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Abstract Improving ranking functions for structured 
information retrieval has received much attention 
since the inception of XML.  Weighting document 
structures is one method providing significant 
improvement – but how good can these improvements 
be? 

Optimal structure weighted retrieval occurs when 
each query is processed using the optimal set of 
weights for that query.  Optimal retrieval for a set of 
queries occurs when a set of weights optimized for 
that set of queries is used.  Measuring mean average 
precision for each of these will give a performance 
upper bound for document structure weighted 
retrieval. 

In this investigation a near optimal set of weights 
is learned for TREC WSJ collection topics 101-200 
using a genetic algorithm.  Weights are learned for 
vector space inner product, naïve probability and 
BM25 ranking functions and a performance upper 
bound is calculated.  

The upper bound using a different set of weights 
for each query, gives mean average precision 
improvements of about 15% for BM25 and naïve 
probability; about 30% for inner product.  This 
suggests structure weighting might be useful for 
relevance feedback.  Optimal weights for the set of 
queries shows improvements of about 5% for naïve 
probability and inner product, but of only about 1% 
for BM25; suggesting this technique is not as effective 
for ad hoc retrieval. 
 
Keywords Information Retrieval. 

1. Introduction 
As markup languages such as SGML [13] and XML 
[3] became more popular, many data providers 
switched to offering their data in these formats.  The 
two big information retrieval collections, TREC [11] 
and INEX [5], are both available in XML. 

This availability of structured documents raises 
questions about relevance ranking – how, exactly, can 
the document structure be used to improve whole 
document ranking?  One approach is to weight term 

occurrences based on where in the document they lie. 
A term found in an abstract is perhaps of greater 
significance than the same term found in the body text 
of the same document, fulfilling the principle of 
summarization.  This was the suggestion of Fuller et 
al. [7].  

In structure-weighted retrieval each document 
structure (or tagged element) is given a weight.  Each 
occurrence of each search term is weighted according 
to the structure in which it occurs.  Document term 
frequencies are then replaced by linear weighted term 
frequencies based on term structure occurrences.  In 
this way whole documents are ranked using the 
structural information present in the documents. 

There are several ways to choose the weights.  
Proposals include trial and error [28], simulated 
annealing [2], genetic algorithms [26], and asking the 
user to supply them as part of the query [6]. 

Regardless of how the weights are chosen, there 
remains a question central to all ranking functions: 
performance.  Ordinarily this is easily measured.  Any 
standard test collection is obtained, the mean average 
precision (MAP) is computed over all the queries in 
the collection and compared to that of other ranking 
functions.  The highest performing function is 
considered “best” for that collection.  A test such as 
the t-test is often used to show the significance of this 
difference. 

With structure weighting, exactly the same 
approach is used, only the ranking function doesn’t 
change, only the structure weights change.  In effect, 
the process is to optimize an existing function to a 
given set of structures.  But how good is this 
optimization in isolation?  What is the expected 
performance gain using just this approach?  How does 
it compare to using a different ranking function? 

Imagine there is an oracle that knows, in advance 
and for every query, the optimal set of weights to use.  
In optimal structure weighted retrieval, a query is 
received from a user, given to the oracle that returns 
the weights, those weights are loaded into the retrieval 
engine and the query processed.  In essence, the oracle 
ensures every query is answered optimally. 

In this investigation the performance gain of 
structure weighted retrieval is measured in exactly this 
way.  The TREC Wall Street Journal collection and 
TREC topics 101-200 are used.  The oracle is 
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simulated by a genetic algorithm [12], which learns, 
for each topic, a near optimal weight set.  Experiments 
were conducted using vector space inner product [20], 
naïve probability [10] and the BM25 [19] ranking 
functions.  An approximation to the performance 
upper bound is found. 

Results for unweighted retrieval show BM25 
outperforms naïve probability, which outperforms 
inner product.  Using the oracle, the mean gain is 
approximately 15% for BM25 and naïve probability, 
and 30% for inner product (which does not change 
this order).  When the oracle was tasked to learn a 
single set of weights to apply to all queries, the 
improvements were much smaller.  This suggests 
document structure weighting might be better suited to 
relevance feedback than to ad hoc retrieval.  
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Figure 1: Three documents and the corpus tree for those 
documents.  Instances are shown in square braces, e.g., 

p[2] represents the second paragraph.  Identifiers, issued 
on an as encountered basis, are shown after the colon. 

2. Structured information retrieval 
In an inverted file information retrieval system there is 
one dictionary, and each dictionary term points to one 
inverted list of postings.  The postings are usually 
represented as {<d1, f1><d2, f2>, …, <dn, fn>} where 
dn is a document number and fn is the frequency of the 
given term in the given document. 

