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ABSTRACT 
A method of indexing and searching structured 
documents for element retrieval is discussed.  
Documents are indexed using a modified inverted 
file retrieval system.  Modified postings include 
pointers into a collection-wide document structure 
tree (the corpus tree) describing the structure of 
every document in the collection. 
Retrieval topics are converted into Boolean queries.  
Queries are used to identify relevant documents.  
Documents are then ranked using Okapi BM25 and 
finally relevant elements are identified using 
coverage.  Search results are presented sorted first 
by document then coverage. 
The design is presented in the context of the second 
annual INEX workshop. 

1. INTRODUCTION 
Otago first entered INEX [2] during its second year.  
There were three objectives: understand the 
participation process, gain access to this and last 
year’s judgments, and create a baseline for 
comparing future experiments. 
Participation involved design of six topics, 
generation and submission of search results, and 
online judging of three topics.  Of these, generating 
the results was the most problematic as it required 
software changes. 
The chosen retrieval engine was designed from the 
onset for retrieval of whole academic documents in 
XML [1].  A predecessor can be seen on BioMedNet 
and ChemWeb [4].  This engine, like that used in the 
IEEE digital library, returns relevance ranked lists 
of whole documents – the natural (citable) unit of 
information in an academic environment.  From 
experience, information vendors are not interested 
in converting their documents from propriety DTDs 
into a common DTD or any other format – so 
software was needed to handle documents in 
heterogeneous formats. 
Boolean searching, field restricting and relevance 
ranking were already supported, so modifications 
focused on identifying and ranking document 
elements.  The modified retrieval engine can be 
thought of as working in three parts.  Candidate 
documents are identified using a Boolean query.  
Candidates are then ranked using Okapi BM25 [7].  
Finally, relevant non-overlapping elements are 

identified and presented as the result.  Although it is 
easier to understand in three parts, in fact the most 
relevant elements of the most relevant documents 
are computed in a single pass of the indexes. 

2. INDEXING 
Much of the index design has already been 
described elsewhere [8].  Inverted file retrieval is 
used.  There is one dictionary file and each 
dictionary term points to a single inverted list of 
postings. 
An unstructured inverted list is usually represented 
{<d1, f1>, <d2, f2>, …, <dn, fn>} where dn is a 
document ordinal number and fn is the frequency of 
the given term in the given document.  For 
structured retrieval, each <dn, fn> pair is replaced by 
the triple <dn, pn, fn>, where pn is a position in the 
document.  When phrase or proximity searching is 
required, this triple is replaced with the triple <dn, 
pn, wn> where wn is the ordinal number of the term 
in the collection (starting from 0 at the start of the 
collection, incrementing by 1 for each term, not 
incrementing for tags, and not reset at the beginning 
of each record).  On disk the postings are stored 
compressed. 
The pn value in each posting is a position in the 
corpus tree.  The tagging structure for any one 
document represents a tree walk.  Start at the root of 
the tree.  When an open tag is encountered, the 
branch labelled with the tag name is followed 
downwards.  When a close tag is encountered, the 
walk backtracks one branch.  For a well-formed 
XML document, the walk will start and end at the 
root.  This tree-walking property also holds for a 
collection of well-formed documents.  The tree they 
collectively describe is called the corpus tree and 
can be built during single pass indexing.  As each 
node is encountered for the first time, a branch is 
added to the tree and labelled with a unique ordinal 
identifier, pn.  Terms can lie either at the nodes or 
the leaves of this tree. 
The corpus tree includes every single path in every 
single document, but is unlikely to match the 
structure of any one document.  In Figure 1, three 
well-formed documents are given, as is the corpus 
tree for those documents.  For clarity, the branches 
of the tree are labelled with which document they 
describe although this information is not computed 
and not stored. 
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Figure 1: Three documents and the corpus tree 
including every path through every document, 

but not matching the structure of any one 
document.  For the purpose of this figure each 
document is marked white, gray, or black and 
each node with which documents include that 

path.  Each node is numbered with the instance 
of the tag (e.g. p[2]) and the node id, pn (after the 

colon). 
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Figure 2: The in-memory postings structure 

allows quick access to only those postings 
relevant to the required document elements. 

