor call generates the following virtual code

globaladdr(channel)
field(varlength)
globaladdr(data)
call(send)

The base address of the global variable channel is pushed onto the
stack and incremented by a field instruction to make it point to the gate
address that separates the permanent variables of the moni tor from its
parameters (Fig. 9.8). Then the address of the global variable data is pushed
onto the stack, and the moni tor procedure send is called.

Variables are identified by their displacements relative to a local or
global base address (Figs. 9.8 and 9.9). Program labels are represented by
their displacements relative to a virtual program counter (making the code
relocatable).

There are about 50 different virtual instructions. To make the software
interpreter fast, the addressing modes (local or global) and the data types
(bytes, words, reals, or sets) are encoded into t he operation codes. This
expands the set of operation codes to 110. A quarter of these are used by
Concurrent Pascal only. The rest are common to Sequential and Concurrent
Pascal.

This description only tries to explain the overall structure of the virtual
code and its interpreter. The interpreter listing, which is stored on the Solo
disk, contains a complete definition of all virtual instructions.

The language constructs of Concurrent Pascal and the corresponding
virtual code are defined by syntax graphs in the compiler description [Hart-
mann, 1975] .

Sec. 9.2 CODE INTERPRETATION 281

OPERATION TABLE

CODE PIECES

Fig. 9.10 Interpreter

The Interpreter

The interpreter is an assembly language program of 1 K words. It con-
sists of code pieces that execute virtual instructions and an operation table
defining the location of these pieces (Fig. 9.10).

A virtual instruction consists of an operation possibly followed by some
arguments. The operation and its arguments occupy one machine word
each. The interpreter uses a virtual instruction counter q to point to the
next operation or one of its arguments.

As an example, the virtual instructions

pushconst(false)
copyword

are represented by three machine words

pushconst
false
copyword

Upon entry to the push constant code piece in the interpreter, the
virtual instruction counter q points to the argument of that instruction
(the boolean value false). The interpreter executes the push operation as
follows

s: = s - 2; store(s):= store(q); q:= q + 2;

First, the stack top s is decremented by one word (The PDP 11/45 stack
grows from high towards low addresses, and each word in it contains two
bytes). Then the argument is moved from its virtual code location store(q)
to the new stack location store(s). Finally, the virtual instruction counter

282 CONCURRENT PASCAL MACHINE Chap. 9

q is incremented by one word (2 bytes). All this is done by a single machine
instruction on the PDP 11/45 computer.

The virtual instruction counter now points to the next virtual instruc-
tion copy word. The interpreter uses the operation code store(q) as an
.index in the operation table (beginning at address zero) to jump to the
corresponding code piece

goto store(store(q)); q:= q + 2;

This is also done by a single machine instruction.
Every code piece of the interpreter ends with such a jump to its suc-

cessor. These three store cycles are the only overhead of interpretation
compared to directly executed code. This efficient form of interpretation
is called threaded code [Bell, 1973]. The execution times for the virtual
code on the PDP 11/45 computer are listed in Section 8.15.9.

Registers

The interpreter uses nine registers to execute the virtual code of a pro-
cess. Three of these are scratch registers used during the execution of a single
virtual instruction only. The rest have fixed functions throughout the execu-
t ion of a process (Fig. 9.11).

The real program counter p remains within the interpreter. It uses a

INTERPRETER

VIRTUAL CODE

COMMON

AND

PRIVATE

DATA

P (REAL PROGRAM COUNTER)

Q (VIRTUAL PROGRAM COUNTER)

H (HEAP TOP)

S (STACK TOP)

B (LOCAL BASE)

G (GLOBAL BASE)

Fig. 9.11 Virtual store and registers

Sec. 9.3 KERNEL 283

virtual program counter q to point to virtual instructions. The heap top h
defines the current extent of the heap. (It is stored in a store location
within the interpreter instead of a register.) The stack is addressed relative
to three registers: a global base register g, a local base register b, and a
stack top s as explained in Section 9.1.

9.3 KERNEL

The kernel of Concurrent Pascal is an assembly language program
that multiplexes a PDP 11/45 processor among concurrent processes and
gives them exclusive access to monitors.

The kernel was first writ ten in a programming language that resembles
Concurrent Pascal. It consists of a collection of data structures representing
processes, monitors, and peripherals. Each data structure consists of two
parts: One defines how the data are represented in store, the other what
operations one can perform on the data. This combinat ion of a data repre-
sentation and the possible operations on it is called a class or an abstract
data type.

The abstract version of the kernel was translated by hand into assembly
language (retaining the abstract version as comments) . This programming
method has several advantages

(1) A complex program can be programmed as a sequence of small,
self-contained components (classes).

(2) These components can be tested one at a time from the bo t tom
up.

(3) If the program only accesses a componen t through procedures
(or macros) associated with it, new (untested) components cannot make old
(tested) components fail.

(4) In the rare cases, where it is necessary to use assembly language,
one can still use an abstract programming language as a thinking tool, and
make the product ion of assembly code a simple clerical procedure (manual
translation).

After an initial test period of 1 month the Concurrent Pascal kernel has
been running wi thout problems. One might call this form of programming
reliable machine programming.

The details of the kernel are simplified somewhat in the following (but
most of the simplifications are pointed out). The Solo disk contains a com-
plete kernel listing.

284 CONCURRENT PASCAL MACHINE Chap. 9

Processor Multiplexing

The computer executes one process at a time. While one process is
running, other processes must await their turn in a ready queue. Every 17
msec the computer switches from one process to another to give the illu-
sion that they are executed simultaneously.

A process is represented by a record within the kernel. When a process
is p r e e m p t e d all registers used to interpret its code are stored in its process
record (Section 9.2). The register values are restored when the execut ion of
the process is resumed

type registers = record ... end

process = @ registers

The symbol @ indicates that a process is represented by the address of the
record that contains iS register values.

A process queue is represented by a sequence of references to process
records

type processqueue = sequence of process

The only operations on a process queue are

put Enters a process in the queue.

get Removes a process f rom the queue.

any Tells whether the queue contains anything.

empty Tells whether the queue is empty.

The running process is represented by a class. It contains two permanent
variables: The user is a reference to the running process; it is nil when the
processor is idle. In addition, the hardware registers are considered part of
this class.

Only two operations are defined on the running process: serve and pre-
empted . They start and stop the execut ion of a process. The s ta tement at
the end of the class is executed when the kernel is initialized. It makes the
running process nil. (The selection of the initial process for execut ion is
done elsewhere.)

Sec. 9.3 KERNEL 285

vat running:
class

var user: process; reg: registers;

procedure serve(p: process);
begin

user: = p;
reg:= user@;

end;

funct ion preempted: process;
begin

user@:= reg;
preempted: = user;
user: = nil;

end;

begin user: = nil end

The value of the process reference and the record it points to are de-
noted user and user@. Although they are no t marked with the word entry
both routines can be called outside the class.

The ready queue is represented by another class. In this simplified
description, there is only a single queue of waiting processes. In practice, we
use a three-level queue that gives top priori ty to processes executing moni tor
code, middle priori ty to processes resumed after input /ou tput , and bo t tom
priori ty to compute-bound processes. Initially the ready queue is empty.

Two operations can be performed on the ready queue: enter a process
in the queue, and select one to be served. An a t tempt to select a process
from an empty ready queue causes the processor to idle until a peripheral
operation laas been completed and has entered a process in the ready queue.

vat ready:
class

vat waiting: processqueue;

procedure enter(p: process);
begin waiting.put(p) end;

286 CONCURRENT PASCAL MACHINE Chap. 9

procedure select;
begin

while waiting.empty do idle;
running.serve(waiting.get);

end;

begin waiting.initialize end

A clock interrupt has no effect if the processor is idle; otherwise, it
preempts the running process, enters it in the ready queue, and selects
another process for execution

procedure clockinterrupt;
begin

if running.user < > nil then
begin

ready, enter(running.preempted);
ready.select;

end;
end

Again, the picture is simplified: The clock will only preempt a process
when it has used a reasonable amount of processor time, and it will never
interrupt a process inside a moni tor procedure (since this could cause the
resource controlled by the moni tor to remain idle until the execution of the
procedure is completed).

