

Optimal Structure Weighted Retrieval

Andrew Trotman

Department of Computer Science
University of Otago

Dunedin, New Zealand

andrew@cs.otago.ac.nz

Abstract Improving ranking functions for structured
information retrieval has received much attention
since the inception of XML. Weighting document
structures is one method providing significant
improvement – but how good can these improvements
be?

Optimal structure weighted retrieval occurs when
each query is processed using the optimal set of
weights for that query. Optimal retrieval for a set of
queries occurs when a set of weights optimized for
that set of queries is used. Measuring mean average
precision for each of these will give a performance
upper bound for document structure weighted
retrieval.

In this investigation a near optimal set of weights
is learned for TREC WSJ collection topics 101-200
using a genetic algorithm. Weights are learned for
vector space inner product, naïve probability and
BM25 ranking functions and a performance upper
bound is calculated.

The upper bound using a different set of weights
for each query, gives mean average precision
improvements of about 15% for BM25 and naïve
probability; about 30% for inner product. This
suggests structure weighting might be useful for
relevance feedback. Optimal weights for the set of
queries shows improvements of about 5% for naïve
probability and inner product, but of only about 1%
for BM25; suggesting this technique is not as effective
for ad hoc retrieval.

Keywords Information Retrieval.

1. Introduction
As markup languages such as SGML [13] and XML
[3] became more popular, many data providers
switched to offering their data in these formats. The
two big information retrieval collections, TREC [11]
and INEX [5], are both available in XML.

This availability of structured documents raises
questions about relevance ranking – how, exactly, can
the document structure be used to improve whole
document ranking? One approach is to weight term

occurrences based on where in the document they lie.
A term found in an abstract is perhaps of greater
significance than the same term found in the body text
of the same document, fulfilling the principle of
summarization. This was the suggestion of Fuller et
al. [7].

In structure-weighted retrieval each document
structure (or tagged element) is given a weight. Each
occurrence of each search term is weighted according
to the structure in which it occurs. Document term
frequencies are then replaced by linear weighted term
frequencies based on term structure occurrences. In
this way whole documents are ranked using the
structural information present in the documents.

There are several ways to choose the weights.
Proposals include trial and error [28], simulated
annealing [2], genetic algorithms [26], and asking the
user to supply them as part of the query [6].

Regardless of how the weights are chosen, there
remains a question central to all ranking functions:
performance. Ordinarily this is easily measured. Any
standard test collection is obtained, the mean average
precision (MAP) is computed over all the queries in
the collection and compared to that of other ranking
functions. The highest performing function is
considered “best” for that collection. A test such as
the t-test is often used to show the significance of this
difference.

With structure weighting, exactly the same
approach is used, only the ranking function doesn’t
change, only the structure weights change. In effect,
the process is to optimize an existing function to a
given set of structures. But how good is this
optimization in isolation? What is the expected
performance gain using just this approach? How does
it compare to using a different ranking function?

Imagine there is an oracle that knows, in advance
and for every query, the optimal set of weights to use.
In optimal structure weighted retrieval, a query is
received from a user, given to the oracle that returns
the weights, those weights are loaded into the retrieval
engine and the query processed. In essence, the oracle
ensures every query is answered optimally.

In this investigation the performance gain of
structure weighted retrieval is measured in exactly this
way. The TREC Wall Street Journal collection and
TREC topics 101-200 are used. The oracle is

Proceedings of the 9th Australasian Document Computing
Symposium, Melbourne, Australia, December 13, 2004.
Copyright for this article remains with the author.

simulated by a genetic algorithm [12], which learns,
for each topic, a near optimal weight set. Experiments
were conducted using vector space inner product [20],
naïve probability [10] and the BM25 [19] ranking
functions. An approximation to the performance
upper bound is found.

Results for unweighted retrieval show BM25
outperforms naïve probability, which outperforms
inner product. Using the oracle, the mean gain is
approximately 15% for BM25 and naïve probability,
and 30% for inner product (which does not change
this order). When the oracle was tasked to learn a
single set of weights to apply to all queries, the
improvements were much smaller. This suggests
document structure weighting might be better suited to
relevance feedback than to ad hoc retrieval.

