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Abstract

We have created software that shows a musician the
pitch of the notes he or she is playing or singing, in real
time and very accurately. This is useful as a teaching aid
for beginners and also for studying refinements of sound
production such as vibrato.
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1 Introduction

Music is the most abstract form of art. Sound appeals
to us emotionally and very directly. And, as in every art
form, this seemingly effortless communication is achieved
by an intensity of study and attention to detail that almost
defies belief. Serious musicians spend countless hours re-
fining technique and eliminating tiny defects that most of
their audience would never be aware of at a conscious level.

Our long term goal is to develop a variety of tools with
which to study all aspects of musical performance. A graph-
ical interface can give immediate, non-verbal and accurate
feedback to a musician. It can also help us to analyse per-
formance and learn something about how we make artistic
and technical choices.

We have started in a small way with a study of musical
pitch. That is to say we are looking at how high or low
the frequency of a note is without regard to the timbre or
tone quality. A note can be “in tune” or “out of tune” but
within our idea of what is “in tune”, the artist can make
choices. Singers, and those who play instruments that per-
mit such variation, consciously or unconsciously, pitch their
notes subtly differently in different contexts to produce dif-
ferent artistic or emotional effects.

The experimental tool we have created enables begin-
ners to learn to find the right notes accurately and more
advanced players to study these subtler variations with the
help of an independent and objective tool. One of the things

a performer needs to do is listen in a critical frame of mind.
An actor in comedy does not laugh because he or she must
maintain the character. A musician may enjoy his or her
own playing but must maintain concentration on what is
to be improved. We do not always know why something
sounds better or worse. This knowledge can help us to im-
prove our art and help us to know where to concentrate our
efforts.

The great physicist, Hemholtz, studied the intonation of
the famous violinist, Joseph Joachim, and reported that he
played an unaccompanied scale in “just and not even tem-
pered intervals” [9]. Even this simple conclusion was no
mean feat in the 19th Century. Helmholtz had devised a set
of resonators that enabled him to identify pitch reasonably
objectively but it must have taken quite a time to observe
the whole scale, checking each note individually with sev-
eral resonators. And the resonators themselves each had to
be calibrated against a standard siren that could be operated
to produce sound at any given pitch.

Technology has made this kind of measurement easier
and there are “electronic tuners” available commercially
that will tell you if a note is above or below one of a number
of fixed pitches. Note that this is a much simpler problem
than determining the precise pitch of a given sound.

From our point of view, there are two main issues. We
must determine the pitch of each note fast enough for im-
mediate feedback to the musician, and we must display this
information in an immediately useful form. In practice, this
means we have to find the frequency of a signal within about
1/20 seconds and display the result as a continuously vary-
ing graph so the immediate history of the sound is also vis-
ible.

The determination of pitch is actually more than the de-
termination of frequency. In order to know the pitch, it is
necessary to deduce the dominant frequency from a number
of frequency components of the wave. Our algorithms yield
all these harmonic components and their amplitudes so we
also have the basis for further analysis of timbre.

In the rest of this paper, we describe how we find the
pitch with sufficient speed and accuracy. We then report



on our results with demonstration output and finally our ex-
perience testing the system with the help of a professional
violinist.

2 Finding the pitch

The fundamental frequency of a note is the number of
complete cycles of the waveform repeated every second. In
principle, this can be determined from a Discrete Fourier
Transform (DFT) applied to a set of samples of the wave-
form amplitude. In practice, the set of samples is taken over
a short time interval that we call the ”sampling window”.
To get a reasonably accurate result, you either need a very
long sampling period (large window) or you need to guar-
antee that you have a whole number of cycles within the
window. The large window is not possible if the note keeps
changing and a whole number of samples implies that you
already know the pitch.

Our approach is to multiply the samples within the win-
dow by a Gaussian function and use a Fast Fourier Trans-
form (FFT) to find an approximation to the fundamental. It
is then possible to generate a more accurate spectrum by
smoothing and resampling the wave to create a window that
contains a whole number of waves.

Algorithm outline:

1. Select a sampling window from the incoming data. For
continuous display, these windows may overlap in time
(section 2.1).

