

Searching Structured Documents

Andrew Trotman

Department of Computer Science, University of Otago, Dunedin, New Zealand. andrew@cs.otago.ac.nz

Research conducted at: National Center for Biotechnology Information, Bethesda, Maryland, USA.
.

Abstract
Structured document interchange formats such as XML and SGML are ubiquitous, however
information retrieval systems supporting structured searching are not. Structured searching can result
in increased precision. A search for the author “Smith” in an unstructured corpus of documents
specializing in iron-working could have a lower precision than a structured search for “Smith as
author” in the same corpus.

Analysis of XML retrieval languages identifies additional functionality that must be supported
including searching at, and broken across multiple nodes in the document tree. A data structure is
developed to support structured document searching. Application of this structure to information
retrieval is then demonstrated. Document ranking is examined and adapted specifically for structured
searching.

Keywords: Structured Information Retrieval; Indexing and Searching; Vector Space; Boolean Searching; SGML and XML

1. Introduction
When documents were simple text files, queries could only be asked of the entire document. Today
XML (Bray, Paoli, & Sperberg-McQueen, 1988) and SGML (ISO8879:1986) have become popular.
Both XML and SGML encourage the markup of semantic documents elements. The title should be
tagged as such. The authors should be tagged as such and so on. Taking advantage of this structure
has two gains: increased functionality and increased precision (Schlieder & Meuss, 2002).

Work on increasing functionality is evidenced by the proliferation of XML query languages such as
XIRQL (Fuhr & Großjohann, 2001), XQL (Robie, Lapp, & Schach, 1998), XML-QL (Deutsch,
Fernandez, Florescu, Levy, & Suciu, 1998), and ELIXIR (Chinenyanga & Kushmerick, 2001). These
languages identify two kinds of search, structure searching and content searching.

Structure searching finds document that have a given structure or substructure, for example “find all
documents that have an address tag within an author tag”. Searching for the existence of a tag structure
is analogous to searching for the existence of search terms (Schlieder & Meuss, 2000).

Content searching is the IR search. Find all documents that contain the word “Seuss”. When structure
is available it becomes possible to build content-based searches using structure. “find all documents
containing Seuss as the author”.

XML query languages have been criticized because formulating a query requires intimate knowledge
of the document structure (Schlieder & Meuss, 2002). This may well be true, but they do identify the
ways structural paths can be specified.

Using XIRQL (Fuhr & Großjohann, 2001) notation, a query for “heading” searches for the existence of
heading tags. A query for “body//heading” searches for a heading within a body. A search for
“body/heading” searches for a heading as an immediate child of body. If a specification starts with a
“/” it is relative to the root of the document.

The path specification constructs apply not only to searching for structure, but also to searching for
content. There are four possible ways to search:

 1

 Search for a term
 Search for a term in a tag
 Search for a term in a partially specified branch of the document tree
 Search for a term in a fully specified branch of the document tree

Although such queries can be specified, resolving the query against a database can be complex. It is
conventional to print species names in italics, it is therefore reasonable to expect all instances of E.coli
to appear marked up. A title might be “E.coli inquiry calls for stricter laws on selling meat”. The
markup might be:

<title><organism><genus>E.</genus><species>coli</species></organism>inquiry calls for stricter
laws on selling meat</title>

The query “coli within organism” should match this title even though the tag specified is not a leaf of
the document tree. The query “phrase ‘coli inquiry’ within title” should also match this document even
though the query lies across tag boundaries.

Research into query languages has progressed more quickly than research into implementing such
languages. Implementations of structured search systems exist using relational databases (Beitzel,
Jensen, Grossman, Ingham, & Lewis, 2001; Chinenyanga & Kushmerick, 2001), object databases
(Shimura, Yoshikawa, & Uemura, 1999) and information retrieval systems (Burkowski, 1992; Lee,
Yoo, Yoon, & Berra, 1996; Meuss & Strohmaier, 1999; Schlieder & Meuss, 2002; Thom, Zobel, &
Grima, 1995), but each has limitations. Only IR systems support relevance ranking, however most do
not fully support the query language constructs.