<doc>
<sec><p>Green Eggs</p>
<p>and Ham</p></sec>
</doc>

<doc>
<sec><p>Fox in Sox</p></sec>
</doc>

<doc>
<sec><p>The Cat in the Hat</p></sec>
<sec><p>Comes Back</p></sec>
</doc>

doc[1]:1

sec[1]:2 sec[2]:4

p[2]:6p[1]:3 p[1]:5

<doc>
<sec><p>Green Eggs</p>
<p>and Ham</p></sec>
</doc>

<doc>
<sec><p>Fox in Sox</p></sec>
</doc>

<doc>
<sec><p>The Cat in the Hat</p></sec>
<sec><p>Comes Back</p></sec>
</doc>

doc[1]:1

sec[1]:2 sec[2]:4

p[2]:6p[1]:3 p[1]:5

<doc>
<sec><p>Green Eggs</p>
<p>and Ham</p></sec>
</doc>

<doc>
<sec><p>Fox in Sox</p></sec>
</doc>

<doc>
<sec><p>The Cat in the Hat</p></sec>
<sec><p>Comes Back</p></sec>
</doc>

<doc>
<sec><p>Green Eggs</p>
<p>and Ham</p></sec>
</doc>

<doc>
<sec><p>Fox in Sox</p></sec>
</doc>

<doc>
<sec><p>The Cat in the Hat</p></sec>
<sec><p>Comes Back</p></sec>
</doc>

doc[1]:1

sec[1]:2 sec[2]:4

p[2]:6p[1]:3 p[1]:5

doc[1]:1

sec[1]:2 sec[2]:4

p[2]:6p[1]:3 p[1]:5

Figure 1: Three documents and the corpus tree for those
documents. Instances are shown in square braces, e.g.,

p[2] represents the second paragraph. Identifiers, issued
on an as encountered basis, are shown after the colon.

2. Structured information retrieval
In an inverted file information retrieval system there is
one dictionary, and each dictionary term points to one
inverted list of postings. The postings are usually
represented as {<d1, f1><d2, f2>, …, <dn, fn>} where
dn is a document number and fn is the frequency of the
given term in the given document.

For structured information retrieval it is also
necessary to know where in the document terms are
found, so the postings must be annotated with this.
Exactly how the postings are annotated does not
matter, so long as it is possible to know, for each
posting, in which structure that posting is found.

Several encoding techniques have been suggested.
Each different tag in the DTD could have a separate
inverted list [21; 22]. The path to the posting could be
stored as a path directly in the indexes [4; 25]. Or a
tree representing the structure of the collection could
be built, labeled, and used.

To build the tree, first each document tree is built;
then these are superimposed to form a single tree.
This corpus tree includes every path through every
document, but is unlikely to match the structure of any
one document. Three documents and the corpus tree
they form are shown in Figure 1.

Nodes in the tree can be encoded in several ways.
If the tree is considered to be a k-way virtual tree
(where some nodes may not exist) and each node is
labeled with an identifier reflecting this, paths
upwards through the tree can be computed directly
from the identifiers. These identifiers can then be
stored directly in the postings [16; 24].

Alternatively, each node in a tree of M nodes can
be given an ordinal identifier from 1 to M. Then for
each posting a bitstring of length M is constructed
with a 1 bit for every node above the given postings
and a 0 for all others. These bitstrings are then stored
with each posting [17].

The corpus tree can be built dynamically during
single pass indexing [15; 26]. As each new path in
each new document is encountered it is added to the
corpus tree and given a unique ordinal identifier.
These identifiers are then stored with each posting,
{<d1, p1, f1><d2, p2, f2,>, …, <dn, pn, fn>} where pn is
the corpus tree node identifier.

With each of these approaches it’s possible to
determine which terms occur where in which
document and how many times. For the experiments
herein it doesn’t matter how the indexes are stored so
long as that information is available.

3. Ranking

3.1. HTML
Tag weighting schemes for HTML have received
much attention. The document weight is computed
from not only the term occurrences, but from the tags
in which the term occurs.

One approach [14] is to give each tag a weight.
Then for ranking, compute two values: term frequency
within the document, tfid, and the product of the tag
weights for each tag in which the term is found.
These are multiplied to give a weighting for the term
in the document. This approach averages the tag
weights over the parts of the document covered by the
term. A document containing a term twice in
<TITLE> and once in is weighted identically to a
document containing the same term once in <TITLE>
and twice in .

To overcome this averaging, each occurrence of
each term can be multiplied by an element weight [2;
18]. Term frequency tfid for a given term, i, in a given
document, d, is replaced by a structure weighted term
frequency, ctfid, computed as

()∑
=

×=
n

p
ipdpid tfCctf

1
 (1)

where p is a given element, Cp is a weight for that
element, and tfipd is the number of occurrences of term
i in structure p of document d.

