
Identifying and Ranking Relevant Document Elements
Andrew Trotman and Richard A. O’Keefe

Department of Computer Science
University of Otago

Dunedin, New Zealand
andrew@cs.otago.ac.nz, ok@otago.ac.nz

ABSTRACT
A method of indexing and searching structured
documents for element retrieval is discussed.
Documents are indexed using a modified inverted
file retrieval system. Modified postings include
pointers into a collection-wide document structure
tree (the corpus tree) describing the structure of
every document in the collection.
Retrieval topics are converted into Boolean queries.
Queries are used to identify relevant documents.
Documents are then ranked using Okapi BM25 and
finally relevant elements are identified using
coverage. Search results are presented sorted first
by document then coverage.
The design is presented in the context of the second
annual INEX workshop.

1. INTRODUCTION
Otago first entered INEX [2] during its second year.
There were three objectives: understand the
participation process, gain access to this and last
year’s judgments, and create a baseline for
comparing future experiments.
Participation involved design of six topics,
generation and submission of search results, and
online judging of three topics. Of these, generating
the results was the most problematic as it required
software changes.
The chosen retrieval engine was designed from the
onset for retrieval of whole academic documents in
XML [1]. A predecessor can be seen on BioMedNet
and ChemWeb [4]. This engine, like that used in the
IEEE digital library, returns relevance ranked lists
of whole documents – the natural (citable) unit of
information in an academic environment. From
experience, information vendors are not interested
in converting their documents from propriety DTDs
into a common DTD or any other format – so
software was needed to handle documents in
heterogeneous formats.
Boolean searching, field restricting and relevance
ranking were already supported, so modifications
focused on identifying and ranking document
elements. The modified retrieval engine can be
thought of as working in three parts. Candidate
documents are identified using a Boolean query.
Candidates are then ranked using Okapi BM25 [7].
Finally, relevant non-overlapping elements are

identified and presented as the result. Although it is
easier to understand in three parts, in fact the most
relevant elements of the most relevant documents
are computed in a single pass of the indexes.

2. INDEXING
Much of the index design has already been
described elsewhere [8]. Inverted file retrieval is
used. There is one dictionary file and each
dictionary term points to a single inverted list of
postings.
An unstructured inverted list is usually represented
{<d1, f1>, <d2, f2>, …, <dn, fn>} where dn is a
document ordinal number and fn is the frequency of
the given term in the given document. For
structured retrieval, each <dn, fn> pair is replaced by
the triple <dn, pn, fn>, where pn is a position in the
document. When phrase or proximity searching is
required, this triple is replaced with the triple <dn,
pn, wn> where wn is the ordinal number of the term
in the collection (starting from 0 at the start of the
collection, incrementing by 1 for each term, not
incrementing for tags, and not reset at the beginning
of each record). On disk the postings are stored
compressed.
The pn value in each posting is a position in the
corpus tree. The tagging structure for any one
document represents a tree walk. Start at the root of
the tree. When an open tag is encountered, the
branch labelled with the tag name is followed
downwards. When a close tag is encountered, the
walk backtracks one branch. For a well-formed
XML document, the walk will start and end at the
root. This tree-walking property also holds for a
collection of well-formed documents. The tree they
collectively describe is called the corpus tree and
can be built during single pass indexing. As each
node is encountered for the first time, a branch is
added to the tree and labelled with a unique ordinal
identifier, pn. Terms can lie either at the nodes or
the leaves of this tree.
The corpus tree includes every single path in every
single document, but is unlikely to match the
structure of any one document. In Figure 1, three
well-formed documents are given, as is the corpus
tree for those documents. For clarity, the branches
of the tree are labelled with which document they
describe although this information is not computed
and not stored.