2. Apply the Gaussian function to the window (section
2.2).

3. Perform the FFT (section 2.3).

4. Identify principal frequencies (section 2.4).

5. Identify the fundamental as a sub-multiple of the fre-
quency of greatest amplitude (section 2.5).

6. Recognise the fundamental as a note of the musical
scale (section 2.6).

At this stage the pitch can be displayed. We also have
enough information to smooth and resample the original
data and repeat the pitch determination on a widow that is
a multiple of the fundamental frequency (section 2.7). This
enables us to find the amplitudes of the harmonics accu-
rately. It also improves the accuracy of the fundamental
determination.

2.1 Window Selection

The FFT process, in practice, requires a number of sam-
ples that is a power of two. So at 44100 samples per second

we might choose 2048 as the window size because this is
approximately 1/20 seconds and represents the rate at which
we need the result.

2.2 Applying a Windowing Function

Applying a windowing function tapers the data at the
window’s ends, reducing discontinuities at its edges. The
window’s data is multiplied by the windowing function [5]
[7]. This localises the time as well as the frequency when
a DFT is performed on it, and it minimises “spectral distor-
tion”. Multiplying in the time domain is equivalent to a con-
volution in the frequency domain. By choosing a suitable
windowing function, we can arrange that the convolution
achieved reduces spectral leakage effects [6]. A Gaussian
windowing function is used for reasons described in section
2.3.

2.3 Performing an FFT on Windowed Data

Using a straight FFT (with no windowing function) gen-
erates the narrowest possible main lobe in frequency space,
but large sinc-function side lobes. No spreading of exact
harmonic components occurs; but it produces lots of spec-
tral leakage with non-harmonics. Spectral leakage is loss
of information about the exact frequencies, being spread
across the integer multiples of the transform(figure 1). Us-
ing a windowing function reduces the size of the side lobes,
but at the same time broadens the main lobe of the spectral
line.

Figure 1. Here a single frequency has been
spread by spectral leakage, with a large main
lobe and many side lobes.

There is a fundamental limit on what windowing func-
tions can optimise. This is defined by the Uncertainty Prin-
ciple [10]. The function which meets the bound, giving



the smallest side lobes, is the Gaussian windowing function
(figure 2) [4]. The use of the Gaussian windowing function
also results in nearly phase invariant spectral coefficients.
The Gaussian window function used is

y(x) = e−
1
2 (2.5( 2x−w

w
))2 (1)

where w is an even window width, and x runs from 0 to
w − 1.

Figure 2. The Gaussian windowing function, a
wave, and the Gaussian applied to the wave.

2.4 Finding Gaussian Peaks

Multiplying the original wave by a Gaussian has the
same effect as convolving the Fourier spectrum with a
Gaussian. So, Gaussian smoothing has been performed in
the frequency space. We now have a set of frequency coeffi-
cients that are values from the underlying continuous func-
tion made up of the addition of Gaussians. The assumption
is made that these Gaussian shapes from each harmonic are
far enough apart that we can treat each one locally as just
one Gaussian (Figure 3). The maximum of each of the lo-
calised Gaussians can then be found.

A local centre can be found by using three of the co-
efficients about it, fitting a Gaussian equation to them and
finding the mean.

The general form for a Gaussian equation is

y = he−
(x−µ)2

2σ2 (2)

Where h is the height, σ the standard deviation, and µ the
mean. By taking the logarithm of both sides of the equation,
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Figure 3. The dots representing the coeffi-
cient values on the underlying sum of Gaus-
sian’s function can be used to find the local
centre frequencies.

this is reduced to a quadratic that can easily be solved:

loge(y) = loge(h) +
(x − µ)2

2σ2
(3)

z = ax2 + bx + c (4)

where

z = loge(y) (5)

a =
−1

2σ2
(6)

b =
µ

σ2
(7)

c = loge(h) −
µ2

2σ
(8)

where h, µ and σ are constant for a particular solution. If
we shift the axis so it is centred on the middle of the three
points, we can define the intermediate variables z

−1, z0, and
z1 as follows

z
−1 = a − b + c (9)

z0 = c (10)

z1 = a + b + c (11)

The maximum can be found by equating the derivative to
zero. This gives

x =
z
−1 − z1

2(z1 + z
−1 − 2z0)

(12)

the frequency at the maximum, with respect to this coordi-
nate system.