Different approaches vary in which elements (and
other heuristics) are used for ranking. Some, for
example, include the number of incoming web page
links.

3.2. SGML and XML
There are two approaches to searching SGML and
XML, retrieval of elements and retrieval of whole
documents. The annual INEX workshop focuses on
element retrieval for which there are a wide number of
approaches [5]. This investigation focuses on whole
document retrieval (as seen in digital academic
libraries), for which element retrieval techniques are
not appropriate.

For whole document retrieval, Kotsakis [15] used
the weighted term frequency approach from equation
(1) with vector space ranking and Trotman [26] did the
same for naïve probabilistic and BM25 ranking.

3.3. Structured ranking equations
3.3.1. Vector space inner product
The vector space inner product weight, wdq, is
computed as the inner product of the document vector,
wid, and the query vector, wiq. The structure-weighted
variant is

()∑
=

×=
t

i
iqiddq www

1
 (2)

where

iiqiq IIDFtfw ×= (3)

and tfiq is the number of occurrences of term i in query
q and

iidid IIDFctfw ×= (4)

and

i
i n

NIIDF 1log2
+

= (5)

where N is the number of documents in the collection
and ni is the number of occurrences of term i in the
collection.

3.3.2. Naïve probability model
The weight of the document with respect to a query,
wdq, is given by

() ()∑
=



















×−+×+=

t

i d

id
idq m

ctf
LLPIDFCw

1
1 (6)

where

i

i

n
nN

PIDF
1

log2
+−

= (7)

where C = 1.0, L = 0.3 and md is the term frequency of
the most frequent term in document d.

3.3.3. Okapi BM25
For Okapi BM25 ranking,












+

×+
×

+
×+

×= ∑
= iq

iq
t

i id

id
dq tfk

tfk
ctfK

ctfk
BIDFw

3

3

1

1)1()1(
 (8)

where

5.0
5.0

log
+
+−

=
i

i

n
nN

BIDF (9)

and

() 






 ×
+−×=

av

d

T
Tb

bkK 11 (10)

where k1 = 1.2, k3 = 7, b = 0.75, Td is the number of
terms in the document, and Tav is the average
document length measured in terms (the same unit of
measure as Td).

If all weights are set equal to 1, no structure is
preferred over any other and unstructured retrieval
results. If a structure weight is set to 0, that structure
will not be included in ranking. Other choices of
weights set the relative importance of each structure to
the others. There remains, however, the problem of
choosing the weights.

4. Choosing document structure weights
One way to choose weights is to ask the user to supply
them as part of the query. Graphic query languages
supporting this have already been proposed [1], as
have text based query languages [6]. Although these
languages allow the user to customize the weights for
the each query, it is not obvious how to choose good
weights. Tests on HTML documents demonstrate a
decrease in precision for almost all points of recall
when a human subject is asked to do this [18].

Manual approaches to choosing collection-wide
weights have also been tried. By setting all weights
equal and varying one weight it is possible to measure
the influence of each element in isolation. A set of
weights for all the elements is then chosen based on
how each element performs in isolation [28]. This
technique, however, is unable to identify co-
dependence between element.

To get an optimal set of weights a fully automated
machine learning approach is needed. Gradient-based

optimization has successfully been used [18].
Recently genetic algorithms have also been show to
produce good weights for HTML [14] and for XML
[26]. These investigations have shown that a set of
weights learned on one set of topics is effective for
improving another.

4.1. The genetic algorithms approach
Genetic algorithms [12] have been shown to be a
robust optimization mechanism in many fields [8]. In
information retrieval they have been used to build
indexes [9], for relevance feedback [27], and for
choosing document structure weights.

Each node in the corpus tree is given a unique
ordinal node identifier as it is created. Consequently,
once indexing has completed, the nodes will be
labeled 1 to M. Weights for each node can, therefore,
be represented as an array of length M, one array
position for each weight.

populationchromosome

genelocus

{ }0.6

D
oc

[1
]

D
oc

[1
]/s

ec
[1

]

D
oc

[1
]/s

ec
[1

]/p
[1

]

D
oc

[1
]/s

ec
[1

]/p
[2

]

D
oc

[1
]/s

ec
[2

]

D
oc

[1
]/s

ec
[2

]/p
[1

]

0.50.10.60.40.2

0.1

populationchromosome

genelocus

{ }0.6

D
oc

[1
]

D
oc

[1
]/s

ec
[1

]

D
oc

[1
]/s

ec
[1

]/p
[1

]