 

The inverted lists are built and processed using the 
structure represented in Figure 2.  Postings for each 
term are ordered by increasing pn.  Each pn points to 
the list of document ids (the d-sublist) and word ids 
(the w-sublist) found at that point in the tree.  Each 
list is held in increasing order and compressed. 
To search the collection for a given term, each d-
sublist is examined in turn.  By doing so, documents 
may not be examined in turn.  This does not matter 
so long as all documents that would be examined 
are examined.  Further, whole documents may not 
be examined in turn – this, too, does not matter as 
many ranking functions can be computed 
piecewise1.  To field-restrict a term, a restricted set 
of sublists is examined.  The w-sublists are used for 
proximity searching. 
Storing and processing the postings in this way has 
computational advantages.  For a field-restricted 
search, postings not pertaining to the restriction can 
be skipped.  As postings are stored compressed, 
they need not even be decompressed.  Word 
postings are used only for proximity searching.  On 
disk the w-sublists are collected together and stored 
after all d-sublists.  They are not even loaded from 
disk if not needed. 

3. SEARCHING 
As the retrieval engine starts up, the corpus tree is 
loaded and an additional structure is created from it, 
the field list.  For each instance of each tag, the list 
of nodes at or below that node is collected.  For 
each tag, the same is collected.  These lists are then 
merged and sorted. 

Table 1:  The field list for the  
corpus tree given in Figure 1. 

Field Restriction 

@c {4} 
@c[1] {4} 
doc {1, 2, 3, 4, 5, 6, 7} 
doc[1] {1, 2, 3, 4, 5, 6, 7} 
p {3, 4, 6, 7} 
p[1] {3, 4, 6} 
p[2] {7} 
sec {2, 3, 4, 5, 6, 7} 
sec[1] {2, 3, 4, 7} 
sec[2] {5, 6} 

 

The field list for the Figure 1 corpus tree is given in 
Table 1.  From this, a search restricted to ‘sec’ 
requires postings at or below all ‘sec’ nodes of the 
corpus tree, or where pn={2, 3, 4, 5, 6, 7}.  To 

                                                           
1 BM25 cannot, so the lists are merged then processed. 



search in ‘p[1]’, the postings are needed where 
pn={3, 4, 6}.  For a search restricted to ‘p[1] in sec’, 
these two lists are ANDed together (giving pn={3, 4, 
6}), and the members of this list are checked against 
the corpus tree to ensure they satisfy ‘p[1] in sec’ 
and not ‘sec in p[1]’. 
Equivalence tag restrictions are also computed from 
the field list.  The restrictions for each equivalent 
tag are ORed giving the equivalent restriction.  If, 
for example, ‘p[2]’ and ‘@c’ were equivalent in 
Table 1, the restriction would be pn={4, 7}. 
Several extensions were added to support element 
and attribute retrieval: 
• Attributes are now distinguished from tags by 

prefixing attributes with an @ symbol.  This 
symbol was chosen because it makes for easy 
parsing of INEX queries, which use the same 
symbol. 

• The attribute value is considered to be content 
lying not only within the attribute, but also the 
tag.  For example, “<tag att=“number”> term 
</tag>”, is equivalent to “<tag> <@att> number 
</@att> term </tag>”.  In this way, a search for 
“number in tag” will succeed. 

• Tags can now be identified not only by their 
name and path, but also by the tag instance.  
Where before it was only possible to restrict to 
paragraph for example, it is now possible to 
restrict to the second paragraph. 

Trotman [8] suggests the corpus tree will be small 
for real data.  In this extended model this no longer 
holds true.  In the TREC [3] Wall Street Journal 
collection there are only 20 nodes, for INEX there 
are 198,041 nodes after ‘noise’ nodes are removed 
(4,789 with attributes and instances also removed). 
 

Table 2: Tags ignored during indexing. 
ariel en item-text ss 
art entry label stanza 
b enum large sub 
bi f li super 
bq it line tbody 
bu item math tf 
bui item-bold proof tfoot 
cen item-both rm tgroup 
colspec item-bullet rom thead 
couplet item-diamond row theorem 
dd item-letpara scp tmath 
ddhd item-mdash sgmlf tt 
dt item-numpara sgmlmath u 
dthd item-roman spanspec ub 

Many tags are used to mark elements too small to be 
relevant.  An example of such a tag is ‘ref’, used to 
mark references in the text.  This tag cannot be 
relevant to any topic as the contents are simply 
reference numbers.  Some tags were used for visual 
appearance such as ‘b’ used to mark text in bold.  
Others were used as typesetting hints such as ‘art’ 
used to specify the size of an image.  If any of these 
tags, or those in Table 2 were encountered during 
indexing, tagging was ignored (until the matching 
close tag), but the content still indexed.  Tags in this 
group were hand selected even though automated 
systems for choosing such tags have been proposed 
[5]. 