2. Related work
Lee et al. (1996) discuss a number of representation schemes for structured data and suggest that
Inverted Index for All Nodes without Replication (ANOR) performs best. A corpus of structured
documents is parsed into a single document tree. This document tree is then interpreted as a k-way
virtual tree (some nodes may not exist) and each node given a unique identifier. Each term is then
stored at the node which is the lowest parent of all occurrences of that term. This way each term is
stored against only one node in the tree. The postings for a given term in a given record thus form the
ordered pair (document-id, node-id).

person
female
girl

person
female
woman

person
man
girl

A

B

D E

C

Source Tree

person
girl

female man

woman

C

A

B

D E

ANOR tree generated

Figure 1: The ANOR tree incorrectly promotes girl to lie at node A implying existance at node E

The ANOR encoding is lossy. Term locations in the indexes are not the location in the original
document; they are the lowest parent of all occurrences. Consequently, terms can lie in the encoded
tree in locations in which they do not lie in the data. Such an example is given in figure 1. When a
user issues the query “girl in E” the result is true, however it should be false. Girl has incorrectly been
promoted to node A because it is the lowest parent of all occurrences of the term girl, even though girl
does not appear at node E.

 2

Shin et al. (1998) suggest a system called the Bottom Up Scheme. BUS stores terms only at the leaves
of a corpus wide document tree (for example the source-tree in Figure 1). Nodes in the document tree
are encoded using a similar technique to that of Lee et al. (1996). Each instance of each term is stored
in the inverted files along with the node-id for the leaf node. Searching at any node in the document
tree is supported through a bottom-up tree walk. Term frequencies are accumulated during walk. Once
the walk is complete relevance calculations can be accurately determined from the accumulated
occurrence counts. Searches at the root of the document tree are supported by a bottom up search of
every tree node. To execute such a search requires loading and parsing many inverted lists.

Thom et al.(1995) suggest storing document tree paths directly in the postings. If each unique tag is
given an ordinal identifier, each path through the document-tree can be represented as a string of
integers. Any term lying in M places in the document tree can be represented by the tuple <docid, path
length, path, count=M, offset 1, offset 2, …, offset M> where offset is the offset in indexable terms
from the beginning of the specified path. Thom et al. report a major limitation to their encoding – it is
unable to resolve proximity queries across tags. It cannot resolve the query “phrase ‘coli inquiry’ in
title” in the earlier example because stored offsets are from the beginning of the path in which the term
lies.

Meuss and Strohmaier (1999) also suggest storing the path directly in the indexes. A single document
tree is constructed for the corpus, and each node given an ordinal number (from 0 through M). For any
term in any location in the tree, the path to that term is represented as a bitstring of length M. If the
term lies under a given node, a 1 bit is stored in the bitstring at the ordinal node location. Elsewhere a
0 is stored. A compressed form of the bitstring is stored with each posting. To determine if a given
term lies at a given location in the document tree, the posting is read and the bitstring checked. These
bitstrings can become very long so Meuss and Strohmaier suggest forfeiting recall for compression

Schlieder and Meuss (2000, 2002) examine indexing and searching in XML documents. Each tag in
the DTD is given a unique identifier. Each occurrence of each term is stored in multiple inverted lists,
one for each tag in which the term occurs. They demonstrate how document structure can be deduced
from the indexes. If a given occurrence lies in two inverted lists, one must be the parent of the other.
In order to determine which is the parent requires index augmentation. They augment with three
identifiers, one of which is the preorder number of the node in the cross-corpus document tree. This
requires complete knowledge of the structure of all indexable documents in advance.

Kotsakis (2002) represents the structure of XML documents as a tree whose nodes are given ids on an
“as encountered during indexing” basis. Each posting is a pairing of record id and node id. This
technique does not require the structure in advance, so database addition and deletion are supported.
The Kotsakis method generates a separate inverted file for each leaf in the tree. Lee et al. (1996)
suggest multiple index encodings are inefficient in storage as duplication could be vast.