The class running also contains procedures for process creation. After
system loading, the kernel calls a procedure initparent that starts execu-
tion of the initial process

procedure initparent(length: integer);
begin

new(user);
virtual .defcommon(length);
initialize registers;

end

The procedure new allocates space for a process record in a heap inside the
kernel. A procedure defcommon within another class virtual is then called
to define the length and location of the common segment used by the initial
process and its descendants (Fig. 9.5). Finally, the registers are initialized

Sec. 9.3 KERNEL 287

with the limits of the stack and the heap within the segment as well as the
start address of the process code (Fig. 9.11).

The initial process can, in turn, call a kernel procedure initchild to
create other processes. (To be more precise, the initial process executes an
initprocess instruction which causes the interpreter to call the kernel pro-
cedure initchild.)

procedure initchild(length: integer);
begin

ready.enter(preempted);
new(user);
virtual.defprivate(length);
initialize registers;

end

This is similar to the previous procedure, except that the parent is preempted
in favor of its child. Again, details have been ignored, such as the accounting
of processor time used by processes.

When a process terminates its execution, it is preempted forever (but its
data segment continues to exist)

procedure endprocess;
begin user:= nil end

This leaves the processor idle upon exit from the kernel. To make it busy
again, the following statement is always executed upon kernel ex i t

if running.user = nil then ready.select

Monitor Implementation

Within the kernel, a monitor variable is represented by a data structure,
called a gate, which only gives one process at a time access to the monitor.
A gate is represented by a boolean defining whether it is open, and a queue
of processes waiting to enter it.

At the beginning and at the end of a monitor procedure a process exe-
cutes an enter and a leave operation. (More precisely, these kernel routines
are called by the interpreter when it executes the virtual instructions enter-
moni tor and exi tmonitor.)

Enter: If the gate is open, the process enters and closes it; otherwise,
the process is preempted to wait outside the gate.

288 CONCURRENT PASCAL MACHINE Chap. 9

Leave: If n o b o d y is waiting outside the gate, it is left open; otherwise,
a single waiting process is resumed (by transferring it to the ready queue).

These are the short-term operations which force processes to enter a
moni tor one at a time. A moni tor can also delay processes for longer periods
of time and resume them again by means of delay and continue operations
on single-process queues.

type gate =
class

vat open: boolean; waiting: processqueue;

procedure enter;
begin

if open then open: = false
else waiting.put(running.preempted);

end;

procedure leave;
begin

if waiting.empty then open:= true
else ready.enter(waiting.get);

end;

procedure delay(var q: process);
begin q:= running.preempted; leave end;

procedure continue(vat q: process);
begin

if q = nil then leave else
begin ready.enter(q); q:= nil end;

end;

begin open:=false; waiting.initialize end

Delay: Preempts the running process and enters it in a given single-
process queue. The moni tor can now be entered by another process.

Continue: Forces the running process to leave the moni tor and resumes
any process that may be waiting in a given single-process queue.

Please, note the distinction between a multiprocess queue which the
virtual machine automatically associates with a monitor, and a single-process
queue which the programmer declares within a monitor. The former is

Sec. 9.3 KERNEL 289

stored within the kernel while the latter is stored in the common segment
(Figs. 9.2 and 9.5).

When a monitor variable is initialized, the kernel executes a procedure
that allocates its gate in the kernel heap and initializes it

procedure initgate(var g: @gate);
begin new(g); g@.initialize end

The gate reference is stored in the stack of the calling process and passed
as a parameter to the kernel each time one of the gate operations is exe-
cuted (Fig. 9.8).

Details ignored: When a process is resumed within a monitor it will
preempt the running process (unless the latter is engaged in nested monitor
calls)..

It should also be mentioned that all kernel operations are indivisible
and cannot be interrupted. So conceptually, the kernel is a monitor used by
all processes and peripheral devices.

Peripherals

A peripheral is represented by a class within the kernel. It defines the
device number of the peripheral and its current user process. An io statement
in Concurrent Pascal is translated into a call of a kernel procedure that
starts a data transfer and preempts the calling process. An interrupt resumes
the user process.

Details: The interrupt procedure also returns a status word to the calling
process and (usually) gives it priority over the running process.

vat peripheral:
class(device: integer);

vat user: process;

procedure start(operation: T);
begin

startdevice(device, operation);
user: = running.preempted;

end;

290 CONCURRENT PASCAl.. MACHINE Chap. 9

procedure interrupt;
begin

ready.enter(user);
user: = nil;

end;

begin user:= nil end

Only one process at a time can use a peripheral. This must be guaranteed
by the operating system written in Concurrent Pascal (and not by the
kernel). The main function of the kernel is to make peripherals look uniform
with respect to simple input /ou tpu t operations and their results (Section
8.15.7). It does not perform error recovery.

Notice that all interrupts are considered to be parameterless routine
calls made by the environment of the processor. This combines the con-
ceptual simplicity o f the class concept with the fast response needed to keep
peripherals busy. This idea could be used in an abstract programming lan-
guage for real-time applications that require guaranteed, fast response to
external events.

Kernel Classes

The kernel consists of a hierarchy of classes (some of which have already
been described):

newcore

processqueue

signal

time.

t imer

clock

core

virtual

Allocates process records and gates in a kernel
heap.

Implements multiprocess queues.

Implements a queue in which processes can wait
until a timing signal is sent.

Keeps track of real time.

Measures time intervals.

Delays calling processes for 1 sec.

Allocates core store to processes.

Allocates virtual store to processes.

Sec. 9.3 KERNEL 291

running

ready

gate

peripherals

Creates, executes, and preempts processes.

Schedules processes for execution.

Gives processes exclusive access to monitors.

Handle simple input/output .

Programming and Testing

The kernel was translated manually line by line into assembly language
using the abstract program as comments. A small example is sufficient to
illustrate this programming technique

gate: .word 1 ; type gate =
; class

open = 0 ; var open: boolean;
wait = open + .boolean ; waiting: processqueue;

enter: ; procedure enter;
mov gate, r0 ; begin
dec (r0) ; if open
beq 15 ; then
clr (r0)+ ; open:= false
mov r0, procq
jsr pc, preempt ; else
mov preval, elem ; waiting.put(
jsr pc, put ; running.preempted);

15: rts pc ; end;

The kernel was tested, class by class, by test programs written in Con-
current Pascal

test 1 :
test 2:

test 3-4:
test 5:
test 6:
test 7:

initialization and process creation
clock interrupts and processor
multiplexing
monitor gates
teletype
timer and clock
teletype bell key

292 CONCURRENT PASCAL MACHINE Chap. 9

In test 1, clock interrupts were turned off. In tests 2-6 they were simu-
lated manually by the bell key on the teletype. Test 7 used normal clock
interrupts. The only test o u t p u t used was a message on the teletype every
time a process arrives in a queue or departs from one. This technique for
testing a system kernel is explained elsewhere [Brinch Hansen, 1973a].

It took 10 test runs to make test 1 work (!) The rest of the tests re-
quired 18 runs altogether. Finally, the peripherals were tested by Con-
current Pascal programs in normal operation. After this initial testing (Janu-
ary 1975), the kernel seems to be correct.

Size and Performance

The kernel classes are of the following size

Words

newcore 560
processqueue 30
signal 40
time 20
timer 10
clock 60
core 40
virtual 160
running 570
ready 130
gate 110
6 peripherals 1020
initialization 160

kernel 2910

The kernel heap in newcore has room for 10 process records and 25 monitor
gates. Process creation and termination account for 60 per cent of running.
Each peripheral is controlled by a class of about 150 words.

