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What’s working memory?

We experience the world through SM routines with well-defined
sequential structure.
This sequential structure is retained in WM representations of
episodes and individuals. . .
And also in the syntactic structure of sentences.
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Example: the SM routine for perceiving an episode

Webb, Knott and MacAskill, ‘Eye movements during transitive action observation have sequential structure’
Acta Psychologica 2010
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Example: the SM routine for perceiving an episode

We argue: perceiving (or performing) a transitive action involves a
canonical sequence of SM operations.

Step SM operation
1 identify_agent
2 identify_patient
3 identify_action
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Example: the SM routine for perceiving an individual

Walles, Robins and Knott, ‘A perceptually grounded model of the singular-plural distinction’
Language and Cognition 2014
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Example: the SM routine for perceiving an individual

We argue: identifying an individual also involves a canonical sequence
of SM operations.

Step SM operation
1 attend_location
2 establish_scale (=identify singular or plural)
3 activate_class

Alistair Knott, Martin Takac (Univ. Otago) Semantic working memory 7 / 24



A model of WM representations

How are episodes and individuals represented in WM?

Our proposal: they are stored as prepared SM routines.
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Benefit 1: a road map

We know lots about how SM sequences are stored in WM.

Prefrontal cortex is heavily involved.
In the prefrontal assembly representing a planned sequence of
actions, representations of the actions are active in parallel.

greater the distance between these two probabilities, the more
secure the outcome of the classification. We evaluated this
question by calculating the ratio S1!S2 and assessing its statistical
significance across the whole population; for the latter objective,
the S1!S2 ratios were log-transformed to normalize their distri-
butions. Then, a paired t test was performed on the difference
of these logratios and the antilog of the mean logratio difference
computed (i.e., the geometric mean) to express the results in the
original ratio scale.

Finally, we developed a metric built on the bin-based analysis
to quantify the strength with which each ensemble represented
the various segments in a shape across time, as follows. Each trial
was converted to a sequence of represented segments by clas-
sifying the ensemble activity pattern in successive bins to seg-
ments, as described above. Then, across trials, we counted the
number of trials that the ensemble activity was classified to each
segment in a given bin. In that bin, the representation strength
of each segment was then defined simply as the percentage of the
total trials that the activity in that bin was classified to each of
the segments. The representation strength is therefore the
probability of representation of each segment in a bin. Aggre-
gating these bin-wise data across all ensembles produced the
representation strength functions of Fig. 2, which characterize
the strength with which each segment is represented within
prefrontal cortex across time.

Results and Discussion
Monkeys drew a total of four geometrical shapes shown as
templates on a screen (Fig. 1). Individual copying trajectories
consisted of consecutive submovements characterized by bell-
shaped velocity profiles. These submovements were serially
ordered segments of the whole trajectory, qualitatively analo-

gous, e.g., to phonemes in syllables. In both cases, the serially
ordered segments, succeeding each other in time without inter-
ruption, give rise to a continuous motor output, namely drawing
a shape or uttering a syllable. We recorded the activity of 511
cells in the prefrontal cortex during the copying task. These cells
were located within Walker’s area 46 in the dorsal and ventral
banks of the posterior principal sulcus, and immediately adjacent
gyral cortex. Fig. 1b illustrates the impulse activity from 16 cells
recorded simultaneously. Small ensembles of 3–22 cells (mean !
9 cells, n ! 58 ensembles) were recorded simultaneously. In
"97% of cases, the ensemble activity patterns differed signifi-
cantly among segments of a shape (multivariate ANOVA, Wilks’
Lambda, P # 0.05) and, therefore, could be used for classifica-
tion purposes. We found that, across the whole population, the
posterior probability of the winner segment was, on the average,
14.5 times higher than that of first runner up segment (geometric
mean, see Materials and Methods), a significant value (P # 10$20,
paired t test). These findings document the validity of the
classification outcomes from which the following results were
obtained.