Fuhr and Gövert (2002) suggest building a separate document tree for each document. Each node in
each tree is given a unique path handle – a concatenation of document number and an ordinal encoding
of tree location. Strings of these handles form the postings in the inverted lists. As the document tree
is different for each document, the same path in multiple documents is likely to be represented by
multiple identifiers. It is therefore necessary to store all trees in memory while searching. This is
achieved through compression. Although these indexes are shown to compress very well, they are also
shown to decompress inefficiently.

Burkowski (1992) and Dao (1998) suggest modelling the corpus as a series of contiguous extents. As a
document is parsed each occurrence of each term is given a unique ordinal number. Each tag is
represented as an extent. The start of the extent is the ordinal number of the first term inside the tag.
The end of the extent is the ordinal number of the last term inside the tag. A structured query is
represented as a series of successive filters. First find the postings for the term, filter it to lie within the
given tag, and then filter to lie within given documents. Loading these filters from disk can take
considerable time, as they can be larger than the postings for the searched terms. Thom et al. (1995)
suggest the postings for a frequently occurring tag such as “paragraph” may take up 2-5% of the
indexes.

 3

The techniques presented thus far fall into two classes: inextensible solutions and extensible solutions.
Inextensible solutions require advance knowledge of the document tree of all documents before
indexing (documents with a different structure cannot be added). Such knowledge may not be
available. Extensible solutions forfeit recall (Meuss & Strohmaier, 1999), forfeit functionality (Thom
et al., 1995) or are required to perform excessive disk I/O (Burkowski, 1992).

3. Proposed Method
3.1. The Field Stream
A document is a linear stream of characters. This character stream is converted into a tokenized term
stream by breaking at separators such as spaces and commas.

If multiple documents are in the same input stream a reserved token is inserted into the tokenized term
stream to signal the start of a document, and another to signal the end of a document. For streams
containing structured data, field start and field end tokens are also inserted.

An example field stream might look like this:

<record><f1>term1</f1><f2>term2<f3>term3</f3></f2></record><record><f1>term4</f1></record>

For hierarchical data, sequences of field start tokens unbroken by field close tokens are generated. In
the example above, f3 is inside f2, which is parallel to f1. Both records have an f1.

Parsers generating these streams exist for highly structured data such as SGML (ISO8879:1986) or
XML (Bray et al., 1988). SP (Clark) generates a field stream from an SGML document and a DTD.
Other formats such as ASN.1 (ISO8824:1987) can also be converted into this format.

Both structured and unstructured documents can be parsed into the same stream. Unstructured
documents have no field tokens.

3.2. The Document Tree
The field stream is a walk through a tree, the document tree. The tree is initialized with a root when
presented with the first document, and a pointer set pointing to it. When a field start token is
encountered the pointer is adjusted to point to the appropriate child of the current node. If such a node
is not found, it is created, and the pointer adjusted. When a field close token is encountered, the pointer
is moved up in the tree. At the end of each document the pointer should have returned to the root.

During construction each node is given a unique identifier (the field id), starting with zero for the root
and incrementing by one for each new node created. A walk of unstructured data will result in a tree
with a root node having the field id zero and no children.

Once the field stream is walked for all documents, the tree represents every single path in the corpus,
and each node has a unique field identifier. The tree is unlikely to be an exact match of paths from any
one document, but it does match all paths from all documents. This tree, like that produced by
Kotsakis (2002), is extensible. Once indexing is complete new documents can be added, even if they
are in a new structure (perhaps the DTD has changed over time).

Terms can occur at any node or any leaf of the tree. Searching a document for the existence of a term
within a given tag therefore requires searching at and below tree nodes.

 4

figurecaption

figurecaption

subsection

brown

section

document

Figure

brown

figurecaption

figurecaption

subsection

brown

section

document

Figure

brown

figurecaption

figurecaption

subsection

brown

section

document

Figure

brown

figurecaption

figurecaption

subsection

brown

section

document

Figure 2: “figurecaption” is mult iple and disjoint

brown

figurecaption

figurecaption

subsection

brown

section

document

Figure

brown

figurecaption

figurecaption

subsection

brown

section

document

Figure

brown

figurecaption

figurecaption

subsection

brown

section

document

Figure

brown

figurecaption

figurecaption

subsection

brown

section

document

Figure 2: “figurecaption” is mult iple and disjoint

brown

Nodes are not atomic search units for some queries. In the structure represented in figure 2,
“figurecaption” lies at two disjoint locations in the tree. A search for “brown in figurecaption” requires
a search across multiple disjoint nodes. Lee et al. (1996) suggest searching at the parent node
“section”, however this would incorrectly find “brown in subsection”. Some queries must be resolved
in many locations, including both leaves and nodes of the tree. Shin et al. (1998) use a separate
inverted file for each node and walk the tree looking for occurrences, however the loading multiple
inverted lists is inefficient.