The most critical e x e c u t i o n t imes are

empty kernel call 20 t~sec
monitor call 200 psec
delay, continue 600 psec
clock interrupt 900 tLsec

A m o n i t o r call causes the interpreter to call the kernel twice: at the

Sec. 9.4 COMPILER 293

beginning and at the end of the procedure. The 200 gsec assumes that the
process can enter the monitor immediately and continue its execution when
it returns from it. This should be compared with the execution time of a
simple procedure call (58 psec).

The figures for delay and continue (600 psec) illustrate the cost of
switching the processor from one process to another.

9.4 COMPILER

The Concurrent Pascal compiler is written in the programming language
Sequential Pascal. Its structure is inspired by the Gier Algol and Siemens
Cobol compilers [Naur, 1963, and Brinch Hansen, 1966]. The compiler
is divided into 7 passes. The following describes the overall division of labor
among the passes as well as their size and performance. The compiler is
described in detail by Hartmann [1975].

Multipass Compilation

Our goal was to make a compiler that can compile operating systems on
a minicomputer with at least 16 K words of core store and a slow disk
(50 msec/transfer). To fit into a small core store, the compiler is divided
into 7 passes

pass 1: symbol analysis
pass 2: syntax analysis
pass 3: scope analysis
pass 4: declaration analysis
pass 5: statement analysis
pass 6: code selection
pass 7: code assembly

The main efficiency problem is to avoid random references to the slow
disk and access it strictly sequentially during compilation. The compiler is
loaded one pass at a time. Each pass makes a single sequential scan of the
program text and outputs intermediate code on the disk. This becomes
the input to the next pass.

So the compiler can b e viewed as a pipeline consisting of passes con-
nected by disk buffers. Since the available machine is sequential, only one
pass is executed at a time.

A multipass compiler not only makes store allocation and disk access
efficient. It also simplifies the programming task considerably. In a one-
pass compiler, each procedure performs a variety of compilation tasks

294 CONCURRENT PASCAL MACHINE Chap. 9

[Wirth, 1971]. This tends to make procedures and symbol tables large and
complicated. In a multipass compiler, syntax analysis, semantic analysis,
and code generation can be dealt with separately in smaller passes that use
simpler data structures tailored to their tasks.

Each pass is essentially a minicompiler that only needs to know the
syntax of its input and output languages. The data structures and procedures
used by one pass are irrelevant to another. We found it extremely helpful to
define the function of each pass by syntax graphs of its expected input and
output [Hartmann, 1975].

Intermediate Files

The compiler uses four files: source t ex t and listing, pass inpu t and out-
put . The first two can be stored on any available medium, while the last two
are kept on disk. These files are accessed by five procedures implemented
within the operating system (Section 5.2)

read Inputs a character from the source text.

write Outputs a character on the source listing.

get Inputs a disk page from the previous pass.

put Outputs a disk page to the next pass.

length Defines the length of a disk file in pages.

After each pass, the disk files exchange roles: The output file of the
previous pass becomes the input file of the next pass, and the former input
file becomes the next output file.

Disk access times are reduced as follows: The pages of the intermediate
files are interleaved on the disk. This makes the disk head sweep slowly
across both files during a pass instead of moving wildly back and forth
between them. The pages which contain the compiler code are arranged on
the disk in a manner that minimizes rotational delay during compiler loading
(Section 5.4).

A pass can build tables in core store and leave them there for the next
pass. This is done by passing a single heap pointer as a parameter from each
pass to its successor.

The loading and execution of the passes is controlled by a small Pascal
program that also opens and closes all intermediate files (Sections 5.1 and
6.2).

Sec. 9.4 COMPILER 295

Pass Summary

Symbol analysis scans the program text character by character and con-
verts symbols, identifiers, and numeric constants into unique integers. Iden-
tifiers are looked up by hashing. This pass does not distinguish between
different uses of the same identifier in different contexts.

Syntax analysis checks the program syntax by means of a set of recur-
sive procedures--one for each language construct [Wirth, 1971]. Syntax
errors are handled by erasing part of the program text to make it look
syntactically correct to the rest of the compiler.

Scope analysis checks the access rights of processes, monitors, classes,
procedures, and with statements. It uses a stack to handle nested contexts.
The top of the stack defines the identifiers declared within the current
context. They are popped at the end of the context. Every identifier referred
to by the program is looked up in the nested name table to see if it is ac-
cessible. Different uses of the same identifier in several contexts are re-
placed by unique integers. This pass also replaces constant identifiers by
their values or addresses. Apart from this, scope analysis is only concerned
about whether an identifier can be used within a given context, but does
not worry about what kind of object it refers to.

Declaration analysis checks that declarations of constants, types, vari-
ables, and procedures are consistent and computes the length of types and
the addresses of variables. It builds a table of identifier attributes and dis-
tributes them wherever the identifiers are referred to in statements. After
this pass, declarations have disappeared from the intermediate code.

Statement analysis checks that operands and operators are compatible.
This is done by means of a stack that simulates program execution by oper-
ating on data types rather than data values (Section 3.7). In this pass and
the previous one, semantic errors are handled by replacing undefined types
and incorrect operands by universal ones that are compatible with any-
thing. This prevents an avalanche of error messages from a single semantic
error.

Code selection selects code pieces to be generated and computes the
length of procedure code and temporary variables. It leaves a table of pro-
gram labels, stack requirements, and large constants in core store. (This is
the only pass that transmits large tables in core store to its successor, in
addition to the intermediate code stored on the disk.)

Code assembly outputs virtual code in which program labels are re-
placed by relative addresses. The generation of virtual code is straightfor-
ward; no optimization is attempted. It is interpreted by machine code on
the PDP 11/45 computer (Section 9.2). This pass also prints error messages
from the other passes (but does not generate code, if there are any errors).

296 CONCURRENT PASCAL MACHINE Chap. 9

Scope Analysis

It is the scope rules more than anything else that distinguish Concur-
rent Pascal from other programming languages (such as Fortran, Algol,
Cobol, PL/1, and Sequential Pascal).

A Concurrent Pascal program consists of a hierarchy of abstract data
types (classes, monitors, and processes). An abstract data type can only be
accessed through procedures associated with it. A procedure can refer to
its own temporary variables and to the permanent variables of the data type
it operates on.

Data types and procedures cannot be recursive. This means that pro-
cedure entries associated with a single data type cannot call one another.

To enforce these rules, scope analysis associates an access a t t r ibute with
every identifier [Hartmann, 1975].

Names with external access may only be referred to outside the scope
in which they are declared. Example: monitor procedures.

Names with internal access may only be referred to inside the scope in
which they are declared. Examples: monitor variables and procedure para-
meters.

Names with incomple te access may. not be referred to until their declara-
tion has been completed. Example: type declarations.

Testing

The compiler was tested using a technique invented by Naur [1963]. The
passes were tested in their natural order starting with pass 1. For each pass
we used a Concurrent Pascal text to make the pass execute all statements at
least once.

During testing the compiler lists the source text and the intermediate
code produced by each pass. A comparison of the input and output of a
pass immediately reveals if something is wrong. The corresponding input
operator usually tells in which procedure the problem is. After correction
of the error the test is repeated.

This test o u t p u t mechanism of about 20 lines is a permanent part of
the compiler and can always be turned on to document compiler errors
revealed by a particular program text.

The generated code checks that subscripts are within range, that poin ters
are initialized, and that references to variant records are compatible with
their mg values. These checks were invaluable during testing of the com-
piler.

In a sample of 64 compiler failures during testing, 50 per cent were
range errors, 20 per cent were pointer errors, and 28 per cent variant errors.

Sec. 9.4 COMPILER 297

All made the compiler stop with a message of the form

pass 3 line 307 range error

(or something similar). Only one of the failures made the compiler go into
an endless loop wi thout any indication of what went wrong. Anyone who
has tested compilers in assembly language will recognize the value of an
abstract programming language that makes checking at compile and run
time possible.

It took 4 months to write the compiler and 3 months to test it. This
was done by A1 Hartmann. The compiler has been used since January 1975
without problems.