D
oc

[1
]/s

ec
[1

]/p
[2

]

D
oc

[1
]/s

ec
[2

]

D
oc

[1
]/s

ec
[2

]/p
[1

]

0.50.10.60.40.2

0.1

populationchromosome

genelocus

{ }0.6

D
oc

[1
]

D
oc

[1
]/s

ec
[1

]

D
oc

[1
]/s

ec
[1

]/p
[1

]

D
oc

[1
]/s

ec
[1

]/p
[2

]

D
oc

[1
]/s

ec
[2

]

D
oc

[1
]/s

ec
[2

]/p
[1

]

0.50.10.60.40.2

0.10.1

Figure 2: The chromosomal encoding of a set of

weights forms a genetic algorithms individual. A set of
individuals is a population.

The array is analogous to an individual

chromosome in a genetic algorithm simulation. The
array positions are analogous to loci and the values in
the array to genes. A population is a set of arrays.
This analogy is shown in Figure 2.

The genetic operations are a direct manipulation of
these arrays.

For reproduction an individual is selected with
fitness proportionate selection.

In mutation, an individual is chosen using fitness
proportionate selection. From that individual a
random locus is chosen. A random gene is then
selected and placed at that locus.

In one-point crossover, two individuals are chosen
using fitness proportionate selection. A random locus
is chosen. Two new individuals are then created with
the genes after the locus switched.

The simulation is run until a satisfactory result is
found or for a fixed number of generations.

5. Experimental design
Two experiments were conducted; both used the Wall
Street Journal collection (1987-1992) from TREC

disks 1 and 2. Topics 101 to 200 were used, with
topics having fewer than 5 judgements being
discarded (121, 175, 178 and 181). Topics were
converted into queries by extracting terms from the
description field and stopping common words.
Stemming was not used.

The collection was indexed with a structured
information retrieval system using a corpus tree and
with postings annotated with pointers into the tree.

A population of 50 individuals was chosen at
random. The probability of mutation was 0.2, of
crossover was 0.5, and of reproduction was 0.3 (other
ratios were not tested). Genes took a value between 0
and 1. The initial population was seeded with an
individual with weights all 1; the equivalent of
unweighted retrieval. Each simulation ran for 25
generations. The experiments were conducted 50
times to reduce the chance of error.

The purpose of these experiments is to compute an
upper bound for structure weighted retrieval (in
isolation of other factors). This is done by
deliberately over fitting to a training set and then
reporting the result as the optimum – it is the best that
can be seen on the training set (in this case the entire
set), and so can reasonably be reported as optimal.
Although it is possible the optimal set of weights will
not be found in one run of the genetic algorithm (it
might become stuck at a local maximum), repeating
the experiment 50 times decreases this inherent error.
As no proof of optimality of the weighs is given, the
results herein must be considered near-optimal and not
optimal.

5.1. Experiment 1: The oracle
Each time a query is issued, the oracle is consulted for
the optimal set of structure weights. These weights
are then loaded into the retrieval engine and the query
resolved. Such an oracle cannot exist, but the effect of
having one can be simulated.

In experiment 1, weights are learned for each topic
individually. From the 50 runs, weights from the one
run showing the largest improvement in average
precision are chosen as the best weights. These
weights can reasonably be expected to be near
optimal.

Using the near optimal weights with each query is
an approximation of the oracle. For each query, the
near optimal weights are loaded into the retrieval
engine and the query resolved against the document
collection. The average precision for this query is
near the optimal average precision possible for this
query, using this technique.

This experiment was conducted three times, once
for each of inner product, naïve probability and BM25
(equations (2), (6) and (8) respectively).

5.2. Experiment 2: One answer fits all
If the oracle could be consulted only once, it would be
to find the set of weights that would maximize MAP

over all queries. This is simulated in experiment 2
where one set of weights is learned using all queries.

This experiment was conducted three times, once
for each of inner product, naïve probability and BM25
(equations (2), (6) and (8) respectively).

6. Results
The results of experiment 1 are compared to those of
experiment 2 and to unweighted retrieval to get an
approximation to how good document structured
retrieval can be.

6.1. Experiment 1
Table 1 presents the results from Experiment 1. Using
the oracle results in mean average prevision
improvements varying between less than one percent
and several hundred percent. The mean improvement
is calculated as the sum of improvements divided by
the number of queries. This is not the improvement in
the mean average precision, which is presented in
Table 2.