figurecaptionfigurecaption

subsection

section

document

ROOT0

1

2

4

5

6

7

83

0

1

2

4

5 paragraph paragraph

paragraph

6

7

83

Figure 3a: Bit-strings stores at nodes

figurecaptionfigurecaption

subsection

section

document

ROOT0

1

2

4

5

6

7

83

0

1

2

4

5 paragraph paragraph

paragraph

6

7

83

Figure 3a: Bit-strings stores at nodes

ROOT

document

section

subsection

figurecaption

paragraph

0 1 2 4 5 6 7 83

Figure 3b: The tree is flattened

Field ID

ROOT

document

section

subsection

figurecaption

paragraph

0 1 2 4 5 6 7 83

Figure 3b: The tree is flattened

Field ID

 5

The many to one relationship between tree nodes and tag name is stored in a list. Each time the tree is
altered (before the first search) the tree is walked from leaves to root constructing at each node a list of
field ids at and beneath that node. The lists are then combined to generate a list of ids for each tag.
These lists are encoded in a bitstring (one bit per id) of length “nodes in tree”. Creating these lists is
done through a series of bitwise OR operations. An example of a tree and encoding is given in figure
3.

The field list represents every single unique tag in the collection alongside a list of the ids at and
beneath (within) where it lies in the document tree. If a tag occurs multiple times in disjoint parts of
the tree, this will be reflected in the field list.

Content searching structured documents can now be mapped to constructing a set of nodes from the
document tree. To search for a given term anywhere in the document, the set is the full set. To search
for a given term in a given tag, the set is taken from a binary search of the field-list. To search for a
fully specified path, that path is followed top-down through the document tree. To search for a
partially specified path, a bottom-up search of the document tree is done starting at the nodes identified
by the field list.

3.3. Indices
As each term in the field stream is parsed, it is given three attributes that collectively form a posting:

record id – the record’s ordinal number; starting from zero and incrementing by one for each end
record token.

field id – the current location in the field tree.

position id – the term’s ordinal number, irrespective of field or record; starting at zero and
incrementing with each term-token encountered. It is not incremented for field tokens or record tokens.

Field ID 2

Field ID 3

Field ID 1

Record ID list

Position ID list

Record ID list

Position ID list

Record ID list

Position ID list

Figure

Search Term

Field ID 2

Field ID 3

Field ID 1

Record ID list

Position ID list

Record ID list

Position ID list

Record ID list

Position ID list

Figure

Search Term

Field ID 2

Field ID 3

Field ID 1

Record ID list

Position ID list

Record ID list

Position ID list

Record ID list

Position ID list

Figure

Search Term

Field ID 2

Field ID 3

Field ID 1

Record ID list

Position ID list

Record ID list

Position ID list

Record ID list

Position ID list

Figure 4: In-memory structure

Search Term

Field ID 2

Field ID 3

Field ID 1

Record ID list

Position ID list

Record ID list

Position ID list

Record ID list

Position ID list

Figure

Search Term

Field ID 2

Field ID 3

Field ID 1

Record ID list

Position ID list

Record ID list

Position ID list

Record ID list

Position ID list

Figure

Search Term

Field ID 2

Field ID 3

Field ID 1

Record ID list

Position ID list

Record ID list

Position ID list

Record ID list

Position ID list

Figure

Search Term

Field ID 2

Field ID 3

Field ID 1

Record ID list

Position ID list

Record ID list

Position ID list

Record ID list

Position ID list

Figure 4: In-memory structure

Search Term

For each unique term, these ids are collected together in the structure shown in figure 4. First the
postings are grouped by field id then the record ids are collected together and the position ids are
collected together. The field ids are stored in a sorted unique list alongside pointers to the record and
position postings for that field.