For structured information retrieval it is also 
necessary to know where in the document terms are 
found, so the postings must be annotated with this.  
Exactly how the postings are annotated does not 
matter, so long as it is possible to know, for each 
posting, in which structure that posting is found. 

Several encoding techniques have been suggested.  
Each different tag in the DTD could have a separate 
inverted list [21; 22]. The path to the posting could be 
stored as a path directly in the indexes [4; 25]. Or a 
tree representing the structure of the collection could 
be built, labeled, and used. 

To build the tree, first each document tree is built; 
then these are superimposed to form a single tree.  
This corpus tree includes every path through every 
document, but is unlikely to match the structure of any 
one document.  Three documents and the corpus tree 
they form are shown in Figure 1. 

Nodes in the tree can be encoded in several ways.  
If the tree is considered to be a k-way virtual tree 
(where some nodes may not exist) and each node is 
labeled with an identifier reflecting this, paths 
upwards through the tree can be computed directly 
from the identifiers.  These identifiers can then be 
stored directly in the postings [16; 24]. 

Alternatively, each node in a tree of M nodes can 
be given an ordinal identifier from 1 to M.  Then for 
each posting a bitstring of length M is constructed 
with a 1 bit for every node above the given postings 
and a 0 for all others.  These bitstrings are then stored 
with each posting [17]. 

The corpus tree can be built dynamically during 
single pass indexing [15; 26].  As each new path in 
each new document is encountered it is added to the 
corpus tree and given a unique ordinal identifier.  
These identifiers are then stored with each posting, 
{<d1, p1, f1><d2, p2, f2,>, …, <dn, pn, fn>} where pn is 
the corpus tree node identifier. 

With each of these approaches it’s possible to 
determine which terms occur where in which 
document and how many times.  For the experiments 
herein it doesn’t matter how the indexes are stored so 
long as that information is available. 

3. Ranking 

3.1. HTML 
Tag weighting schemes for HTML have received 
much attention.  The document weight is computed 
from not only the term occurrences, but from the tags 
in which the term occurs. 

One approach [14] is to give each tag a weight.  
Then for ranking, compute two values: term frequency 
within the document, tfid, and the product of the tag 
weights for each tag in which the term is found.  
These are multiplied to give a weighting for the term 
in the document.  This approach averages the tag 
weights over the parts of the document covered by the 
term.  A document containing a term twice in 
<TITLE> and once in <B> is weighted identically to a 
document containing the same term once in <TITLE> 
and twice in <B>. 

To overcome this averaging, each occurrence of 
each term can be multiplied by an element weight [2; 
18].  Term frequency tfid for a given term, i, in a given 
document, d, is replaced by a structure weighted term 
frequency, ctfid, computed as 
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where p is a given element, Cp is a weight for that 
element, and tfipd is the number of occurrences of term 
i in structure p of document d. 

Different approaches vary in which elements (and 
other heuristics) are used for ranking.  Some, for 
example, include the number of incoming web page 
links. 

3.2. SGML and XML 
There are two approaches to searching SGML and 
XML, retrieval of elements and retrieval of whole 
documents.  The annual INEX workshop focuses on 
element retrieval for which there are a wide number of 
approaches [5].  This investigation focuses on whole 
document retrieval (as seen in digital academic 
libraries), for which element retrieval techniques are 
not appropriate. 

For whole document retrieval, Kotsakis [15] used 
the weighted term frequency approach from equation 
(1) with vector space ranking and Trotman [26] did the 
same for naïve probabilistic and BM25 ranking. 

3.3. Structured ranking equations 
3.3.1. Vector space inner product 
The vector space inner product weight, wdq, is 
computed as the inner product of the document vector, 
wid, and the query vector, wiq.  The structure-weighted 
variant is 
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where 
 

iiqiq IIDFtfw ×=  (3) 
 
and tfiq is the number of occurrences of term i in query 
q and  
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and 
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where N is the number of documents in the collection 
and ni is the number of occurrences of term i in the 
collection. 

 
3.3.2. Naïve probability model 
The weight of the document with respect to a query, 
wdq, is given by 
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where C = 1.0, L = 0.3 and md is the term frequency of 
the most frequent term in document d. 

 
3.3.3. Okapi BM25 
For Okapi BM25 ranking, 
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where k1 = 1.2, k3 = 7, b = 0.75, Td is the number of 
terms in the document, and Tav is the average 
document length measured in terms (the same unit of 
measure as Td). 