<doc>
<sec><p>Green Eggs</p>
<p>and Ham</p></sec>
</doc>

<doc>
<sec><p c=“red”>Fox in Sox</p></sec>
</doc>

<doc>
<sec><p>The Cat in the Hat</p></sec>
<sec><p>Comes Back</p></sec>
</doc>

doc[1]:1

sec[1]:2 sec[2]:5

@c[1]:4

p[2]:7p[1]:3 p[1]:6

<doc>
<sec><p>Green Eggs</p>
<p>and Ham</p></sec>
</doc>

<doc>
<sec><p c=“red”>Fox in Sox</p></sec>
</doc>

<doc>
<sec><p>The Cat in the Hat</p></sec>
<sec><p>Comes Back</p></sec>
</doc>

doc[1]:1

sec[1]:2 sec[2]:5

@c[1]:4

p[2]:7p[1]:3 p[1]:6

<doc>
<sec><p>Green Eggs</p>
<p>and Ham</p></sec>
</doc>

<doc>
<sec><p c=“red”>Fox in Sox</p></sec>
</doc>

<doc>
<sec><p>The Cat in the Hat</p></sec>
<sec><p>Comes Back</p></sec>
</doc>

<doc>
<sec><p>Green Eggs</p>
<p>and Ham</p></sec>
</doc>

<doc>
<sec><p>Green Eggs</p>
<p>and Ham</p></sec>
</doc>

<doc>
<sec><p c=“red”>Fox in Sox</p></sec>
</doc>

<doc>
<sec><p c=“red”>Fox in Sox</p></sec>
</doc>

<doc>
<sec><p>The Cat in the Hat</p></sec>
<sec><p>Comes Back</p></sec>
</doc>

<doc>
<sec><p>The Cat in the Hat</p></sec>
<sec><p>Comes Back</p></sec>
</doc>

doc[1]:1

sec[1]:2 sec[2]:5

@c[1]:4

p[2]:7p[1]:3 p[1]:6

doc[1]:1doc[1]:1

sec[1]:2 sec[2]:5sec[1]:2sec[1]:2 sec[2]:5sec[2]:5

@c[1]:4@c[1]:4

p[2]:7p[2]:7p[1]:3p[1]:3 p[1]:6p[1]:6

Figure 1: Three documents and the corpus tree
including every path through every document,

but not matching the structure of any one
document. For the purpose of this figure each
document is marked white, gray, or black and
each node with which documents include that

path. Each node is numbered with the instance
of the tag (e.g. p[2]) and the node id, pn (after the

colon).

wp1,1, wp1,2, …, wp1,n

dp1,1, dp1,2, …, dp1,n

p1

wp2,1, wp2,2, …, wp2,n

dp2,1, dp2,2, …, dp2,n

p2

wp3,1, wp3,2, …, wp3,n

dp3,1, dp3,2, …, dp3,n

p3

Term

wp1,1, wp1,2, …, wp1,n

dp1,1, dp1,2, …, dp1,n

p1

wp2,1, wp2,2, …, wp2,n

dp2,1, dp2,2, …, dp2,n

p2

wp3,1, wp3,2, …, wp3,n

dp3,1, dp3,2, …, dp3,n

p3

Term

wp1,1, wp1,2, …, wp1,n

dp1,1, dp1,2, …, dp1,n

p1

wp2,1, wp2,2, …, wp2,n

dp2,1, dp2,2, …, dp2,n

p2

wp3,1, wp3,2, …, wp3,n

dp3,1, dp3,2, …, dp3,n

p3

Term

Figure 2: The in-memory postings structure

allows quick access to only those postings
relevant to the required document elements.

The inverted lists are built and processed using the
structure represented in Figure 2. Postings for each
term are ordered by increasing pn. Each pn points to
the list of document ids (the d-sublist) and word ids
(the w-sublist) found at that point in the tree. Each
list is held in increasing order and compressed.
To search the collection for a given term, each d-
sublist is examined in turn. By doing so, documents
may not be examined in turn. This does not matter
so long as all documents that would be examined
are examined. Further, whole documents may not
be examined in turn – this, too, does not matter as
many ranking functions can be computed
piecewise1. To field-restrict a term, a restricted set
of sublists is examined. The w-sublists are used for
proximity searching.
Storing and processing the postings in this way has
computational advantages. For a field-restricted
search, postings not pertaining to the restriction can
be skipped. As postings are stored compressed,
they need not even be decompressed. Word
postings are used only for proximity searching. On
disk the w-sublists are collected together and stored
after all d-sublists. They are not even loaded from
disk if not needed.

3. SEARCHING
As the retrieval engine starts up, the corpus tree is
loaded and an additional structure is created from it,
the field list. For each instance of each tag, the list
of nodes at or below that node is collected. For
each tag, the same is collected. These lists are then
merged and sorted.

Table 1: The field list for the
corpus tree given in Figure 1.