Should a term occur multiple times in a single document it will occur multiple times in the postings.
Should a term occur exactly twice in a single document, it will be represented exactly twice in the
postings, irrespective of where in the document structure it lies.

 6

Record ID list

Position ID list

Field id recds posns

Record ID list

Position ID list

Field id recds posns

Figure

Record ID list

Position ID list

Field id recds posns

Record ID list

Position ID list

Field id recds posns

Figure 5: On-disk structure

Record ID list

Position ID list

Field id recds posns

Record ID list

Position ID list

Field id recds posns

Figure

Record ID list

Position ID list

Field id recds posns

Record ID list

Position ID list

Field id recds posns

Figure 5: On-disk structure

When written to disk, the postings structure is converted into the linear structure shown in figure 5.
The record ids are stored before the position ids to avoid unnecessary loading of position ids when not
required as part of a search. Position ids are only required for a phrase search.

4. Searching and relevance
4.1. The Search
One vocabulary file is used and is stored as a B-tree. Each vocabulary term has one postings list.
Retrieval of the postings is done using techniques described by Zobel, Moffat, and Ramamohanarao
(1998) and others (Salton & McGill, 1983).

Structured queries are explicitly marked with where to search. The query is parsed into a parse tree.
The nodes of the tree represent Boolean operations, the leaves searchable terms (and where to search).

Where to search is converted from the symbolic representation of the query into a bitstring by walking
the document tree and the field list as described above. This bitstring is a representation of the set of
document tree nodes in which to search.

The vocabulary file is a unique list of all searchable terms in the corpus. Each entry in the vocabulary
file has three attributes: the term, the file location of the postings for that term, and the length of the
postings for that term. Given a search term from a query, a walk of the B-tree returns the location and
length of the postings, a disk read from that location loads the postings into memory.

The retrieved postings may contain postings for unwanted fields. The set of where to look has been
generated from the query, but may represent fields not in the postings. Selection of the required
postings is done by walking the postings field-id-list. Each member of the list is checked for
membership in the required set (a bit test). If it exists the postings are used. If not they are not.
Discarded postings are not decompressed and are not used for searching.

The techniques of Meuss and Strohmaier (1999) and of Burkowski (1992) involve examining each
posting and determining if it is appropriately located or not. This is inefficient. When postings are
grouped by field id, it is possible to discard multiple postings in one comparison.

4.2. The Relevance
Relevance calculations are performed using TF.IDF (Harman, 1992).

i

i
i t

tN
IDF

1
log2

+−
= (1)

where N is the number of documents in the collection, and t is the number of occurrences of term in
the collection.

i i

j

ij
ij T

t
TF = (2)

or

∑= ijfij TFTF (3)

 7

j

ijf
ijf T

t
TF = (4)

where is the number of occurrences of term i in field of document ijft f j , and T is the length in

terms of document
j

j .

The influence of each term with respect to each document () is given by: ijw

iijij IDFTFw ×= (5)

These weights are summed for each search term to determine the relevance of a document with respect
to a given query.

Kotsakis (2002) suggests assigning weights to each field. Replacing the desired field set from the
query with a weighting array (zero weight to exclude a field) gives the same construction. The new
relevance calculation becomes:

∑ ××=)(ifijfij IDFCTFw (6)

where TF is the frequency of term i in field of document ijf f j , and is a weighting constant for

field .
fC

f

By extension, the user’s query can be tagged with these field weights.

4.3. Phrase Searching
A phrase may be distributed across multiple field tree nodes. Take for example the following XML:

<life><genus>Escherichia</genus><species>coli</species></life>

A search for the phrase “’Escherichia coli’ in life” finds Escherichia in “genus in life”, and coli in
“species in life”. From the field list, both genus and species are known to be children of life, so a
search for “Escherichia coli in life” will find both terms. They will not, however, be found adjacent
because each field is examined in turn.

For phrase searching, postings must be examined sequentially. The postings are loaded from disk,
unwanted postings discarded, and the remaining postings merged. A phrase is recognized when all
terms are in the same record and the position ids are sequential and in the right order. While indexing,
the position id is only incremented when a searchable term is encountered. Consequently field tokens
do not create gaps in phrases.