4. QUERY FORMATION 
The title of the topic is extracted and converted into 
a Boolean query.  This query is used to determine 
which documents to retrieve.  Ranking is computed 
from the postings for the search terms. 
For content and structure (CAS) topics, the target 
element is computed and stored for later use.  The 
complete path for each about-function is computed 
by concatenating the about-path to the context-
element restricting it.  All equivalent paths are then 
computed by permuting this path with the 
equivalence tags.  This fully specified path now 
replaces the original about-path and the context-
element is removed. 
At this point, the topic has been transformed from 
INEX topic syntax into a query whereby each 
about-clause is Boolean separated and explicitly 
field restricted. 
 
Create mandatory by ANDing each mandatory term (+) 
Create optional by ORing each optional term 
Create exclusion by ORing each exclusion term (-) 
If all three sub-expressions are non-null, combine: 
 mandatory AND (* OR optional) NOT  
exclusion 
If two sub-expressions are non-null, combine using one of:
 mandatory AND (* OR optional) 
 optional NOT exclusion 
 mandatory NOT exclusion 
If only one sub-expression is non-null, use one of: 
 mandatory 
 optional 
 * NOT exclusion 
Where ‘*’ finds all documents 

Figure 3: Algorithm to convert an about phrase 
into a Boolean expression. 

Examining the about-string, optional, mandatory 
(+), and exclusion (-) terms are allowed.  These 
terms are converted into a Boolean expression.  
Optional terms are collected and converted into a 
sub-expression by ORing (“a b c” → “a OR b OR 



c”).  Likewise, exclusion terms are also ORed.  
Mandatory terms are collected and ANDed (“+d +e 
+f” → “d AND e AND f”).  These three sub-
expressions are then combined to form a complete 
about-query.  The whole algorithm is presented in 
figure 3. 
Separate about clauses are already Boolean 
separated so these operators are preserved. Finally, 
all context-elements must be satisfied so these are 
ANDed together. 
For content only (CO) topics, a Boolean expression 
is computed exactly as for one about-string using 
the algorithm presented in Figure 3. 

5. RANKING 
The retrieval engine is a Boolean ranking hybrid.  
Result sets are computed in two parts; a bit-string of 
documents satisfying a strict interpretation of the 
query, and a set of accumulators holding document 
weights. 

5.1 Document Ranking 
The Boolean expression constructed above is 
converted into a parse tree then evaluated.  At each 
leaf, the posting are loaded and converted into a bit-
string, one bit per document. 
If a given leaf in the parse tree is not tag-restricted, 
each posting is examined in turn, and the bit at 
position dn of each posting is set.  Should the leaf be 
tag-restricted, only those postings for the given tags 
are examined (see Section 3) and converted. 
The bit-strings are combined at the nodes of the 
parse tree using the operator there.  At the root of 
the tree, the bit-string has set bits for all documents 
exactly satisfying the query and unset for those that 
do not. 
The accumulator values are the sum of Okapi BM25 
scores computed at each leaf of the parse tree.  
Scores are summed regardless of the operators in 
the parse tree.  
For AND and OR nodes scores are summed because 
the influence at these nodes is the sum of influences 
of the children. 
For NOT nodes, they are also summed.  If a 
document is excluded from the result set, the 
accumulator value is irrelevant.  If a document is 
not, it is either re-included through other terms (e.g. 
mammal OR (dog NOT cat)), or there is a double 
negative in the query (e.g. cat NOT (dog NOT cat)).  
In both cases, the document has successfully 
satisfied a query leaf so receives a positive weight. 

5.2 Element Ranking and Selection 
The Boolean ranking hybrid engine was extended to 
include element ranking.  Although whole 
documents are valid as results for CO topics, SCAS 
topics specify a target element.  This targeting 

establishes the retrieval unit.  If the target element is 
‘sec’, this tag must be returned.  It essentially directs 
the retrieval engine to search and rank each given 
tag instance separately. 
Wilkinson [9] suggests that ranking whole 
documents then extracting elements from these is a 
poor ranking strategy.  The opposite may hold for 
this collection.  A relevant element lies in the 
greater context of a relevant document.  A relevant 
document will lie in a relevant journal, which, in 
turn, lies in a relevant collection.  To this end, every 
paragraph of every section of every document is 
contextually placed so extracting elements from 
relevant documents may be a good approach. 
The coverage of any one posting is computed as 
those nodes in the document tree at or above the 
posting.  Each posting is already annotated with a 
pointer into the tree, pn.  To compute the coverage, 
the tree is traversed upwards from pn to the root.  
Coverage is computed for each document with 
respect to each search term. 
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Figure 4: Coverage of a term occurring at p[2].  