Field Restriction

@c {4}
@c[1] {4}
doc {1, 2, 3, 4, 5, 6, 7}
doc[1] {1, 2, 3, 4, 5, 6, 7}
p {3, 4, 6, 7}
p[1] {3, 4, 6}
p[2] {7}
sec {2, 3, 4, 5, 6, 7}
sec[1] {2, 3, 4, 7}
sec[2] {5, 6}

The field list for the Figure 1 corpus tree is given in
Table 1. From this, a search restricted to ‘sec’
requires postings at or below all ‘sec’ nodes of the
corpus tree, or where pn={2, 3, 4, 5, 6, 7}. To

1 BM25 cannot, so the lists are merged then processed.

search in ‘p[1]’, the postings are needed where
pn={3, 4, 6}. For a search restricted to ‘p[1] in sec’,
these two lists are ANDed together (giving pn={3, 4,
6}), and the members of this list are checked against
the corpus tree to ensure they satisfy ‘p[1] in sec’
and not ‘sec in p[1]’.
Equivalence tag restrictions are also computed from
the field list. The restrictions for each equivalent
tag are ORed giving the equivalent restriction. If,
for example, ‘p[2]’ and ‘@c’ were equivalent in
Table 1, the restriction would be pn={4, 7}.
Several extensions were added to support element
and attribute retrieval:
• Attributes are now distinguished from tags by

prefixing attributes with an @ symbol. This
symbol was chosen because it makes for easy
parsing of INEX queries, which use the same
symbol.

• The attribute value is considered to be content
lying not only within the attribute, but also the
tag. For example, “<tag att=“number”> term
</tag>”, is equivalent to “<tag> <@att> number
</@att> term </tag>”. In this way, a search for
“number in tag” will succeed.

• Tags can now be identified not only by their
name and path, but also by the tag instance.
Where before it was only possible to restrict to
paragraph for example, it is now possible to
restrict to the second paragraph.

Trotman [8] suggests the corpus tree will be small
for real data. In this extended model this no longer
holds true. In the TREC [3] Wall Street Journal
collection there are only 20 nodes, for INEX there
are 198,041 nodes after ‘noise’ nodes are removed
(4,789 with attributes and instances also removed).

Table 2: Tags ignored during indexing.
ariel en item-text ss
art entry label stanza
b enum large sub
bi f li super
bq it line tbody
bu item math tf
bui item-bold proof tfoot
cen item-both rm tgroup
colspec item-bullet rom thead
couplet item-diamond row theorem
dd item-letpara scp tmath
ddhd item-mdash sgmlf tt
dt item-numpara sgmlmath u
dthd item-roman spanspec ub

Many tags are used to mark elements too small to be
relevant. An example of such a tag is ‘ref’, used to
mark references in the text. This tag cannot be
relevant to any topic as the contents are simply
reference numbers. Some tags were used for visual
appearance such as ‘b’ used to mark text in bold.
Others were used as typesetting hints such as ‘art’
used to specify the size of an image. If any of these
tags, or those in Table 2 were encountered during
indexing, tagging was ignored (until the matching
close tag), but the content still indexed. Tags in this
group were hand selected even though automated
systems for choosing such tags have been proposed
[5].

4. QUERY FORMATION
The title of the topic is extracted and converted into
a Boolean query. This query is used to determine
which documents to retrieve. Ranking is computed
from the postings for the search terms.
For content and structure (CAS) topics, the target
element is computed and stored for later use. The
complete path for each about-function is computed
by concatenating the about-path to the context-
element restricting it. All equivalent paths are then
computed by permuting this path with the
equivalence tags. This fully specified path now
replaces the original about-path and the context-
element is removed.
At this point, the topic has been transformed from
INEX topic syntax into a query whereby each
about-clause is Boolean separated and explicitly
field restricted.

Create mandatory by ANDing each mandatory term (+)
Create optional by ORing each optional term
Create exclusion by ORing each exclusion term (-)
If all three sub-expressions are non-null, combine:
 mandatory AND (* OR optional) NOT
exclusion
If two sub-expressions are non-null, combine using one of:
 mandatory AND (* OR optional)
 optional NOT exclusion
 mandatory NOT exclusion
If only one sub-expression is non-null, use one of:
 mandatory
 optional
 * NOT exclusion
Where ‘*’ finds all documents

Figure 3: Algorithm to convert an about phrase
into a Boolean expression.

Examining the about-string, optional, mandatory
(+), and exclusion (-) terms are allowed. These
terms are converted into a Boolean expression.
Optional terms are collected and converted into a
sub-expression by ORing (“a b c” → “a OR b OR

c”). Likewise, exclusion terms are also ORed.
Mandatory terms are collected and ANDed (“+d +e
+f” → “d AND e AND f”). These three sub-
expressions are then combined to form a complete
about-query. The whole algorithm is presented in
figure 3.
Separate about clauses are already Boolean
separated so these operators are preserved. Finally,
all context-elements must be satisfied so these are
ANDed together.
For content only (CO) topics, a Boolean expression
is computed exactly as for one about-string using
the algorithm presented in Figure 3.

5. RANKING
The retrieval engine is a Boolean ranking hybrid.
Result sets are computed in two parts; a bit-string of
documents satisfying a strict interpretation of the
query, and a set of accumulators holding document
weights.