Strength of Segment Representation. Shapes were copied in blocks
of trials (see Materials and Methods). This provided advance
knowledge to the monkeys during the WT (Fig. 1) concerning
the shape they would copy; this was true for all but the first trial
of the block which was not included in the analysis. Because a
shape was drawn as a sequence of distinct segments, this
advanced knowledge could be manifested as a proactive repre-
sentation of the segments to be drawn during the WT and RT.
Fig. 2 shows the time courses of the strength of representation
of each segment during the WT, RT, and the drawing of each
segment for several shapes copied. It can be seen that during the

Fig. 2. Plots for all four shapes of strength of representation vs. time. Each plot shows the strength of the representation of each segment for each time bin
of the task. Time 0 indicates the onset of the template. Time bins during hold period and RT are 25 ms. Length of segments were normalized to permit averaging
across trials. Plots show parallel representation of segments before initiation of copying. Further, rank order of strength of representation before coping
corresponds to the serial position of the segment in the series. The rank order evolves during the drawing to maintain the serial position code. Line color
corresponds to segments as follows: yellow, segment 1; green, segment 2; red, segment 3; cyan, segment 4; magenta, segment 5. Not all lines are defined for
all shapes.

13174 " www.pnas.org!cgi!doi!10.1073!pnas.162485599 Averbeck et al.

Averbeck et al., ‘Parallel processing of serial movements in prefrontal cortex’
PNAS 2002
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Benefit 2: support for simulation

If experiences are stored as prepared SM routines, they’re
executables.

SM system
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Benefit 3: support for a model of sentence generation

If experiences are stored as prepared SM routines, they’re
executables.

Our idea: generating a sentence involves replaying an episode
held in WM in a special mode, where SM signals trigger output
words.

SM system

WM
representations

Long-term Memory

surface language

Takac, Benuskova and Knott, ‘A connectionist model of language acquisition and sentence generation’
Cognition 2012
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Benefit 4: a new account of semantic role-binding
An episode representation has to identify the semantic role played by
each of its participants (e.g. AGENT, PATIENT.)

This is hard to do in a neural network model!
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Benefit 4: a new account of semantic role-binding
An episode representation has to identify the semantic role played by
each of its participants (e.g. AGENT, PATIENT.)

This is hard to do in a neural network model!
We can’t just activate all concepts in the episode simultaneously.
One old idea is to code semantic roles by place.

In our model, there’s a (single) medium holding WM representations of
individuals.

Agent Patient ActionWM individual

Alistair Knott, Martin Takac (Univ. Otago) Semantic working memory 12 / 24



Benefit 4: a new account of semantic role-binding
An episode representation has to identify the semantic role played by
each of its participants (e.g. AGENT, PATIENT.)

This is hard to do in a neural network model!
We can’t just activate all concepts in the episode simultaneously.
One old idea is to code semantic roles by place.

When perceiving an episode, we attend to the agent. . .

Agent Patient Action

John

WM individual

John

Alistair Knott, Martin Takac (Univ. Otago) Semantic working memory 12 / 24



Benefit 4: a new account of semantic role-binding
An episode representation has to identify the semantic role played by
each of its participants (e.g. AGENT, PATIENT.)

This is hard to do in a neural network model!
We can’t just activate all concepts in the episode simultaneously.
One old idea is to code semantic roles by place.

Then we copy this representation to the WM episode. . .

Agent Patient Action

John

WM individual

John JohnJohn

Alistair Knott, Martin Takac (Univ. Otago) Semantic working memory 12 / 24



Benefit 4: a new account of semantic role-binding
An episode representation has to identify the semantic role played by
each of its participants (e.g. AGENT, PATIENT.)

This is hard to do in a neural network model!
We can’t just activate all concepts in the episode simultaneously.
One old idea is to code semantic roles by place.

Then we copy this representation to the WM episode. . .

Agent Patient ActionWM individual

JohnJohn

Alistair Knott, Martin Takac (Univ. Otago) Semantic working memory 12 / 24



Benefit 4: a new account of semantic role-binding
An episode representation has to identify the semantic role played by
each of its participants (e.g. AGENT, PATIENT.)

This is hard to do in a neural network model!
We can’t just activate all concepts in the episode simultaneously.
One old idea is to code semantic roles by place.