A Sequential Pascal compiler was derived from the concurrent one in
one additional man-month. It can compile its largest pass in 16 K words of
core store. This compiler was moved from the PDP 11/45 computer to
another minicomputer in another man-month.

Size and Performance

The following shows the storage requirements of the compiler when it
compiles the Solo operating sys tem--a Concurrent Pascal program of 1300
lines (Chapter 5).

Virtual code (words) Data (words)

common 1000 1300
pass 1 4000 5600
pass 2 5600 1200
pass 3 7800 6200
pass 4 5800 4800
pass 5 4000 300
pass 6 3000 650
pass 7 3600 650

compiler 34800 20700

The compiler runs in 16 K words of core store. This includes 2 K words
of common input /output procedures and data buffers.

After an initial time of 7 sec the compilation speed is 240 char/sec (or
about 10 lines/sec). The compiler is about 60 per cent disk limited.

THE NEXT STEP

The process and monitor concepts unify many things that were thought
to be unrelated before (and were taught in different courses on program-
ming)

hierarchical programming (precise modulari ty)
data abstraction (information hiding)
scope rules (access rights)
resource protect ion
type checking
concurrent processes
process synchronization
deadlock prevention

The minor inconvenience of the class notat ion (borrowed from Simula 67)
is of little consequence compared to the general insight it has given us.

Where do we go from here? My feeling is that Concurrent Pascal can
serve as a starting point for further development of abstract concurrent
programming in several directions.

298

THE N E X T STEP 299

Model Operating Systems

The operating systems written so far in Concurrent Pascal are small. I
would hope (and expect) that a larger system will turn out to be "more
of the same." But it seems worthwhile to confirm this by using Concurrent
Pascal to build a medium-size operating system, for example, a terminal
system that gives each user the capability of Solo.

I would also expect that extensive control of access rights during com-
pilation can be used to guarantee the integrity of a valuable data base kept
on a large backing store.

Program Verification

Using the axiomatic method of Hoare [1969] it is possible to verify
mathematically that small programs are correct. This verification can either
be done manually [Hoare, 1971] or semiautomatically [Igarashi, London,
and Luckham, 1975]. Formal verification is still limited to programs of
about one page or less.

Since a Concurrent Pascal program can be composed of semiindependent
components of one page each, there is reason to hope that the verification
techniques for sequential programs can be extended to concurrent programs
as well. Some of this work has already been started by Hoare [1972a, 1972b,
1974], Howard [1976], and Owicki [1976]. It would be a worthy achieve-
ment to verify parts of a working operating system, such as Solo.

The greatest value of a formal approach to correctness is probably the
extreme rigor and structure that it must impose on the design process from
the beginning to be successful. This cannot fail to improve our informal
understanding of programs as well.

Language Design

Since hierarchical ordering of access rights is such a fruitful program-
ming concept it should be studied from many other points of view.

One possibility is to use even tighter control of access rights and check
that components only call a subset of the procedures within other com-
ponents (for example, that a process only sends data through a buffer,
but does not try to receive from it) [Wulf, 1974].

Another possibility is to check the sequence in which operations are
carried out on abstract data structures (for example, that a resource always
is requested before being used and is released afterwards) [Campbell and
Habermann, 1974].

300 THE NEXT STEP

It may also be possible to simplify the access mechanisms of Concurrent
Pascal (rather than extending them). If successful, this should reduce the
size of both the compiler and the kernel [Wirth, 1976c] .

Another idea would be to develop a simple, abstract language for real-
time applications with critical timing constraints as suggested in Section 9.3.

But all these ideas must be tested in the design of real systems before
they can be evaluated realistically.

Computer Design

The widespread use of Fortran, Algol 60, P1/1, and Cobol illustrates
the success of abstract user programming. Sequential and Concurrent Pas-
cal show that suppression of machine detail a lso is the key to success in
system programming. During the next decade, abstract concurrent program-
ming may well simplify computer design as well.

New digital technology has already lead to the development of simple
devices that are useful to everyone (calculators, watches, and fuel injectors).
Eventually industry will be using complicated, specialized networks of
microprocessors. We do no t know how to build them systematically yet ,
but it is an intellectual challenge wor thy of the best minds.

These dedicated computer systems may no t be programmable in the
sense that they can execute arbitrary programs. They may indeed owe their
efficiency to fixed algorithms built into the hardware. But somebody must
still write and verify these concurrent algorithms. In that sense, such com-
puter systems will involve program development. And before these programs
are nailed into hardware and mass-produced, they had better be correct.

It 'seems very attractive to write a concurrent program in an abstract
language, test it on a minicomputer, and then derive the most straight-
forward multiprocessor architecture from the program itself.

REFERENCES

This is a complete list of the literature referenced in the text.

ALEXANDER, C., Notes on the synthesis offorrn. Harvard University Press, Cambridge,
MA, 1964.

BELL, J. R., "Threaded code," Comm. ACM 16, 6, pp. 370-72, June 1973.

BRINCH HANSEN, P., and HOUSE, R , "The Cobol compiler for the Siemens 3003,"
BIT 6, 1, pp. 1-23, 1966.

BRINCH HANSEN, P., "The RC 4000 real-time control system at Pulawy," BIT 7,
4, pp. 279-88, 1967.

BRINCH HANSEN, P., "The nucleus of a multiprogramming system," Comm. ACM 13,
4, pp. 238-50, April 1970.

BRINCH HANSEN, P., "Structured multiprogramming," Comm. ACM 15, 7, pp. 574-
78, July 1972.

BRINCH HANSEN, P., "Testing a multiprogramming system," Software--Practice &
Experience 3, 2, pp. 145-50, April-June 1973a.

BRINCH HANSEN, P., Operating system principles. Prentice-Hall Inc., Englewood
Cliffs, NJ, July 1973b.

301

302 REFERENCES

HOARE, C. A.
1971.

BRINCH HANSEN, P., "The programming language Concurrent Pascal," IEEE Trans-
actions on Software Engineering 1, 2, pp. 199-207, June 1975.

BRINCH HANSEN, P., "The Solo operating system," Software--Practice & Experi-
ence 6, 2, pp. 141-205, April-June 1976.

BRONOWSKI, J., The ascent of man. Little, Brown and Company, Boston, MA, 1973.

BROOKS, F. P., The mythical man-month. Essays on software engineering. Addison-
Wesley, Reading, MA, 1975.

CAMPBELL, R. H., and HABERMANN, A. N., The specification of process synchro-
nization by path expressions. Computing Laboratory, University of Newcastle
upon Tyne, Newcastle upon Tyne, England, Jan. 1974.

DAHL, O. -J., DIJKSTRA, E. W., and HOARE, C. A. R., Structured programming.
Academic Press, New York, NY, 1972.

DIJKSTRA, E. W., "Cooperating sequential processes," In Programming languages,
F. Genuys (ed.), Academic Press, New York, NY, 1968.

DIJKSTRA, E. W., "Hierarchical ordering of sequential processes," Acta Informatica 1,
2, pp. 115-38, 1971.

ELSASSER, W. M., The chief abstractions of biology. American Elsevier, New York,
NY, 1975.

HARDY, G. H., A mathematician's apology. Cambridge University Press, New York,
NY, 1967.

HARTMANN, A. C., A Concurrent Pascal compiler for minicomputers. Lecture Notes
in Computer Science, Springer-Verlag, New York, NY, 1977.

HOARE, C. A. R., "An axiomatic basis for computer programming," Comm. ACM 12,
10, pp. 576-80, 83, Oct. 1969.

R., "Proof of a program: Find," Comm. ACM 14, 1, pp. 39.-.45, Jan.

HOARE, C. A. R., "Towards a theory of parallel programming," In Operating systems
techniques, C. A. R. Hoare (ed.), Academic Press, New York, NY, 1972a.

HOARE, C. A. R., "Proof of correctness of data representations," Acta Informatica 1,
pp. 271-81, 1972b.