5. Analysis
5.1. Indexing
The document tree is built directly from the field stream. Each time a new field start token is
encountered, a new node must be built in the document tree. A search at the “current node” is required
to determine if the field has been encountered before. If so no work is necessary. If not a new node
must be created. The search can be implemented using a hash table.

The worst case for constructing the tree occurs when the document is “flat structured”. Such
documents occur when relational database tables are exported in XML. In this case, if there are F
unique fields, and f total field occurrences, the cost of constructing this document tree is O(f). Each
occurrence in the corpus must be examined once; each requires one hashed lookup of all the unique
fields previously examined at the current node.

 8

Traditionally a posting is represented by two ids (the record id and the position id). The proposed
method adds a third, the field id. The structure build in memory during indexing is shown in figure 4.
The worst case occurs when a term occurs in every unique field. Such might be expected from a term
that occurs with a very high frequency such as “the”. The cost of adding a new posting is O(1). Each
addition requires one array index to determine which postings list to use and one append for the posting
itself.

5.2. Searching
Query response time depends on disk I/O and network bandwidth (Moffat & Zobel, 1996). As the
posting size increases, the storage space on disk and thus load time increases. Compression is often
used to reduce index size and thus increase response time. Compression has not been examined in this
investigation as it is an independent issue.

In an unstructured information retrieval system, once the posting is loaded, each posting must be
examined at most once. Searching is O(p) where p is the number of postings for a given term.

The worst case for the proposed method occurs when each occurrence occurs in a unique field, and all
fields must be examined. In this case, there are p fields and p occurrences.

A “where to look” bitstring of length p must be constructed from the query and each bit must be set
(this is O(p)).. The postings are loaded from disk, and the field id list of length p traversed. Each list
has one posting; there are p postings to examine. Each list is examined once, each posting is then
examined once. The overall cost is O(p), where p is the number of postings for a given term. This is
linear with respect to the number of postings. No order change has occurred against unstructured
searching.

In real data, the number of unique fields F is usually very small, and the number of documents N very
large. For the TREC WSJ collection F=20 and N=173,252. In this case, for a term occurring once in
every field and only once every document, the cost is O(F + N). As the size of the corpus increases,
the impact of F tends to insignificant.

5.3. Phrase Searching
Determining adjacency of two terms is analogous to merging two lists. Each term in one list must be
examined against terms from the other to determine whether or not they are adjacent. Merging is O(n
log2 k) where n is the size of the merged list, and k is the number of lists. For two lists, k = 2 and log2 k
= 1. Two term adjacency searching is therefore O(p+q) where p is the length of the postings for one
term and q the length of the postings for the second term.

Using the proposed method, the worst case occurs when, for both terms, each occurrence is in a
different field. For the first term, there are p occurrences in p fields. The occurrence lists are merged
in O(p log2 p). Likewise for the second term, the merge is, O(p log2 p). The total cost of determininag
adjacency for two terms is O(p log2 p + q log2 q).

The worst case is very unlikely to occur. In real world data, the number of fields is usually very small,
and the number of occurrences large. In this case the cost tends more towards O(p+q); linear with
respect to the number of occurrences that must be examined.

5.4. Structured Searching
A significant gain in efficiency occurs when searching for a term in only part of a document. Once the
postings are loaded, examining the list of field ids will identify the relevant postings. These are then
processed sequentially. Examining the field id list costs F operations, examining the reduced postings
takes p’ operations. The overall performance is O(F + p’) or linear with respect to the number of
relevant postings. Other methods, such as that of Thom et al. (1995), are linear with respect to the total
number of postings.

5.5. Effectiveness
When a search occurs across all fields it is necessary to examine all occurrences of a given term.
Although they are ordered by field, and examined in field order, each occurrence is examined only
once. Since the influence of a term on document weight is a factor of TF, the term frequency, the order

 9

each is examined does not matter (see equation 3). The computed document query weight is the same
regardless of what order the documents, the terms, and the occurrences of those terms are examined.
Documents weights and precision metrics are the same as those computed with systems not using
structured indexes. The proposed method adds functionality with no loss of existing functionality,
impact on precision or impact on recall.