If all weights are set equal to 1, no structure is 
preferred over any other and unstructured retrieval 
results.  If a structure weight is set to 0, that structure 
will not be included in ranking.  Other choices of 
weights set the relative importance of each structure to 
the others.  There remains, however, the problem of 
choosing the weights. 

4. Choosing document structure weights 
One way to choose weights is to ask the user to supply 
them as part of the query.  Graphic query languages 
supporting this have already been proposed [1], as 
have text based query languages [6].  Although these 
languages allow the user to customize the weights for 
the each query, it is not obvious how to choose good 
weights.  Tests on HTML documents demonstrate a 
decrease in precision for almost all points of recall 
when a human subject is asked to do this [18]. 

Manual approaches to choosing collection-wide 
weights have also been tried.  By setting all weights 
equal and varying one weight it is possible to measure 
the influence of each element in isolation.  A set of 
weights for all the elements is then chosen based on 
how each element performs in isolation [28].  This 
technique, however, is unable to identify co-
dependence between element. 

To get an optimal set of weights a fully automated 
machine learning approach is needed.  Gradient-based 



optimization has successfully been used [18].  
Recently genetic algorithms have also been show to 
produce good weights for HTML [14] and for XML 
[26].  These investigations have shown that a set of 
weights learned on one set of topics is effective for 
improving another.   

4.1. The genetic algorithms approach 
Genetic algorithms [12] have been shown to be a 
robust optimization mechanism in many fields [8].  In 
information retrieval they have been used to build 
indexes [9], for relevance feedback [27], and for 
choosing document structure weights. 

Each node in the corpus tree is given a unique 
ordinal node identifier as it is created.  Consequently, 
once indexing has completed, the nodes will be 
labeled 1 to M.  Weights for each node can, therefore, 
be represented as an array of length M, one array 
position for each weight. 
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Figure 2: The chromosomal encoding of a set of 

weights forms a genetic algorithms individual.  A set of 
individuals is a population. 

 
The array is analogous to an individual 

chromosome in a genetic algorithm simulation.  The 
array positions are analogous to loci and the values in 
the array to genes.  A population is a set of arrays.  
This analogy is shown in Figure 2. 

The genetic operations are a direct manipulation of 
these arrays. 

For reproduction an individual is selected with 
fitness proportionate selection. 

In mutation, an individual is chosen using fitness 
proportionate selection.  From that individual a 
random locus is chosen.  A random gene is then 
selected and placed at that locus. 

In one-point crossover, two individuals are chosen 
using fitness proportionate selection.  A random locus 
is chosen.  Two new individuals are then created with 
the genes after the locus switched. 

The simulation is run until a satisfactory result is 
found or for a fixed number of generations. 

5. Experimental design 
Two experiments were conducted; both used the Wall 
Street Journal collection (1987-1992) from TREC 

disks 1 and 2.  Topics 101 to 200 were used, with 
topics having fewer than 5 judgements being 
discarded (121, 175, 178 and 181).  Topics were 
converted into queries by extracting terms from the 
description field and stopping common words.  
Stemming was not used. 

The collection was indexed with a structured 
information retrieval system using a corpus tree and 
with postings annotated with pointers into the tree. 

A population of 50 individuals was chosen at 
random.  The probability of mutation was 0.2, of 
crossover was 0.5, and of reproduction was 0.3 (other 
ratios were not tested).  Genes took a value between 0 
and 1.  The initial population was seeded with an 
individual with weights all 1; the equivalent of 
unweighted retrieval.  Each simulation ran for 25 
generations.  The experiments were conducted 50 
times to reduce the chance of error. 

The purpose of these experiments is to compute an 
upper bound for structure weighted retrieval (in 
isolation of other factors).  This is done by 
deliberately over fitting to a training set and then 
reporting the result as the optimum – it is the best that 
can be seen on the training set (in this case the entire 
set), and so can reasonably be reported as optimal.  
Although it is possible the optimal set of weights will 
not be found in one run of the genetic algorithm (it 
might become stuck at a local maximum), repeating 
the experiment 50 times decreases this inherent error.  
As no proof of optimality of the weighs is given, the 
results herein must be considered near-optimal and not 
optimal. 

5.1. Experiment 1: The oracle 
Each time a query is issued, the oracle is consulted for 
the optimal set of structure weights.  These weights 
are then loaded into the retrieval engine and the query 
resolved.  Such an oracle cannot exist, but the effect of 
having one can be simulated. 

In experiment 1, weights are learned for each topic 
individually.  From the 50 runs, weights from the one 
run showing the largest improvement in average 
precision are chosen as the best weights.  These 
weights can reasonably be expected to be near 
optimal. 