HOARE, C. A. R., Hints on programming language design. Computer Science Depart-
ment, Stanford University, Stanford, CA, Dec. 1973.

HOARE, C. A. R., "Monitors: an operating system structuring concept," Comm. ACM
17, 10, pp. 549-57, Oct. 1974.

HOWARD, J. H., "Proving monitors," Comm. ACM 19, 5, pp. 273-79, May 1976.

IGARASHI, S., LONDON, R. L., and LUCKHAM, D. C., "Automatic program verifica-
tion I: Logical basis and its implementation," Acta Informatica 4, 2, pp. 145-82,
1975.

REFERENCES 303

JENSEN, K., and WIRTH, N., "Pascal--user manual and report," Lecture notes in com-
puter science 18, Springer-Verlag, New York, NY, 1974.

LAMPSON, B. W., "An operating system for a single-user machine," Lecture notes in
computer science 16, Springer-Verlag, New York, NY, pp. 208-17, 1974.

LANGER, S. K., An introduction to symbolic logic. Dover Publications, New York,
NY, 1967.

McNEILL, W. H., The shape of European history. Oxford University Press, New York,
NY, 1974.

NAUR, P., "The design of the Gier Algol compiler," BIT 3, 2-3, pp. 124-43 & 145-66,
1963.

NORI, K. V., et al., The Pascal P compiler: implementation notes. Institut ftir Informatik,
Eidgenossische Technische Hochschule, Zurich, Switzerland, Dec. 1974.

OWICKI, S., and GRIES, D., "Verifying properties of parallel programs: an axiomatic
approach," Comm. ACM 19, 5, pp. 279-85, May 1976.

SIMON, H. A., The sciences of the artificial. M.I.T. Press, Cambridge, MA, 1969.

STOY, J. E., and STRACHEY, C., "OS6--an experimental operating system for a small
computer," Computer Journal 15, 2, p. 117, Feb. 1972.

STRUNK, W., and WHITE, E. B., The elements o f style. Macmillan, New York, NY,
1959.

WIRTH, N., "The design of a Pascal compiler," Software--Practice & Experience 1,
pp. 309-33, 1971.

WIRTH, N., Systematic programming: an introduction. Prentice-Hall Inc., Englewood
Cliffs, NJ, 1973.

WIRTH, N., Algorithms + data structures = programs. Prentice-Hall Inc., Englewood
Cliffs, NJ, 1976a.

WIRTH, N., Programming languages: what to demand and how to assess them. Institut
ffir Informatik, Eidgenossische Technische Hochschule, Zurich, Switzerland, 1976b.

WIRTH, N., Modula: a programming language for modular multiprogramming. Soft-
ware --Practice and Experience 7, 2, March-April 1977.

WULF. W. A., Alphard: toward a language to support structured programming. Com-
puter Science Department, Carnegie-Mellon University, Pittsburgh, PA, Apr. 1974.

LIST OF PROGRAM COMPONENTS

This is a complete list of all classes, monitors, process, and sequential
programs used in the model operating systems (Job stream, Pipeline, Real-
time, and Solo).

Classes

Bellkey (Real-time), 200
Charstream (Solo), 126
Dataffle (Job stream, Solo), 118
Disk (Job stream, Solo), 111
Diskffle (Job stream, Solo), 113
Disktable (Job stream, Solo), 116
Fifo (Job stream, Real-time, Solo), 102
Filemaker (Pipeline), 55
Inputstream (Job stream), 169
Linemaker (Pipeline), 56
Outputstream (Job stream), 170
Pagemaker (Pipeline), 56
Progffle (Job stream, Solo), 121

304

LIST OF PROGRAM COMPONENTS 305

Terminal (Job stream, Solo), 108
Terminal (Real-time), 198
Terminalstream (Solo), 110
Typewriter (Job stream, Solo), 106
Typewriter (Real-time), 198

Monitors

Clock (Real-time), 204
Diskcatalog (Job stream, Solo), 117
Linebuffer (Job stream), 171
Linebuffer (Pipeline), 52
Pagebuffer (Job stream), 167
Pagebuffer (Solo), 125
Progstack (Solo), 122
Progtimer (Job stream), 173
Resource (Job stream, Real-time, Solo), 103
Taskqueue (Real-time), 201
Taskset (Real-time), 202
Timetable (Real-time), 206
Typeresource (Job stream, Solo), 105

Processes

Cardprocess (Job stream, Solo), 136
Cardprocess (Pipeline), 50
Clockprocess (Job stream), 175
Clockprocess (Real-time), 208
Copyprocess (Pipeline), 50
Initial process (Job stream), 185
Initial process (Pipeline), 62
Initial process (Real-time), 213
Initial process (Solo), 140
Inputprocess (Job stream), 175
Ioprocess (Solo), 133
Jobprocess (Job stream), 177
Jobprocess (Solo), 128
Loaderprocess (Job stream, Solo), 139
Operatorprocess (Real-time), 209
Outputprocess (Job stream), 183
Printerprocess (Job stream, Solo), 138
Printerprocess (Pipeline), 49

I

306 LIST OF PROGRAM COMPONENTS

Taskprocess (Real-time), 205

Sequential Programs

Copy (Solo), 93
Jobinput (Job stream), 153
Joboutput (Job stream), 162
Jobservice (Job stream), 158

DANISH SUMMARY

Denne afhandling beskriver en systematisk metode for konstruktion af
simple, paalidelige multiprogrammer--programmer der faar en datamaskine
til at gCre flere ting samtidigt.

Bogen har baade teoretisk og praktisk sigte. Den forsCger at laegge
grundlaget for abstrakt (maskinuafhaengig) multiprogrammering ved hjaelp
af et nyt programmeringssprog Concurrent Pascal- det fCrste af sin art.

Brugen af dette sprog illustreres af tre simple operativsystemer for en
enkelt bruger, for smaa studenter programmer, og for industriel proceskon-
trol. Bogen indeholder en komplet udskrift af disse multiprogrammer der
alle har vaeret afprCvet paa en PDP 11/45 datamaskine.

Kapitel 1 opsummerer de generelle programmeringsprincipper bag
abstrakt multiprogrammering. Simpelhed opnaas ved brugen af et maskinu-
afhaengigt programmeringssprog, mens paalidelighed baseres paa omfat tende
oversaetterkontrol.

Kapitel 2 forklarer hvordan samtidige processer og monitorer kan
anvendes til at konstruere et hierarkisk multiprogram.

Kapitel 3 giver et kort overblik over det sekventielle programmerings-
sprog Pascal de re r udgangspunktet for dette arbejde.

Kapitel 4 indf~rer en sprognotation for hovedbegreberne i Concurrent
Pascal (processer og monitorer).

307

308 DANISH SUMMARY

Kapitel 5 beskriver et enkeltbruger system for en minidatamaskine
skrevet i Concurrent Pascal. Det oversaetter og udfCrer brugerprogrammer
skrevet i sekventiel Pascal. Programudf~rsel samt indlaesning og udskrift af
data sker samtidigt. Pascal programmer kan kalde hinanden rekursivt,
saaledes at Pascal ogsaa kan bruges som jobkontrolsprog.

Kapitel 6 praesenterer et system der oversaetter og udf~rer en str~bm af
smaa Pascal programmer indlaest fra en hulkortlaeser og udskrevet paa en
linieskriver. Indlaesning, udfCrsel, og udskrift styres af samtidige processer
der udveksler data gennem store diskbuffere.

Kapitel 7 beskriver et sandtidsprogram for proceskontrolanvendelser
med et fast antal kontrolprocesser der udf~ires periodisk efter operatCrens
forskrift.

Solo systemet viser hvorledes et multiprogram paa mere end 1000 linier
kan opbygges af en raekke processer og monitorer der hver isaer kun bestaar
af en sides programtekst og som kan programmeres og afpr~bves enkeltvis.

Sandtidssystemet bruges til at vise hvorledes saadanne programkom-
ponenter kan afpr~ves systematisk.