6. Results
Implementation is in C++ and has been tested on the Cystic Fibrosis document collection (Shaw,
Wood, Wood, & Tibbo, 1991). CF is a 6MB, 1239 XML-document subset of MEDLINE and comes
with 99 judged queries.

Indexing took less than 10 seconds on a Pentium III personal computer. Performing all 99 queries took
less than five seconds, averaging 0.05 seconds per search. With commonly stopped terms removed
from the queries, the test took less than one second.

The same test was performed against an 11,240,415 document subset of MEDLINE (43GB data,
13.5GB postings). Commonly stopped terms were removed from the queries, but not the indexes. The
time taken to perform all 99 queries was 115 seconds, averaging 1.16 seconds per search. This test was
performed on a Compaq AlphaServer ES40, with shared networked disk.

Indexing the 173,252 document TREC Wall Street Journal collection (1987-1992) from the TREC
collection disks 1 and 2 took under 7 minutes on a Pentium 4 computer. The source XML was 533
Megabytes; the postings were 380 Megabytes. Topics 100-150 were used to test searching. Queries
were built by extracting the description field then stopping commonly used words. Topic 121 was
dropped as it has less than 5 known relevant documents. It tool less than 9 seconds to perform all 49
searching, averaging 0.18 seconds per search.

7. Conclusions
Structured formats such as SGML, XML, and ASN.1 are becoming ubiquitous so methods for
searching structured documents are becoming important. Determining how a user could search
structured documents has been studied by others, the culmination of whose work is evident in XML
query languages.

Study of existing structured query systems alongside analysis of query languages has shown a miss-
match. Either the systems do not support the necessary constructs, or to do so they forfeit recall, or
efficiency.

A cross corpus document tree is built on the fly so new documents can be added, even if they are in a
structure never before seen. All possible structure restricted searches can be described as a search for a
term limited to existing in a set of locations taken from this tree. This set is represented as a bitstring
for fast lookup.

Query paths are often only partially specified. The field list is constructed as an index to the document
tree. Partially specified paths are resolved by branching into the tree at locations from the list and
walking leaf to root. Without the field list a top-down search of the entire tree would be required.

For each occurrence of each term in the corpus a posting is constructed from three attributes, the record
in which the occurrence lies, the ordinal number of the term since the beginning of the corpus, and the
location in the document tree in which the occurrence was found. The postings are clustered by
location in document tree. By clustering this way, it is possible to discard postings outside the search
domain without examination.

Searching for the presence of structure is likened to searching for content (Schlieder & Meuss, 2000).
Structural elements are encoded as search terms and retrieved as if search terms. The leaves of the
document tree are encoded as these terms. To identify the appropriate leaf terms the document tree is
walked using the field list as an index.

Large-scale information retrieval systems often support ranking. Adaptation of the TF.IDF ranking
scheme to incorporate document structure not only allows structural systems to ranks, but to weight
individual terms based on where in the document they are found.

 10

The presented method allows searching for terms in a document, or in part of a document. Searching
for phrases in documents and phrases that lie across tag boundaries is also supported. The
implementation demonstrates the scalability of the system.

References
Beitzel, S. M., Jensen, E. C., Grossman, D. A., Ingham, F. J., & Lewis, T. (2001). Using a relational

database management system to implement XML-QL. In Proceedings of the 17th
International Conference on Advanced Science and Technology (ICAST'2001).

Bray, T., Paoli, J., & Sperberg-McQueen, C. (1988). Extensible markup language (XML) 1.0, W3C
recommendation. Available: http://www.w3.org/TR/REC-xml.

Burkowski, F. J. (1992). Retrieval activities in a database consisting of heterogeneous collections of
structured text. In Proceedings of the 15th ACM SIGIR Conference on Information Retrieval,
(pp. 112-125).

Chinenyanga, T. T., & Kushmerick, N. (2001). Expressive retrieval from XML documents. In
Proceedings of the 24th ACM SIGIR Conference on Information Retrieval, (pp. 163-171).