Then we attend to the patient. . .

Agent Patient Action

Mary

WM individual

JohnJohn

Alistair Knott, Martin Takac (Univ. Otago) Semantic working memory 12 / 24



Benefit 4: a new account of semantic role-binding
An episode representation has to identify the semantic role played by
each of its participants (e.g. AGENT, PATIENT.)

This is hard to do in a neural network model!
We can’t just activate all concepts in the episode simultaneously.
One old idea is to code semantic roles by place.

Then we copy this representation to the WM episode. . .

Agent Patient Action

Mary

WM individual

JohnJohn

Mary

Alistair Knott, Martin Takac (Univ. Otago) Semantic working memory 12 / 24



Benefit 4: a new account of semantic role-binding
An episode representation has to identify the semantic role played by
each of its participants (e.g. AGENT, PATIENT.)

This is hard to do in a neural network model!
We can’t just activate all concepts in the episode simultaneously.
One old idea is to code semantic roles by place.

Then we copy this representation to the WM episode. . .

Agent Patient ActionWM individual

JohnJohn

Mary

Alistair Knott, Martin Takac (Univ. Otago) Semantic working memory 12 / 24



Benefit 4: a new account of semantic role-binding
An episode representation has to identify the semantic role played by
each of its participants (e.g. AGENT, PATIENT.)

This is hard to do in a neural network model!
We can’t just activate all concepts in the episode simultaneously.
One old idea is to code semantic roles by place.

Then we identify the action, and copy that to the WM episode.

Agent Patient ActionSM representations

kiss

WM individual

JohnJohn

Mary

Alistair Knott, Martin Takac (Univ. Otago) Semantic working memory 12 / 24



Benefit 4: a new account of semantic role-binding
An episode representation has to identify the semantic role played by
each of its participants (e.g. AGENT, PATIENT.)

This is hard to do in a neural network model!
We can’t just activate all concepts in the episode simultaneously.
One old idea is to code semantic roles by place.

Then we identify the action, and copy that to the WM episode.

Agent Patient ActionSM representations

kiss

WM individual

JohnJohn

Mary

Alistair Knott, Martin Takac (Univ. Otago) Semantic working memory 12 / 24



Benefit 4: a new account of semantic role-binding
An episode representation has to identify the semantic role played by
each of its participants (e.g. AGENT, PATIENT.)
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Benefit 6: representations of probability distributions
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Benefit 6: representations of probability distributions
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The training world

The world consists of individuals:
Animate objects of 4 types (PERSON, DOG, CAT, BIRD)
Things of 3 types (CUP, BALL, CHAIR).

Individuals randomly generated—vary in gender and colour (R, G, B),
placed at different locations (100x100 grid).

100 permanent individuals, non-permanent individuals added with
p=0.01 (can be forgotten).

Individuals participate in episodes.
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Episode

Episode types:
transitive agent→patient→trans-action (e.g. MAN CAT STROKE)

intransitive agent→intrans-action (e.g. BIRD SING)
causative agent→patient→cause-signal→causative-action (e.g.

MAN CUP CAUSE-TO-BREAK)

Actions:
transitive 10 (GRAB, HIT, PUSH, SEE, HOLD, KICK, HUG, BITE,

PAT, STROKE)
intransitive 8 (WALK, LIE, SNEEZE, SIT, SLEEP, RUN, SNORE, SING)
causative 4 (CAUSE-TO-BREAK, CAUSE-TO-HIDE,

CAUSE-TO-STOP,CAUSE-TO-GO)

The model is exposed to a continuous stream of episodes (not a fixed
training set).
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WM individual representation

Candidate WM episodes

Agent Patient ActionSM representations WM individual

Probability distributions
Locally-tuned detectors
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Probability distributions
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Probabilistic interpretation of neuronal activities

Sensory information encoded by populations
of neurons with local receptive fields.

From tuning curves of individual neurons,
compute for each neuron the (log)likelihood
that its response was generated by a
particular stimulus.

Log-likelihoods of neurons additively
combined to yield the log-likelihood of the
population response to the stimulus.