Jobstr~m systemet illustrerer hvordan et multiprogram kan konstrueres
til at yde det bedst mulige paa den givne maskine.

Kapitel 8 definerer programmeringssproget Concurrent Pascal kort og
praecist.

Kapitel 9 beskriver hovedlinierne i implementeringen af sproget: lager-
tildeling, kodeudfSrsel, systemkerne, og oversaetter.

Bogen slutter med at foreslaa en raekke muligheder for videre forskning
af abstrakt multiprogrammering.

Concurrent Pascal er resultatet af 10 aars arbejde med multiprogramme-
ring. Det begyndte i 1965 da jeg laeste Edsger Dijkstra's skelsaettende vaerk
"Samarbejdende sekventielle processer" hvori han viser hvorledes samtidige
processer kan synkroniseres ved at sende tidssignaler gennem semafor vari-
able.

Peter Kraft og jeg brugte disse ideer i RC 4000 proceskontrol systemet i
Pulawy, Polen [Brinch Hansen, 1967].

I praksis viste det sig at vaere vanskeligt at bruge semaforer rigtigt. Den
mindste programmeringsfejl kunne g~bre et multiprogram tidsafhc~ngigt,
saaledes at det gav forskellige resultater hver gang det blev udfCrt med de
samme data. Det gjorde til tider programafprCvning vaerdil~bs, idet man ikke
kunne slutte fra programmets varierende opf~rsel hvad der vat galt med det.

I RC 4000 multiprogrammeringssystemet fors¢gte JCrn Jensen, SOren
Lauesen og jeg at lose dette paalidelighedsproblem ved at lade samtidige
processer sende meddelelser til hinanden (istedet for tidssignaler). Et maskin-
program, kaldet monitoren, s~rgede for at disse operationer altid blev udf~rt
korrekt [Brinch Hansen, 1970].

Baade Dijkstra's T.H.E. system og Regnecentralen's RC 4000 system
blev skrevet i maskinkode. Men mens Dijkstra antog at samtidige processer

DANISH SUMMARY 309

samarbejdede frivilligt, saa betragtede vi RC 4000 processer som vaerende
saa upaalidelige at maskinen maatte overvaage dem konstant (ved hjaelp af
et beskyttelsessystem). Det fCrste synspunkt er ofte urealistisk, og det andet
er altid besvaerligt at arbejde med. Det forekom mig at der burde findes
en bedre maade at gCre multiprogrammering baade simpel og paalidelig.

I 1971 fik Tony Hoare og jeg den ide at skrive multiprogrammer i et
programmeringssprog der er saa velstruktureret at en oversaetter til en vis
grad kan garantere at programmeringsfejl ikke fCrer til tidsafhaengige re-
sultater. Vores hovedide var at erklaere variable der bruges af flere processer
som faelles variable og markere alle operationer paa disse variable som
kritiske sektioner. Oversaetteren og maskinen kan saa automatisk s~rge for
at disse kritiske sektioner udfCres een ad gangen. Jeg foreslog tillige brugen
af procesk~er til at gCre synkroniseringsoperationer mere effektive [Hoare,
1971 og Brinch Hansen, 1972] .

Omtrent samtidigt foreslog Dijkstra [1971] at et multiprogram ville
vaere nemmere at forstaa hvis en faelles variabel og alle operationer paa den
var samlet paa eet sted i programmet. Denne kombination af en faelles
datastruktur og alle de procedurer der har adgang til den kaldes en monitor.

I min laerebog om "Operativsystemprincipper" [1973] foreslog jeg en
sprognotation for monitorbegrebet baseret paa klassebegrebet i Simula 67
[Dahl, 1972] . Jeg paapegede samtidigt at denne notat ion ville gore det
muligt for en oversaetter at kontrollere at resten af et program kun udfCrer
netop de operationer paa en faelles variabel der er defineret af dens monitor.
Det er saaledes en mekanisme der beskyt ter en programkomponent mod
at blive ~bdelagt af andre komponenter .

I en senere artikel fllustrerede Tony Hoare [1974] det te monitorbegreb
med simple eksempler.

For at pr~tve disse ideer i praksis udvidede jeg det sekventielle pro-
grammeringssprog Pascal [Jensen and Wirth, 1974] med samtidige processer
og monitorer. Resultatet blev Concurrent Pascal [Brinch Hansen, 1975] .
I januar 1975 fuldf¢rte Alfred Hartmann den fSrste Concurrent Pascal
oversaetter for PDP 11/45 maskinen. Samme aar udviklede jeg de tre eks-
perimentelle operativsystemer der er beskrevet her [Brinch Hansen, 1976] .

Concurrent Pascal er et abstrakt sprog der skjuler de fleste af de detailer
der gCre maskinprogrammering saa problematisk (registre og lagerord,
bitm¢nstre og adresser, maskininstruktioner og hop, afbrydesignaler, saint
tildeling af centralenheder og lager).

Proces- og monitorbegreberne forener mange ting der tidligere blev
betragtet som vaerende uden forbindelse med hinanden (og blev indf~rt i
forskellige programmeringskurser):

hierarkisk programmering (praecis modularitet)
data abstraktion (isolering af detailer)
resource beskyttelse

310 DANISH SUMMARY

type kontrol
bevisfCrelse for programmer
multiprogrammering
synkronisering

Sk~bnt klassebegrebet er ligesaa nytt igt til sekventiel programmering er
det ikke noget tilfaelde at dets fulde potentiel f~brst blev opdaget i forbin-
delse med den mest generelle og vanskelige form for programmering -- multi-
programmering. Fejl i sekventielle programmer kan altid reproduceres og
lokaliseres eksperimentelt. Men den mindste fejl i et multiprogram kan faa
det til at k~re saa tilfaeldigt at afprCvning bliver meningsl~bs. Man maa derfor
indf~re saa meget struktur i et programmeringssprog at en oversaetter kan
finde synkroniseringsfejl (da ingen anden kan g~bre det).

F~r sekventielle programm~rer fandt ud af at hop og globale variable
var problematiske havde multiprogramm~rer allerede erstattet parallelle
forgreninger med samtidige processer og begraenset brugen af faelles variable
til kritiske sektioner. Ting der ofte forekommer at vaere et sp~brgsmaal om
smag og behag i sekventielle programmer kan be tyde forskellen mellem
success og fiasko i multiprogrammer I den forstand er multiprogrammering
en rig kilde til en dybere forstaaelse af sekventiel programmering.

INDEX

A

Abs function, 241-42
Abstract concepts, 6-7, 33, 54
Abstract data types, 23-25
Access graph, 22, 151-52, 193-96
Access rights, 21-23, 51, 246, 252
Active types, 236
Adaptability, 8-9
Alexander, C., 13-14, 301
And operator, 38, 239, 245
Arglist type, Solo, 81
Argseq type, Solo, 84
Argtag type, Solo, 39
Argtype, Solo, 39
Arguments, 41, 247, 255
Arithmetic, 240-41
Array components, 38, 242
Array types, 38, 242-43
ASCII character set, 31, 268
Assignment, 32, 237-47, 252
Attribute function, 258-61
Attrindex type, 123

B

Base types, 244
Basic symbols, 232-34
Bell, J. R., 278, 282, 300
Bell key, 72, 139-40, 153, 200, 263
Bellkey class, Real-time, 200
Bellkey test, Real-time, 216
Blocks, 235
Booleans, 239-40
Bottom up design, 27, 197
Brinch Hansen, P., 25, 27, 65-66, 98, 146,

189, 214, 292-93, 301-02, 308-09
Bronowski, J., 13-14, 302
Brooks, F.P., 13-14, 302
Buffer, 16-21, 52-53, 72-73, 125-26,