Using the near optimal weights with each query is 
an approximation of the oracle.  For each query, the 
near optimal weights are loaded into the retrieval 
engine and the query resolved against the document 
collection.  The average precision for this query is 
near the optimal average precision possible for this 
query, using this technique. 

This experiment was conducted three times, once 
for each of inner product, naïve probability and BM25 
(equations (2), (6) and (8) respectively). 

5.2. Experiment 2: One answer fits all 
If the oracle could be consulted only once, it would be 
to find the set of weights that would maximize MAP 



over all queries.  This is simulated in experiment 2 
where one set of weights is learned using all queries. 

This experiment was conducted three times, once 
for each of inner product, naïve probability and BM25 
(equations (2), (6) and (8) respectively). 

6. Results 
The results of experiment 1 are compared to those of 
experiment 2 and to unweighted retrieval to get an 
approximation to how good document structured 
retrieval can be.  

6.1. Experiment 1 
Table 1 presents the results from Experiment 1.  Using 
the oracle results in mean average prevision 
improvements varying between less than one percent 
and several hundred percent.  The mean improvement 
is calculated as the sum of improvements divided by 
the number of queries.  This is not the improvement in 
the mean average precision, which is presented in 
Table 2. 

No queries showed a decrease in precision.  In 
Figure 3 the improvements are plotted from greatest to 
least improvement and for each ranking function.  
Only a small number of queries receive large 
improvements, most receive small improvements.  
Average precision improvements of greater than 5% 
were seen in 78% of queries using inner product, 57% 
using naïve probability and 67% using BM25.  

Without using structure weighting, BM25 
outperforms naïve probability, which outperforms 
inner product.  When the oracle is used with each of 
the three functions, they still perform in the same 
order; BM25 is better than naïve probability is better 
than inner product. 

Unexpectedly, different queries showed different 
improvements using different ranking functions.  In 
Figure 4 the topics are shown sorted in order of most 
to least improvement for inner product.  The lines 
representing BM25 and naïve probability show 
improvement spikes.  From visual inspection, the 
queries showing large improvements appear to be 
different for each ranking function. 

The differences in Figure 4 can be quantized using 
the Pearson correlation.  Pearson values near 1 show a 
positive correlation; those near -1 show a negative 
correlation, while values close to 0 show no 
correlation.  From Table 3; there is no cross function 
correlation in how much each topic is improved. 

 
 

Method Max Mean Min 
I. Prod 1081.88% 71.83% 0.77%
N. Prob 356.75% 28.39% 0.04%
BM25 848.18% 35.04% 0.04%

Table 1:  Average precision improvements seen in 
experiment 1. 
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Figure 3: Improvements in precision vary greatly, but 

are mostly small. 
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Figure 4: Different topics show different improvements 

with different ranking functions. 
 

Method I. Prod N. Prob BM25 
Unweighted 0.15674 0.17804 0.24178
Experiment 1    

The Oracle 0.20329 0.20560 0.27750
Improvement 29.70% 15.48% 14.77%
P (t-test) 0.00 0.00 0.00 

Experiment 2    
One Answer Fits All 0.16399 0.18991 0.24332
Improvement 4.63% 6.67% 0.64% 
P (t-test) 0.00 0.00 0.04 

Table 2: Mean average precision of experiments 1 & 2.  
Significance (P) is computed with a 2-tailed t-test. 

 



Exp 1 I. Prod N. Prob BM25
I. Prod 1.00 0.09 0.14 
N. Prob 0.09 1.00 -0.07 
BM25 0.14 -0.07 1.00 

Table 3: Pearson correlation showing improvements seen 
in one function do not correlate to those seen in another 

when weights are learned for each topic. 
 
Using this result, its possible to ask a new 

question.  What if there existed a super-oracle who 
knew the best function to use and the best set of 
weights to use with that function?  In this case the 
MAP increases to 0.29046, this is a 20% improvement 
on unweighted BM25, a just under 4.7% improvement 
on the oracle result for BM25. 

6.2. Experiment 2 
Results for experiment 2 are shown in Table 2.  When 
the oracle returns a single set of weights suitable for 
all queries, the improvement is substantially less than 
when weights are returned for each topic.  This is 
exactly as expected, one general purpose set of 
weights can not be expected to perform as well as a set 
of special purpose weights tailored to each query. 

Improvements for inner product and naïve 
probability are about 5%.  Those for BM25 show a 
less than 1% improvement.  Even so, BM25 
outperforms naïve probability, which outperforms 
inner product.  The same order as when no weighting 
was used. 