2.5 Choosing the Fundamental

After the frequencies of all the local maxima have been
found, their amplitudes are calculated. The strongest fre-
quency is selected and assumed to be one of the harmonics
from the note being played. The fundamental is not always
the strongest frequency in a note. Figure 4 shows an exam-
ple of a note where the fifth harmonic is the most powerful.

The pitch of the note is related to the “dominant” fre-
quency. In this case, dominant means what a musician per-
ceives to be the main frequency. This is not necessarily the
lowest or the one with the largest amplitude. The following
process appears to agree with our subjective observation al-
most all of the time.

Firstly we pick out the frequency, f, with the largest am-
plitude. This is almost certainly a true harmonic of the fun-
damental we are seeking. In other words, the fundamental
frequency is F = f/n where n is an integer. For each value
of n from one to ten we examine the spectrum to see how
many frequencies are potential harmonics of F. A frequency
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Figure 4. An example of a harmonic note and
the power associated with each frequency.
Here the fifth harmonic is the strongest.

is a potential harmonic if it is close the ideal frequency of
the harmonic. We actually calculate a score for each F = f/n
which is a weighted sum of closeness measures. The more
peaks that are separated by F the better the fit.

We have tested various measures of closeness and their
combinations. For example, if the difference of two poten-
tial harmonics is very close to F, this is good evidence that
F is the correct fundamental even if the potential harmonics
are not exact multiples of F. We are still refining it.

Basically this process works like a voting scheme. The
“frequency differences between peaks” vote for how well
they fit each of the proposed fundamental frequencies (us-
ing Gaussian drop off). The strength of their votes is based
on the square of the constituent amplitudes (in dB). The
votes are then normalised by dividing by the total number
of possible votes. The fundamental with the highest number
of votes is chosen as the pitch of the note. The output from
this stage is a good approximation to the pitch of the note
which can be displayed.

2.6 Calculating Which Note on the Scale

Once we have the fundamental frequency, it can be con-
verted into a note on the western musical scale. Using the
tempered scale [2], which has all the notes evenly spaced
(on a log scale), the following equation can be used

n =
log( f

27.5 )

log( 12
√

2)
(13)

where n is the number of semitones from A0, the lowest
note of a piano. The decimal part of the number can be used
to determine how sharp or flat from the tempered scale the
note is. To convert this value into cents, a unit of sharpness,
simply multiply the decimal part by 100.

2.7 Refining the Window

We cannot apply the FFT to this new window because it
doesn’t have a power of two as the number of samples. So
we smooth the input either by linear interpolation or with a

cubic B-spline [3] and resample the result. We then apply
the Gaussian window and FFT to the new sample set. All
the harmonics have periods that fit or almost fit a whole
number of times into the new window. Thus the ampli-
tude information for the harmonics is more accurately rep-
resented than from the calculation in the original window.

We use the FFT, of course, because it operates in O(n
log(n)) time. This resampling method appears to be bet-
ter than the common approach of zero-padding the data to
fit the specially sized window. Some quantisation noise
gets introduced but there is no associated frequency shift-
ing. Also, we can make the window any length. With zero-
padding, it is still a whole number multiplied by the time
between consecutive original samples.

We seem to get very similar results with linear interpo-
lation and with the B-spline. The B-spline is a little slower
but the smoothing operation is still O(n). The total time
complexity of the smoothing, resampling and FFT is still
O(n log(n)).

3 Displaying the Pitch

We implemented a musical pitch viewing program in
C++ with the Qt [11] library using the techniques described
in this paper. You sing or play an instrument into a micro-
phone and the note being played is displayed in real time
(about 1/20th of second delay), taking 44100 samples per
second input. This was running on a Pentium III - 550MHz,
with 256MB memory and a 16 bit sound card.

Figure 5 shows a screen shot of the pitch viewer pro-
gram. It has four main views. Firstly, the top left view
displays the raw sound wave. The bottom left displays the
frequency of the note being played through time, with refer-
ence lines displaying the tempered scale. The bottom right
displays the note being played on a musical stave. The top
right shows the power of each of the harmonics in the note
(on a logarithmic scale).