By repeating for all stimuli, get the likelihood
of every stimulus for the particular observed
population response.

Jazayeri and Movshon, ‘Optimal representation of sensory information by neural populations’
Nature Neuroscience 2006
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Candidate WM individuals
Candidate WM episodes

Agent Patient Action

candidate WM individuals

Location Number PropertiesSM representations

sing John

Functions:
Storage: Store exact combinations of
Location+Number+Properties for a short period of time.
Novelty detection: For a sensory input (in WM individual), decide
whether it corresponds to a novel (not recently seen) individual.
Recognition: If not novel, tell which of the stored individuals does
the sensory input correspond to.
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Recognition/novelty in candidate WM individuals

Stimulus: a perceived individual in the world

Neural response: SM activity stored in WM individual (I)
Candidate stimuli: remembered in weights of candidate WM
indiv. units (Ci )
Likelihoods: − log L(Ci) ≈ KL(I,Ci)

Recognized: most likely Cj , j = argminiKL(I,Ci)

Novelty: if KL of the most likely candidate still too big
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Candidate WM episodes
Candidate WM episodes

Agent Patient ActionSM representations

kiss

WM individual

JohnJohn

Mary

Functions:
Storage: Store typical combinations of Agent+Patient+Action for
a longer period of time.
Associative retrieval: Retrieve typical episodes most closely
resembling the input episode.
Topological organization: Represent similar types of episodes
close to each other.
Distribution: Represent multiple episode types in parallel
(probability distribution).

Self-organizing map (SOM) (Kohonen, 1982)
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Representation of distribution of episodes

Agent Patient Action

candidate WM individuals

Location Number PropertiesSM representations

Top-down bias
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Representation of distribution of episodes
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Expectations on episode continuation

PERSON+DOG → PAT

PERSON+CAT → STROKE

BIRD → SING

prior expectations

Alistair Knott, Martin Takac (Univ. Otago) Semantic working memory 21 / 24



Expectations on episode continuation

PERSON+DOG → PAT

PERSON+CAT → STROKE

BIRD → SING

prior expectations

Alistair Knott, Martin Takac (Univ. Otago) Semantic working memory 21 / 24



Expectations on episode continuation

PERSON+DOG → PAT

PERSON+CAT → STROKE

BIRD → SING

prior expectations

Alistair Knott, Martin Takac (Univ. Otago) Semantic working memory 21 / 24



Expectations on episode continuation

PERSON+DOG → PAT

PERSON+CAT → STROKE

BIRD → SING

prior expectations

 0

 0.5

 1

G
ra

b
H

it
Pu

sh
W

al
k

R
un Li
e Si
t

Si
ng Se
e

Sn
or

e
Sn

ee
ze

Sl
ee

p
H

ol
d

H
ug Bi
te

Ki
ck

Br
ea

k
St

op
H

id
e

G
o

Pa
t

St
ro

ke

 0

 0.5

 1

Ac
tiv

ity

 0

 0.5

 1

Alistair Knott, Martin Takac (Univ. Otago) Semantic working memory 21 / 24



Expectations on episode continuation

PERSON+DOG → PAT

PERSON+CAT → STROKE

BIRD → SING

prior expectations

 0

 0.5

 1

G
ra

b
H

it
Pu

sh
W

al
k

R
un Li
e Si
t

Si
ng Se
e

Sn
or

e
Sn

ee
ze

Sl
ee

p
H

ol
d

H
ug Bi
te

Ki
ck

Br
ea

k
St

op
H

id
e

G
o

Pa
t

St
ro

ke

 0

 0.5

 1

Ac
tiv

ity

 0

 0.5

 1

Alistair Knott, Martin Takac (Univ. Otago) Semantic working memory 21 / 24



Expectations on properties/locations of individuals
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Summary

A novel account of semantic working memory that supports:
simulations of stored episodes,
binding between roles and fillers,
nested semantic structures,
representation of probability distributions of episodes,
dynamic expectations/predictions.

Alistair Knott, Martin Takac (Univ. Otago) Semantic working memory 24 / 24