The coverage includes all those nodes at and 
above the occurrence node; those parts of the 

tree that “cover” the term. 
In figure 4, the term “ham” occurs at p[2].  The 
coverage includes all nodes above that point in the 
document tree.  In this example that is sec[1] and 
doc[1]; all nodes that “cover” the search term – 
those highlighted in grey. 
For each document in the result set, the weighted 
coverage is computed as the covered branches of the 
document tree and how many search terms cover 
that branch.  This is computed during a single pass 
of the indexes by storing the weighted coverage as 
part of each accumulator. 
For the query “eggs and ham” against the 
documents in Figure 1, the weighted coverage is 
shown in Figure 5.  doc[1] and sec[1] have a weight 
of 2, while p[1] and p[2] each have a weight of 1. 
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Figure 5:  Weighted coverage of each node is the 
number of search terms that occur at or below 

that point in the tree.  Weighted coverage is 
shown in the bottom right of those nodes with 

weights greater than zero. 
In any given document, the document root must 
have the highest weighted coverage, but this can be 
equal to that of other nodes.  For CO topics, all 
branches of the document tree with coverage less 
than the root are pruned.  The remaining leaves are 
presented as the result set for that document (in 
Figure 5, the result is //doc[1]//sec[1]).  In this way, 
the most information dense elements in the 
document are considered most relevant and no part 
of any document is returned more than once 
(overlapping is eliminated). 
If a target element is specified in a SCAS topic, all 
non-target branches are pruned.  From the remains, 
those branches with the highest weighted coverage 
are presented as the result set for that document. 

5.3 Ranking summary 
Recall is determined by evaluation of the Boolean 
expression, documents are then ranked using Okapi 
BM25, and elements are selected by weighted 
coverage.  As all the metrics needed for ranking are 
available at search time, the search and rank process 
is computed in a single pass of the postings. 

6. RESULTS 
Evaluation results are presented in Table 3. 

Table 3: INEX performance measures 
Strict Precision Rank 

CO 0.0243 42nd 

SCAS 0.1799 24th 

CO-ng-o 0.1359 5th 

CO-ng-s Unknown Not top 10 

Generalized Precision Rank 

CO 0.0241 34th 

SCAS 0.1214 28th 

CO-ng-o 0.1542 1st 

CO-ng-s 0.1405 5th 

The retrieval engine performed badly using the 
INEX_EVAL measure.  This is most likely because 
this measure treats each tag in a hierarchy as 
relevant but coverage eliminates overlapping tags – 
the measure is inappropriate for this retrieval 
technique. 
Good results were shown when performance is 
measured using INEX_EVAL_NG.  NG measures 
the ratio of relevant to irrelevant information 
returned.    Coverage finds those parts of the 
document that contain most of the search terms.  
The correlation between information density and 
coverage is reflected in the result. 
The results show the best performance when 
generalized quantization is used.  This suggests the 
ordering of the results is not optimal for strict 
quantization – or the most relevant documents are 
not ranked before less relevant documents.  This 
may be a consequence of sorting into document 
order before coverage order. 

7. OTAGO AT INEX 
The participation process involved the design and 
contribution of six topics.  Of these, four were 
selected for inclusion in the final topic set.  Otago 
was assigned three of these to assess.  The 
assessment took three people one week each; this 
was one week per topic. 
The retrieval engine described herein was used for 
designing the contributed topics.  This was 
somewhat problematic as the topic parser was 
written at the same time the topics were being 
written, each with few examples. 
From the final CAS topic set, 19 required 
corrections, corrections finally running to 12 
rounds!  This suggests the topic syntax is 
unnecessarily complex.  See our further contribution 
[6] for a discussion on a possible language to use for 
future workshops. 
The assessors were overburdened by the multitude 
of obviously irrelevant documents to assess.  
Examining some of these documents suggests many 
retrieval engines were aiming at high recall by 
retrieving any document containing any of the title 
terms.  In particular, the word ‘java’ appeared in one 
topic; this was a somewhat popular research area 
over the years included in the IEEE collection.  The 
assessment task could be reduced by carefully 
designing topics (and retrieval engines) to avoid this 
problem. 

8. CONCLUSIONS 
Element ranking was added to a Boolean ranking 
hybrid retrieval engine.  Relevant documents were 
identified using Boolean searching. Documents 
were ranked using Okapi BM25.  Finally coverage 
was used to rank elements within documents. 



The results suggest coverage is a good method of 
identifying relevant and non-overlapping elements.  
Performance was best for generalized quantization, 
so ordering is not ideal.  This may be a consequence 
of presenting results in document order. 
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