
UNIVERSITY OF OTAGO EXAMINATIONS 2011

COMPUTER SCIENCE
Paper COSC441

Concurrent Programming

Semester 2

(TIME ALLOWED: THREE HOURS)

This examination consists of 3 pages including this cover page.

Candidates should answer any 4 questions.

All questions are worth 25 marks, and submarks are shown thus: (5)

No supplementary material is provided for this examination.

Candidates may not bring reference books, notes, or other written material.

Candidates may not bring calculators into this examination.

TURN OVER



2 COSC441 – 2011

1. Memory and multicore

(a) Explain the memory hierarchy and some of its consequences for multicore com-
puters. (10)

(b) Consider the following code fragment:

struct Complex {float re, im;};
struct Complex const u = {1.0f, 0.0f};
struct Complex const i = {0.0f, 1.0f};
struct Complex z = u, w;
// in one thread:
z = i;
// in another thread:
w = z;

Assuming that loads and stores of float variables are atomic, what are some pos-
sible values for w? What does it mean for loads, stores, or any other operation to
be atomic? (5)

(c) What POSIX thread feature would you use to manage access to the variable z
above? Sketch the code. (5)

(d) What is Transactional Memory? What would code accessing the variable z above
look like using Transactional Memory? What are the advantages of Transactional
Memory over locking? (5)

2. Monitors

(a) Explain monitors. (10)

(b) How would you simulate a monitor using the POSIX threads interface? What
guarantees do you get from a compiler-supported monitor abstraction that you do
not get from this simulation? (5)

(c) How would you simulate a monitor using Java? What guarantees do you get from
a compiler-supported monitor abstraction that you do not get from this simula-
tion? (5)

(d) How would you simulate a monitor using Erlang? What advantage might there
be to doing so? (5)

TURN OVER



3 COSC441 – 2011

3. Parallelism, Concurrency, and Distribution
Compare and contrast parallelism, concurrency, and distribution. What issues does
parallelism add to sequential programming? What issues does concurrency add to
parallelism? Why is the number of processes or threads part of the semantics of a
concurrent program but of only secondary interest in a parallel one? What issues does
distribution add to concurrency? How is dealing with failure different in these models?

(25)

4. Shared Memory and Message Passing

(a) What is shared memory? What is it good for? When is it a good choice for a
system? What problems does it create? What is a data race, and how do you
prevent one? (10)

(b) What is message passing? What is it good for? When is it a good choice for
a system? What problems does it create? What can we say about the order of
delivery of messages, why is it hard to say more, and why does it matter? (10)

(c) What is deadlock? How can it arise in a shared memory system? How can it arise
in a message passing system? How can it be avoided? (5)

5. Design and Test
The day I wrote this exam, several programs on my Mac locked up because the net-
worked file system was unavailable. I was actually writing the exam on another ma-
chine, using the Mac as a terminal. The terminal emulator was one of the programs
that locked up.

Present the process architecture of a concurrent terminal emulator program, allowing
a user to be logged in to several machines at once. You should explain: what are
the concurrent activities in the program, what are the resources to be shared by these
activities, how sharing could be managed, and how you would test the program. What
sensible thing might the terminal emulator be doing that would make it lock up when
the file system froze? What would you do so that it didn’t all lock up? Does it make
sense to think of this as an inside-out version of your file server? Why/why not? (25)