5.1 Document Ranking
The Boolean expression constructed above is
converted into a parse tree then evaluated. At each
leaf, the posting are loaded and converted into a bit-
string, one bit per document.
If a given leaf in the parse tree is not tag-restricted,
each posting is examined in turn, and the bit at
position dn of each posting is set. Should the leaf be
tag-restricted, only those postings for the given tags
are examined (see Section 3) and converted.
The bit-strings are combined at the nodes of the
parse tree using the operator there. At the root of
the tree, the bit-string has set bits for all documents
exactly satisfying the query and unset for those that
do not.
The accumulator values are the sum of Okapi BM25
scores computed at each leaf of the parse tree.
Scores are summed regardless of the operators in
the parse tree.
For AND and OR nodes scores are summed because
the influence at these nodes is the sum of influences
of the children.
For NOT nodes, they are also summed. If a
document is excluded from the result set, the
accumulator value is irrelevant. If a document is
not, it is either re-included through other terms (e.g.
mammal OR (dog NOT cat)), or there is a double
negative in the query (e.g. cat NOT (dog NOT cat)).
In both cases, the document has successfully
satisfied a query leaf so receives a positive weight.

5.2 Element Ranking and Selection
The Boolean ranking hybrid engine was extended to
include element ranking. Although whole
documents are valid as results for CO topics, SCAS
topics specify a target element. This targeting

establishes the retrieval unit. If the target element is
‘sec’, this tag must be returned. It essentially directs
the retrieval engine to search and rank each given
tag instance separately.
Wilkinson [9] suggests that ranking whole
documents then extracting elements from these is a
poor ranking strategy. The opposite may hold for
this collection. A relevant element lies in the
greater context of a relevant document. A relevant
document will lie in a relevant journal, which, in
turn, lies in a relevant collection. To this end, every
paragraph of every section of every document is
contextually placed so extracting elements from
relevant documents may be a good approach.
The coverage of any one posting is computed as
those nodes in the document tree at or above the
posting. Each posting is already annotated with a
pointer into the tree, pn. To compute the coverage,
the tree is traversed upwards from pn to the root.
Coverage is computed for each document with
respect to each search term.

doc[1]

sec[1] sec[2]

@c[1]

p[2]p[1] p[1]

doc[1]

sec[1] sec[2]

@c[1]

p[2]p[1] p[1]

doc[1]

sec[1] sec[2]

@c[1]

p[2]p[1] p[1]

Figure 4: Coverage of a term occurring at p[2].

The coverage includes all those nodes at and
above the occurrence node; those parts of the

tree that “cover” the term.
In figure 4, the term “ham” occurs at p[2]. The
coverage includes all nodes above that point in the
document tree. In this example that is sec[1] and
doc[1]; all nodes that “cover” the search term –
those highlighted in grey.
For each document in the result set, the weighted
coverage is computed as the covered branches of the
document tree and how many search terms cover
that branch. This is computed during a single pass
of the indexes by storing the weighted coverage as
part of each accumulator.
For the query “eggs and ham” against the
documents in Figure 1, the weighted coverage is
shown in Figure 5. doc[1] and sec[1] have a weight
of 2, while p[1] and p[2] each have a weight of 1.

doc[1]

sec[1] sec[2]

@c[1]

p[2]p[1] p[1]
11

2

2

doc[1]

sec[1] sec[2]

@c[1]

p[2]p[1] p[1]
11

2

2

Figure 5: Weighted coverage of each node is the
number of search terms that occur at or below

that point in the tree. Weighted coverage is
shown in the bottom right of those nodes with

weights greater than zero.
In any given document, the document root must
have the highest weighted coverage, but this can be
equal to that of other nodes. For CO topics, all
branches of the document tree with coverage less
than the root are pruned. The remaining leaves are
presented as the result set for that document (in
Figure 5, the result is //doc[1]//sec[1]). In this way,
the most information dense elements in the
document are considered most relevant and no part
of any document is returned more than once
(overlapping is eliminated).
If a target element is specified in a SCAS topic, all
non-target branches are pruned. From the remains,
those branches with the highest weighted coverage
are presented as the result set for that document.

5.3 Ranking summary
Recall is determined by evaluation of the Boolean
expression, documents are then ranked using Okapi
BM25, and elements are selected by weighted
coverage. As all the metrics needed for ranking are
available at search time, the search and rank process
is computed in a single pass of the postings.