No queries showed a decrease in precision. In
Figure 3 the improvements are plotted from greatest to
least improvement and for each ranking function.
Only a small number of queries receive large
improvements, most receive small improvements.
Average precision improvements of greater than 5%
were seen in 78% of queries using inner product, 57%
using naïve probability and 67% using BM25.

Without using structure weighting, BM25
outperforms naïve probability, which outperforms
inner product. When the oracle is used with each of
the three functions, they still perform in the same
order; BM25 is better than naïve probability is better
than inner product.

Unexpectedly, different queries showed different
improvements using different ranking functions. In
Figure 4 the topics are shown sorted in order of most
to least improvement for inner product. The lines
representing BM25 and naïve probability show
improvement spikes. From visual inspection, the
queries showing large improvements appear to be
different for each ranking function.

The differences in Figure 4 can be quantized using
the Pearson correlation. Pearson values near 1 show a
positive correlation; those near -1 show a negative
correlation, while values close to 0 show no
correlation. From Table 3; there is no cross function
correlation in how much each topic is improved.

Method Max Mean Min
I. Prod 1081.88% 71.83% 0.77%
N. Prob 356.75% 28.39% 0.04%
BM25 848.18% 35.04% 0.04%

Table 1: Average precision improvements seen in
experiment 1.

Inner Product Improvements

0%

200%

400%

600%

800%

1000%

1200%

Topic (best to worst)

Im
pr

ov
em

en
t

Probability Improvements

0%

200%

400%

600%

800%

1000%

1200%

Topic (best to worst)

Im
pr

ov
em

en
t

BM25 Improvements

0%

200%

400%

600%

800%

1000%

1200%

Topic (best to worst)

Im
pr

ov
em

en
t

Figure 3: Improvements in precision vary greatly, but

are mostly small.

Improvements for Each Function

0%

200%

400%

600%

800%

1000%

1200%

Topic (best to worst for inner product)

Im
pr

ov
em

en
t

Inner Product Probability BM25
Figure 4: Different topics show different improvements

with different ranking functions.

Method I. Prod N. Prob BM25
Unweighted 0.15674 0.17804 0.24178
Experiment 1

The Oracle 0.20329 0.20560 0.27750
Improvement 29.70% 15.48% 14.77%
P (t-test) 0.00 0.00 0.00

Experiment 2
One Answer Fits All 0.16399 0.18991 0.24332
Improvement 4.63% 6.67% 0.64%
P (t-test) 0.00 0.00 0.04

Table 2: Mean average precision of experiments 1 & 2.
Significance (P) is computed with a 2-tailed t-test.

Exp 1 I. Prod N. Prob BM25
I. Prod 1.00 0.09 0.14
N. Prob 0.09 1.00 -0.07
BM25 0.14 -0.07 1.00

Table 3: Pearson correlation showing improvements seen
in one function do not correlate to those seen in another

when weights are learned for each topic.

Using this result, its possible to ask a new

question. What if there existed a super-oracle who
knew the best function to use and the best set of
weights to use with that function? In this case the
MAP increases to 0.29046, this is a 20% improvement
on unweighted BM25, a just under 4.7% improvement
on the oracle result for BM25.

6.2. Experiment 2
Results for experiment 2 are shown in Table 2. When
the oracle returns a single set of weights suitable for
all queries, the improvement is substantially less than
when weights are returned for each topic. This is
exactly as expected, one general purpose set of
weights can not be expected to perform as well as a set
of special purpose weights tailored to each query.

Improvements for inner product and naïve
probability are about 5%. Those for BM25 show a
less than 1% improvement. Even so, BM25
outperforms naïve probability, which outperforms
inner product. The same order as when no weighting
was used.

Exp 2 I. Prod N. Prob BM25

I. Prod 1.00 -0.08 -0.13
N. Prob -0.08 1.00 0.05
BM25 -0.13 0.05 1.00

Table 4: Pearson correlation showing improvements seen
in one function do not correlate to those seen in another

when one set of weights is used for all topics.

Exp 1 / Exp 2 Pearson
I. Prod 0.58
N. Prob 0.87
BM25 0.01

Table 5: Pearson correlation computed between
experiment 1 and experiment 2. Those topics showing
improvements are correlated across experiments for

inner product and naïve probability, but not for BM25.

The Pearson correlation is shown in Table 4 –

again there is no cross function correlation between
how much each topic is improved. When the results
from experiment 1 and experiment 2 are correlated, a
strong correlation is seen for naïve probability, less so
for inner product, and none for BM25, as shown in
Table 5. BM25 most likely shows no correlation
because the improvements in experiment 2 are
themselves not significant.