Clark, J. SP. Available: http://www.jclark.com/sp/.
Dao, T. (1998). An indexing model for structured documents to support queries on content, structure

and attributes. In Proceedings of the Advances in Digital Libraries, (pp. 88-97).
Deutsch, A., Fernandez, M., Florescu, D., Levy, A., & Suciu, D. (1998). XML-QL: A query language

for XML. Available: http://www.w3.org/TR/NOTE-xml-ql/.
Fuhr, N., & Gövert, N. (2002). Index compression vs. Retrieval time of inverted files for XML

documents. In Proceedings of the 11th ACM International Conference on Information and
Knowledge Management.

Fuhr, N., & Großjohann, K. (2001). XIRQL: A query language for information retrieval in XML
documents. In Proceedings of the 24th ACM SIGIR Conference on Information Retrieval, (pp.
172-180).

Harman, D. (1992). Ranking algorithms. In W. B. Frakes & R. Baeza-Yates (Eds.), Information
retrieval: Data structures and algorithms (pp. 363-392). Englewood Cliffs, New Jersey, USA:
Prentice Hall.

ISO8824:1987. (1987). Information processing - open systems interconnection - specification of
abstract syntax notation one (ASN.1).

ISO8879:1986. (1986). Information processing - text and office systems - standard generalised markup
language (SGML).

Kotsakis, E. (2002). Structured information retrieval in XML documents. In Proceedings of the ACM
Symposium on Applied Computing, (pp. 663-667).

Lee, Y. K., Yoo, S.-J., Yoon, K., & Berra, P. B. (1996). Index structures for structured documents. In
Proceedings of the 1st ACM International Conference on Digital Libraries, (pp. 91-99).

Meuss, H., & Strohmaier, C. (1999). Improving index structures for structured document retrieval. In
Proceedings of the 21st Annual Colloquium on IR Research (IRSG'99).

Moffat, A., & Zobel, J. (1996). Self-indexing inverted files for fast text retrieval. Transactions on
Information Systems, 14(4), 349-379.

Robie, J., Lapp, J., & Schach, D. (1998). XML query language (XQL). Available:
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval: McGraw-Hill.
Schlieder, T., & Meuss, H. (2000). Result ranking for structured queries against XML documents. In

Proceedings of the DELOS Workshop on Information Seeking, Searching and Querying in
Digital Libraries.

Schlieder, T., & Meuss, H. (2002). Querying and ranking XML documents. Journal of the American
Society for Information Science and Technology, 53(6), 489-503.

Shaw, W. M., Wood, J. B., Wood, R. E., & Tibbo, H. R. (1991). The cystic fibrosis database: Content
and research opportunities. Library and Information Science Research, 13, 347-366.

Shimura, T., Yoshikawa, M., & Uemura, S. (1999). Storage and retrieval of XML documents using
object-relational databases. In Proceedings of the International Conference on Database and
Expert Systems Applications (DEXA), (pp. 206-217).

Shin, D., Jang, H., & Jin, H. (1998). BUS: An effective indexing and retrieval scheme in structured
documents. In Proceedings of the 3rd ACM International Conference on Digital libraries, (pp.
235-243).

Thom, J. A., Zobel, J., & Grima, B. (1995). Design of indexes for structured documents (CITRI/TR-95-
8). Melbourne, Australia: Department of Computer Science, RMIT.

 11

 12

Zobel, J., Moffat, A., & Ramamohanarao, K. (1998). Inverted files versus signature files for text
indexing. Transactions on Database Systems, 23(4), 453-490.

	Searching Structured Documents
	Abstract
	1. Introduction
	2. Related work
	3. Proposed Method
	3.1. The Field Stream
	3.2. The Document Tree
	3.3. Indices
	4. Searching and relevance
	4.1. The Search

	4.2. The Relevance
	
	4.3. Phrase Searching

	5. Analysis
	
	5.2. Searching
	5.3. Phrase Searching

	6. Results
	7. Conclusions
	The presented method allows searching for terms in a document, or in part of a document. Searching for phrases in documents and phrases that lie across tag boundaries is also supported. The implementation demonstrates the scalability of the system.
	References