 
Exp 2 I. Prod N. Prob BM25

I. Prod 1.00 -0.08 -0.13 
N. Prob -0.08 1.00 0.05 
BM25 -0.13 0.05 1.00 

Table 4: Pearson correlation showing improvements seen 
in one function do not correlate to those seen in another 

when one set of weights is used for all topics. 
 

Exp 1 / Exp 2 Pearson 
I. Prod 0.58 
N. Prob 0.87 
BM25 0.01 

Table 5: Pearson correlation computed between 
experiment 1 and experiment 2.  Those topics showing 
improvements are correlated across experiments for 

inner product and naïve probability, but not for BM25. 
 
The Pearson correlation is shown in Table 4 – 

again there is no cross function correlation between 
how much each topic is improved.  When the results 
from experiment 1 and experiment 2 are correlated, a 
strong correlation is seen for naïve probability, less so 
for inner product, and none for BM25, as shown in 
Table 5.  BM25 most likely shows no correlation 
because the improvements in experiment 2 are 
themselves not significant. 

BM25 showed close to no improvement across 
these queries.  This may be because BM25 was 

developed for this collection.  The tuning parameters, 
k1, k3 and b, are used to customize the function to a 
given set of documents, and are already optimized for 
TREC. 

7. Discussion and future work 
The documents in the TREC WSJ collection are 
marked up using about 20 unique tags.  The 
documents are short, and the markup is sparse.  The 
queries used in these experiments are derived from 
topic descriptions, they, too, are short.  These two 
factors may account for why the near optimal 
improvements are small. 

Should all the query terms occur in only one 
element (in the case of WSJ, the TEXT element), each 
document receives a constant weight resulting in a 
linear scaling of the ranking score; which is order 
preserving.  Should only a few relevant documents 
additionally contain terms elsewhere (e.g. the title or 
HL element), only the order of those documents will 
be adjusted relative to the others; only a small change 
in MAP will be observed. 

This could be verified by using longer queries.  By 
increasing the number of terms in the query the chance 
of hitting terms outside the TEXT element will 
increase so the number of documents changing order 
will increase and the MAP will reflect this change. 

Alternatively, a collection of documents with 
longer elements could be used.  The INEX collection 
[5] contains long documents broken into title abstract, 
sections and subsections and may be appropriate.  It 
does, however, contain 192 unique tags, many of 
which are unlikely to be useful for ranking (e.g. 
citation identifiers).  Such tags would be removed, the 
content being preserved, before such experiments are 
conducted. 

The TREC binary relevance judgments may also 
be the source of the small MAP improvement.  If the 
ranking function has successfully identified the 
relevant documents, and ordered those at the top of the 
results list, any amount of re-ordering to place “more” 
relevant documents first will not be observed.  This 
could be verified using a document collection that has 
non-binary relevance judgments (such as the cystic 
fibrosis collection [23]) 

The difference seen between experiment 2 and 
experiment 1 is substantial.  When one set of weights 
is learned for a set of topics the improvement is small, 
when weights are learned for each query the 
improvement is larger.  This suggests the latter 
technique might be useful, if it could be utilised in a 
retrieval engine.  One way to improve MAP given a 
set of known relevant documents is relevance 
feedback.  Such improvements are expected to be 
smaller than those observed herein as in relevance 
feedback only a subset of relevant documents are 
identified so fewer documents are available for 
learning; over-fitting to this subset may also occur. 



8. Conclusions 
An oracle that can return the optimal set of document 
structure weights to use for structure weighted 
information retrieval is theorized.  Using the oracle 
gives the performance upper bound for this technique.  
For the TREC WSJ collection, an approximation to 
the oracle is constructed and tested and an 
approximation to the upper bound is computed. 

When the oracle was not used, BM25 was shown 
to outperform naïve probability, which outperformed 
inner product.  When the oracle was consulted for 
each query, mean average precision showed an 
improvement of 15% for naïve probability and BM25, 
and of 30% for inner product.  Even so, using the 
oracle did not change the order of the functions; 
BM25 was still better then naïve probability which is 
still better than inner product. 

Only small improvements are seen in most queries, 
while very few queries show large improvements.  
The queries that showed large improvements were 
different for each ranking function. 

When the oracle was consulted once for a single 
set of weights to use for every query, smaller 
improvements were seen.  Inner product and naïve 
probability showed a 5% improvement whereas BM25 
showed a 0.6% improvement.  Again, the order of 
goodness of the functions did not change.  BM25 was 
better than naïve probability which was better than 
inner product. 

These results suggest document structure weighted 
retrieval is better suited to relevance feedback than to 
ad hoc retrieval. 
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