The program uses one window size in the first instance to
approximate the fundamental frequency, and overlaps each
window with half of the next window. Bigger window sizes
result in less responsive but more accurate information, al-
lowing for better detection of low notes. Smaller window
sizes allow for faster response with less accurate informa-
tion. If two notes are played very rapidly, a large window
will cause an intermediate pitch to be displayed.

Multiple levels of window size could be used simultane-
ously, if you need both accuracy and fast response.

4 Results

Kevin Lefohn, executant lecturer in violin and viola at
The University of Otago, gave us feedback on the program.



Figure 5. A screen shot of the pitch viewing program. Here an E major scale has been played on a
guitar, with the last note E2 currently being played.

His comments were very encouraging and are incorporated
in our findings below:

• The instant response is useful for visualising in real
time where the pitch of the note being played is placed.
People who play fretless instruments such as the vio-
lin, play subjectively. The musician can only deter-
mine the pitch of the note by ear. This skill can take
many years to learn, and people’s opinions of pitch can
vary. This program provides them with objective infor-
mation about what is actually being played. They can
see exactly how flat or sharp a note is.

• The program allows you to play a recorded sound over
and over, becoming a learning tool for students or play-
ers wishing to have an “outsider” look/listen at what
they have played. It allows experts to analyse what
they have played at a later stage.

• One of the more fascinating discoveries that we made
was the fact that the program picked up any discrep-

ancy in tone as a pitch changed, showing wobbles in
the bow. It picked up little details such as slides be-
tween notes which we had never noticed before, but
when we knew to listen for them we could hear them.
Another detail was that some of the pitches he played
on the way down a scale were slightly different from
the notes he played on the way up the scale. He was
doing this by choice because it gave him the sound he
wanted. The program gives us a clear way to see and
measure these discrepancies.

• Vibrato, a technique used to beautify a note by fast
variation of the pitch of a note could be visualised
clearly by the program. Typically vibrato oscillates
around 4 to 5 times a second, and in theory the pitch
is supposed to be on and below the specified note. But
the program showed that this was not always the case.
When the vibrato note sounded most in tune, the high-
est pitch was above the subjectively correct note. This
was only tested on a very small sample set, so there is



room for more investigation here.

5 Discussion

The algorithm presented here seems to work well but is
still in the early stages of development. Other methods can
be tried for the interpolation and for choosing the funda-
mental. We can determine the amplitude of each harmonic
in the note and this will lead to developments such as

• The harmonic frequencies in notes vary over time, giv-
ing notes their characteristic sound. Each harmonic
creates an envelope over time describing the energy
associated with it 6. These envelopes could be used to
present information about the instrument and how it is
being played. Things such as the way a guitar has been
plucked affect these harmonic envelopes and could be
studied more to understand them, and even reproduce
the sounds mathematically.

• Not all harmonics in a note are a perfect multiple of the
fundamental because things such as guitar strings are
not perfect resonators. It would be interesting to inves-
tigate how sharp or flat each harmonic is with respect
to the fundamental, and to see how much variation oc-
curs.

• The pitch of a note appears to changes as it gets louder.
Is this actually a characteristic of the sound or is it a
artefact of our perception? Some experiments could
be done to investigate this.

• There are some automatic score writers available on
the market, such as Sibelius1 and Finale2, but they do
not go to sub note accuracy. There is room for extend-
ing the midi format to include more information about
how a note has been played, because in real music the
same note is not played exactly the same every time.

• We should also study multiple notes played simultane-
ously. This is a lot more complicated but it is necessary
if we are to study harmony.

6 Conclusion

We have presented a method for finding the pitch of a
note in real time, with the ability to extract information
about the power associated with each harmonic. It can cal-
culate the fundamental frequency and give a response in
about 1/20 of a second.

The pitch is displayed visually providing a useful tool
for musicians. We have demonstrated the ability to analyse

1www.sibelius.com
2www.codamusic.com/finale

Figure 6. Analysis of a note over time showing
the envelope of each harmonic component as
a ridge.

vibrato. It can be used as a teaching tool, allowing teachers
and students alike to visualise details of music as it is being
played. It also makes a great tuning device which can be
used by anyone, being both more responsive and easier to
use than existing electronic tuners.
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