151, 171

C

Campbell, R. H., 299, 302
Cardprocess, Pipeline, 50
Cardprocess, Solo, 136-38

311

312 INDEX

Card reader, 16, 48-49, 136-38, 265
Case statement, 34, 237-38
Catalog, 76, 115
Catalog lookup, Solo, 82-83
Catentry type, Solo, 115
Catpage type, Solo, 115
Characters, 232, 239
Character set, 268
Charstream class, Solo, 126-27
Child process, 272-73
Chr function, 35, 241
Class concept, 25, 54-57, 247
Class entry, 55, 251
Class examples, 304
Class parameter, 253
Class type, 245, 248
Clock interrupts, 17, 286
Clock monitor, Real-time, 208-09
Clockprocess, Job stream, 175
Clockprocess, Real-time, 208-09
Clockprocess test, Real-time, 223
Clock test, Real-time, 221
Code assembly, 295
Code interpretation, 278-83
Code pieces, 281
Code segments, 272
Code selection, 295
Comments, 32, 235
Common segment, 273-74
Comparisons, 32, 237-45
Compatible operands, 250, 255
Compilation, 74-75, 148-52, 158-62,

177-83
Compilation checks, 6-7, 18-23, 42-

45, 64, 80, 97, 295-96
Compiled code, 278-82
Compiler, 265-66, 293-97
Compiler files, 294
Compiler size, 297
Compiler speed, 64
Compiler testing, 296
Complete input/output, 48
Component types, 236, 242-44
Compound statement, 235
Concurrent Pascal, 15-28, 47-66, 231-

70
Concurrent Pascal compiler, 9, 64
Concurrent Pascal machine, 9, 271-97
Concurrent Pascal report, 231-70
Concurrent processes, 16-18, 49-52,

247-48
Concurrent programs, 57, 67-227, 257

Condition variables, 65
Console management, 100
Constant parameter, 40, 253, 255
Constants, 31-32, 235-42
Const definitions, 236
Continue operation, 54, 256, 258
Control character, 233
Control flow, 73-75
Controlled access, 23
Cony function, 241
Copyprocess, Pipeline, 50
Copy program, Solo, 93-96
Core buffers, 125-26, 171-72
Core store allocation, 271-76
Correctness proofs, 6
Cycle statement, 246

D

Dahl, O.-J., xvii, 46, 65-66, 302, 309
Datafile class, Solo, 118-21
Data flow, 21, 72-73
Data representation, 23, 33
Data segments, 273-76
Data types, 236-46
Deadlock, 27, 54
Declaration analysis, 295
Declarations, 30, 51, 53, 235
Delay operation, 54, 256
Design principles, 3-14
Deverill, R., xvii
Digit, 233
Dijkstra, E. W., xvi, 7, 27, 46, 65-66,

302, 308-09
Dimension, 242
Disk, 76, 111-12, 139-40, 142-47,

263, 277
Disk allocation, 76-77, 143-46,

276-77, 294
Disk buffers, 151, 167
Disk catalog, 76, 115
Diskcatalog monitor, Solo, 117-18
Disk class, Solo, 111-12
Diskfile class, Solo, 112-15
Disk files, 76-77
Disk management, 100
Disk page, 85
Disk scheduling, 142-47
Disk speed, 143
Disktable class, Solo, 116-17
Div operator, 240

INDEX 313

Documentation, 6, 12, 226
Do program, Solo, 73-75
Double buffer, 19
Dynamic link, 275-76

Global variables, 5, 21-28, 42
Gram, C., xvii
Graphic character, 233
Gries, D., 303

Efficiency, 9-10, 27
Elsasser, W. M., 12, 14, 302
Empty function, 255
Empty set, 244, 250
Empty statement, 250
Endfile card, Job stream, 148
Endfile indication, 48
Endmedium character, 31
Enumeration constants, 237
Enumeration types, 33-35, 237-41, 257
Event variables, 65
Exclusive access, 21, 49, 53-56, 78,

145, 251
Execution checks, 6-7, 9-10, 40, 84,

296-97
Expressions, 249

Factors, 249, 254
False value, 239
Field, 243
Fifo class, Solo, 102-03
Fifo test, Real-time, 216
Fileattr type, Solo, 115
Filekind type, Solo, 115
Fi lemaker class, Pipeline, 55
Filemap type, Solo, 114
File system, Solo, 75-77
First-come, first-served, 149
For statement, 35, 238
Franzen, W., xvii
Function, 40, 252-55
Function call, 254-55
Function entry, 252

G

Gates, 274, 287-89
Generality, 10-11
Global base address, 274

Habermann, A. N., 299, 302
Hardy, G. H., 13-14, 302
Hartmann, A. C., xiii, xvii, 79, 293-94,

302
Heap allocation, 75, 259, 274
Hierarchical structures, 5, 8, 21-28,

54, 98-99, 152, 196
Hoare, C. A. R., 7, 45-46, 146, 299,

302, 309
House, R., 301
Howard, J. H., 299

Identifier, 31, 234
Identifier type, 41
If statement, 34, 239-40
Igarashi, S., 299, 302
Index expression, 242
Index type, 242
Ingargiola, G., xvii
Initial process concept, 51, 257-58
Initial process, Job stream, 185-86
Initial process, Pipeline, 62
Initial process, Real-time, 213-14
Initial process, Solo, 140-41
Initial statement, 20, 53, 55, 246, 248
In i t s ta tement , 51, 53, 247
In operator, 38, 245
Input /output , 19, 47-50, 261-65
Input /ou tput device, 262
Input /output implementation, 289
Input /output streams, Solo, 84-85
Inputprocess, Job stream, 175-77
Inputstream class, Job stream, 169-70
Instability, 8
Integers, 240-41, 257
Interaction, 253
Interface procedures, 82-93, 128-32
Interfaces, 5, 21
Interface types, 81
Interpreter, 65, 281-83
Interrupts, 17, 19, 286, 289-90

314 INDEX

Intervention required, 48
Ioarg type, 89
Iodevice type, 34
Iooperation type, 34
Ioparam type, 37
Io procedure, 19, 47-49, 261-62
Ioprocess, Solo, 133-36
Ioresult type, 34, 48

Jensen, J., 308
Jensen, K., 29, 46, 75, 303, 309
Job control, 70-72, 148-49
Jobinput prefix, Job stream, 154
Jobinput program, Job stream, 153-58
Job interface, 80-93
Joboutput prefix, Job stream, 162
Joboutput program, Job stream, 162-66
Job prefix, 80, 97, 149, 159
Job prefix, Job stream, 149
Job prefix, Solo, 80-93
Job process concept, 252, 258-61
Jobprocess, Job stream, 177-83
Jobprocess, Solo, 128-32
Jobservice prefix, Job stream, 159
Jobservice program, Job stream, 158-62
Job stream components, 187
Job stream system, 148-87

Kernel, 283-93
Kernel classes, 290-91
Kernel disk segment, 276
Kernel exit, 287
Kernel performance, 292
Kernel programming, 291
Kernel size, 292
Kernel testing, 291-92
Kraft, P., 190

Label, 238, 257
Lampson, B. W., 80, 303
Langer, S .K. , 13-14, 303
Language definition, 231-70
Language details, 229-97

Language implementation, 271-97
Lauesen, S., 309
Letters, 233
Linebuffer monitor , Job stream, 171-72
Linebuffer monitor, Pipeline, 52
Linemaker class, Pipeline, 56
Line numbers, 275
Lineprinter, 16, 48-49, 138-39, 265
Line type, 36
Loaderprocess, Solo, 139-40
Local base address, 275
Local variables, 42
London, R. L., 299, 302
Luckham, D. C., 299, 302

M

Machine detail, 5, 33, 64
Machine language, 5, 8, 10, 64-65,

283-93
McNeill, W. H., 12, 14, 303
Magnetic tape, 264
Mathematical induction, 27
Medina, L., xvii
Medium-term scheduling, 21, 54
Model operating systems, 67-227
Mod operator, 240
Monitor concept, 19-22, 52-54, 65,

247
Monitor entry, 53, 251
Monitor examples, 305
Monitor implementat ion, 274-89
Monitor parameters, 253
Monitor procedures, 20, 53
Monitor types, 245, 255
Multipass compilation, 74-75, 293-97
Multiscan algorithm, Solo, 145-46
Mutual exclusion, 21, 49, 53-56, 78,