6. RESULTS
Evaluation results are presented in Table 3.

Table 3: INEX performance measures
Strict Precision Rank

CO 0.0243 42nd

SCAS 0.1799 24th

CO-ng-o 0.1359 5th

CO-ng-s Unknown Not top 10

Generalized Precision Rank

CO 0.0241 34th

SCAS 0.1214 28th

CO-ng-o 0.1542 1st

CO-ng-s 0.1405 5th

The retrieval engine performed badly using the
INEX_EVAL measure. This is most likely because
this measure treats each tag in a hierarchy as
relevant but coverage eliminates overlapping tags –
the measure is inappropriate for this retrieval
technique.
Good results were shown when performance is
measured using INEX_EVAL_NG. NG measures
the ratio of relevant to irrelevant information
returned. Coverage finds those parts of the
document that contain most of the search terms.
The correlation between information density and
coverage is reflected in the result.
The results show the best performance when
generalized quantization is used. This suggests the
ordering of the results is not optimal for strict
quantization – or the most relevant documents are
not ranked before less relevant documents. This
may be a consequence of sorting into document
order before coverage order.

7. OTAGO AT INEX
The participation process involved the design and
contribution of six topics. Of these, four were
selected for inclusion in the final topic set. Otago
was assigned three of these to assess. The
assessment took three people one week each; this
was one week per topic.
The retrieval engine described herein was used for
designing the contributed topics. This was
somewhat problematic as the topic parser was
written at the same time the topics were being
written, each with few examples.
From the final CAS topic set, 19 required
corrections, corrections finally running to 12
rounds! This suggests the topic syntax is
unnecessarily complex. See our further contribution
[6] for a discussion on a possible language to use for
future workshops.
The assessors were overburdened by the multitude
of obviously irrelevant documents to assess.
Examining some of these documents suggests many
retrieval engines were aiming at high recall by
retrieving any document containing any of the title
terms. In particular, the word ‘java’ appeared in one
topic; this was a somewhat popular research area
over the years included in the IEEE collection. The
assessment task could be reduced by carefully
designing topics (and retrieval engines) to avoid this
problem.

8. CONCLUSIONS
Element ranking was added to a Boolean ranking
hybrid retrieval engine. Relevant documents were
identified using Boolean searching. Documents
were ranked using Okapi BM25. Finally coverage
was used to rank elements within documents.

The results suggest coverage is a good method of
identifying relevant and non-overlapping elements.
Performance was best for generalized quantization,
so ordering is not ideal. This may be a consequence
of presenting results in document order.

9. ACKNOWLEDGEMENTS
In addition to the authors, Yerin Yoo contributed to
the assessment task. Without her contribution we
would not have been able to complete the task.
This work was supported by University of Otago
Research Grant (UORG) funding.

REFERENCES
[1] Bray, T., Paoli, J., Sperberg-McQueen, C. M.,

Maler, E., Yergeau, F., & Cowan, J. (2003).
Extensible markup language (XML) 1.1 W3C
proposed recommendation. The World Wide
Web Consortium. Available:
http://www.w3.org/TR/2003/PR-xml11-
20031105/ [2003.

[2] Fuhr, N., Gövert, N., Kazai, G., & Lalmas, M.
(2002). INEX: Initiative for the evaluation of
XML retrieval. In Proceedings of the ACM
SIGIR 2000 Workshop on XML and Information
Retrieval.

[3] Harman, D. (1993). Overview of the first TREC
conference. In Proceedings of the 16th ACM

SIGIR Conference on Information Retrieval, (pp.
36-47).

[4] Hitchcock, S., Quek, F., Carr, L., Hall, W.,
Witbrock, A., & Tarr, I. (1988). Towards
universal linking for electronic journals. Serials
Review, 24(1), 21-33.

[5] Kazai, G., & Rölleke, T. (2002). A scalable
architecture for XML retrieval. In Proceedings
of the 1st workshop of the initiative for the
evaluation of XML retrieval (INEX), (pp. 49-56).

[6] O'Keefe, R. A., & Trotman, A. (2003). The
simplest query language that could possibly
work. In Proceedings of the 2nd workshop of the
initiative for the evaluation of XML retrieval
(INEX).

[7] Robertson, S. E., Walker, S., Beaulieu, M. M.,
Gatford, M., & Payne, A. (1995). Okapi at
TREC-4. In Proceedings of the 4th Text
REtrieval Conference (TREC-4), (pp. 73-96).

[8] Trotman, A. (2003). Searching structured
documents. Information Processing &
Management, (to appear) doi:10.1016/S0306-
4573(03)00041-4, available on ScienceDirect
since 6 June 2003.

[9] Wilkinson, R. (1994). Effective retrieval of
structured documents. In Proceedings of the
17th ACM SIGIR Conference on Information
Retrieval, (pp. 311-317).