145, 251

N

Naur, P., xvii, 214, 293, 296, 303
Nested scopes, 256
New line character, 31, 234
Next file, Solo, 76-77
Nori, K., 278, 303
Notation, 5, 12, 33, 64
Not operator, 239

INDEX 315

0

Operation table, 281
Operator communication, 77-78,

86-87, 105-11, 209-13
Operator priority, 249
Operatorprocess, Real-time, 209-13
Operatorprocess test, Real-time, 224
Options, 265
Ord function, 35, 239
Ordinal character values, 31, 233
Or operator, 38, 239, 245
Outputprocess, Job stream, 183-84
Outputstream class, Job stream, 170-71
Owicki, S., 299, 303

Pagebuffer monitor, Job stream, 167-69
Pagebuffer monitor, Solo, 125-26
Pagemaker class, Pipeline, 56
Page map, Solo, 76, 145
Page type, 85
Parameters, 40, 246, 252-54
Pascal, 29-46
Passive types, 236
PDP 11/45 system, 257-97
Performance, 78-79, 148-52, 297
Peripherals, 19, 47-49, 289-91
Permanent parameters, 51, 53, 253
Permanent variables, 26, 42, 51, 53-54,

248, 253, 274-75
Pipeline system, 16-28, 47-66
Portability, 9
Pred function, 238
Preemption, 54, 172, 260-61
Prefix, 80, 97, 149, 159
Prefix, Solo, 80-93
Printerprocess, Pipeline, 49
Printerprocess, Solo, 138-39
Private data, 17-18, 50-51
Private segment, 273
Procedure, 40, 52-56, 251-55
Procedure call, 254-55
Procedure entry, 53
Process attributes, 258-59
Process concept, 17-18, 49-52, 247,

258
Process creation, 51
Process entry, 251

Process examples, 305
Process implementation, 284-87
Processor multiplexing, 284-87
Process parameters, 51, 253
Process queue, kernel, 284
Processqueue type, Solo, 104
Process termination, 57
Process type, 245
Progfile class, Solo, 121-22
Program calls, 87-88, 128-32, 254-55
Program components, 4-6, 304
Program concept, 129-30, 251-52, 258-

61
Program counters, 282
Program declaration, 129-30
Program examples, 306
Program loading, 72-77, 121, 128-40,

142-47, 252, 264
Program management, 101, 121-24,

128-32, 158-62, 172-75, 177-83
Programming concepts, 15-28
Programming effort, 79, 187, 226, 297
Programming errors, 141,226, 296
Programming tools, 1-66
Program parameters, 73-75, 81-82,

252-53
Program preemption, 54, 172, 260-61
Program prefix, 80, 97, 149, 159
Program quality, 3-4
Program size, 78, 186, 297
Program structure, 30, 63, 98-99, 150-

52, 192-96
Program termination, 259-60
Progresult type, 87
Progstack monitor, Solo, 122-24
Progstate type, Solo, 121
Progstore type, Solo, 121
Progtimer monitor, Job stream, 173-75

Q

Queues, 21, 54, 65, 253, 255-56

RC4000 computer, 190
RC4000 monitor, 25, 65
Ready queue, 284
Reals, 35, 241-42, 258
Real-time components, 227

316 INDEX

Realtime function, 261
Real-time scheduler, 189-227
Record component, 37, 243
Records, 37-40, 243-44, 258
Redundancy, 7, 12, 31
References, 11-14, 45-46, 65-66,

301-03
Registers, 282
Reliability, 6-8, 21, 141
Repeat statement, 35, 240
Reproducible behavior, 5, 18
Resource management, 100, 102-06
Resource monitor, Solo, 103-04
Resource protection, 23, 65, 75-76
Resource test, Real-time, 217
Resulttype, Solo, 123
Resumption, 54
Return address, 275
Routine call, 41, 254-55
Routine entry, 53, 246, 251, 254
Routines, 40-41, 52-56, 251-55, 257
Running process, 284-85
Run-timechecks, 6-7, 9-10, 40, 84,

296-97
Run-time errors, 87

Scale factor, 241
Scope analysis, 295-96
Scope rules, 26, 41-42, 52, 256-57
Selection, 36-37, 242-44
Separator, 234
Sequential Pascal, 29-46
Sequential process, 17-18, 49-52
Sequential programs, 30, 73-75, 129-

30, 251-52, 258-61, 306
Set constructor, 244
Set expression, 244
Setheap procedure, 259
Sets, 38-39, 244-45, 250, 258
Shared data, 19-21, 53
Short-term scheduling, 21
Side effects, 42
Simon, H. A., 12, 14, 27, 303
Simple data types, 236
Simple expressions, 249
Simple routine, 254
Simple statement, 250
Simple type, 33-36, 236
Simplicity, 4-6
Simula 67, 65,309

Solo components, 147
Solo disk segment, 276
Solo job prefix, 80-93
Solo operating system, 69-147
Space character, 234
Special character, 233
Special-purpose algorithms, 9-10, 142-46
Special symbol, 234
Stability, 7
Stack allocation, 274-76
Stack top address, 275
Standard functions, 35, 238-42, 255-61
Standard procedures, 256-65
Standard types, 237-41, 255
Startmedium indication, 48
Start procedure, 175, 260
Statement analysis, 295
Statements, 30, 250
Static store allocation, 9-10, 54, 271-

73
Stop procedure, 174, 261
Store allocation, 54, 75, 79, 258, 271-

78
Stoy, J. E., 80, 303
Strachey, C., 80, 303
String type, 242-43, 250, 255, 258
Structured statements, 250
Structured type, 36-40, 44, 236
Strunk, W., 12, 14, 303
Subrange types, 35, 237-38, 250
Succ function, 238
Symbol, 233
Symbol analysis, 295
Syntax analysis, 295
Syntax graphs, 232
System components, 21, 24, 54,247-48
System types, 24, 49-57, 245-46, 251-

56

Tag field, 39
Taskkind type, Solo, 90
Taskprocess, Real-time, 205-06
Taskprocess test, Real-time, 222
Taskqueue monitor, Real-time, 201-02
Taskqueue test, Real-time, 218
Taskset monitor, Real-time, 202-03
Taskset test, Real-time, 220
Temporaries, 276
Temporary variables, 42, 53, 253, 275
Term, 249

INDEX 317

Terminal, 263
Terminal class, Real-time, 199-200
Terminal class, Solo, 108-09
Terminalstream class, Solo, 110-11
Terminal test, Real-time, 215
Testing, 7, 18, 27, 141, 187, 214-26,

292, 296-97
Test output, 214-26, 296-97
Test programs, 214-26
Threaded code, 278
Time-dependent errors, 18
Time-independent behavior, 5, 18
Timetable monitor, Real-time, 206-08
Timetable test, Real-time, 223
Top down design, 27, 197
Transmission error, 48
True value, 239
Trunc function, 35, 242
Type checking, 33, 42-45, 76, 80
Type compatibility, 250, 255
Type conversion, 35, 241-42, 254
Type definition, 236
Typeresource monitor, Solo, 105-06
Types, 32-41, 236-46
Typewriter class, Real-time, 198
Typewriter class, Solo, 106-08
Typewriter test, Real-time, 215

V

Var declaration, 246
Varela, R., xvii
Variable, 246-49
Variable component, 247
Variable entry, 248-49
Variable parameter, 40, 253, 255
Variables, 31-33
Variant record, 39-40
Virtual code, 278-81
Virtual store allocation, 272-73

W

Wait procedure, 261
While statement, 35, 240
White, E. B., 14, 303
Wirth, N., xiii, 29, 45-46, 75, 294-95,

300, 303, 309
With statement, 37, 243-44, 248, 254,

257
Word symbol, 234
Wulf, W. A., 299

Universal parameter, 45, 254-55 Zepko, T., xvii