BM25 showed close to no improvement across
these queries. This may be because BM25 was

developed for this collection. The tuning parameters,
k1, k3 and b, are used to customize the function to a
given set of documents, and are already optimized for
TREC.

7. Discussion and future work
The documents in the TREC WSJ collection are
marked up using about 20 unique tags. The
documents are short, and the markup is sparse. The
queries used in these experiments are derived from
topic descriptions, they, too, are short. These two
factors may account for why the near optimal
improvements are small.

Should all the query terms occur in only one
element (in the case of WSJ, the TEXT element), each
document receives a constant weight resulting in a
linear scaling of the ranking score; which is order
preserving. Should only a few relevant documents
additionally contain terms elsewhere (e.g. the title or
HL element), only the order of those documents will
be adjusted relative to the others; only a small change
in MAP will be observed.

This could be verified by using longer queries. By
increasing the number of terms in the query the chance
of hitting terms outside the TEXT element will
increase so the number of documents changing order
will increase and the MAP will reflect this change.

Alternatively, a collection of documents with
longer elements could be used. The INEX collection
[5] contains long documents broken into title abstract,
sections and subsections and may be appropriate. It
does, however, contain 192 unique tags, many of
which are unlikely to be useful for ranking (e.g.
citation identifiers). Such tags would be removed, the
content being preserved, before such experiments are
conducted.

The TREC binary relevance judgments may also
be the source of the small MAP improvement. If the
ranking function has successfully identified the
relevant documents, and ordered those at the top of the
results list, any amount of re-ordering to place “more”
relevant documents first will not be observed. This
could be verified using a document collection that has
non-binary relevance judgments (such as the cystic
fibrosis collection [23])

The difference seen between experiment 2 and
experiment 1 is substantial. When one set of weights
is learned for a set of topics the improvement is small,
when weights are learned for each query the
improvement is larger. This suggests the latter
technique might be useful, if it could be utilised in a
retrieval engine. One way to improve MAP given a
set of known relevant documents is relevance
feedback. Such improvements are expected to be
smaller than those observed herein as in relevance
feedback only a subset of relevant documents are
identified so fewer documents are available for
learning; over-fitting to this subset may also occur.

8. Conclusions
An oracle that can return the optimal set of document
structure weights to use for structure weighted
information retrieval is theorized. Using the oracle
gives the performance upper bound for this technique.
For the TREC WSJ collection, an approximation to
the oracle is constructed and tested and an
approximation to the upper bound is computed.

When the oracle was not used, BM25 was shown
to outperform naïve probability, which outperformed
inner product. When the oracle was consulted for
each query, mean average precision showed an
improvement of 15% for naïve probability and BM25,
and of 30% for inner product. Even so, using the
oracle did not change the order of the functions;
BM25 was still better then naïve probability which is
still better than inner product.

Only small improvements are seen in most queries,
while very few queries show large improvements.
The queries that showed large improvements were
different for each ranking function.

When the oracle was consulted once for a single
set of weights to use for every query, smaller
improvements were seen. Inner product and naïve
probability showed a 5% improvement whereas BM25
showed a 0.6% improvement. Again, the order of
goodness of the functions did not change. BM25 was
better than naïve probability which was better than
inner product.

These results suggest document structure weighted
retrieval is better suited to relevance feedback than to
ad hoc retrieval.

References
[1] Baeza-Yates, R., Navarro, G., & Vegas, J. (1998).

A model and a visual query language for
structured text. In Proceedings of the String
Processing and Information Retrieval: A South
American Symposium, (pp. 7-13).

[2] Boyan, J., Freitag, D., & Joachims, T. (1996). A
machine learning architecture for optimizing web
search engines. In Proceedings of the AAAI
Workshop on Internet-Based Information
Systems.

[3] Bray, T., Paoli, J., Sperberg-McQueen, C. M.,
Maler, E., Yergeau, F., & Cowan, J. (2003).
Extensible markup language (XML) 1.1 W3C
proposed recommendation. The World Wide Web
Consortium. Available:
http://www.w3.org/TR/2003/PR-xml11-
20031105/.

[4] Fuhr, N., & Gövert, N. (2002). Index compression
vs. Retrieval time of inverted files for XML
documents. In Proceedings of the 11th ACM
International Conference on Information and
Knowledge Management.

[5] Fuhr, N., Gövert, N., Kazai, G., & Lalmas, M.
(2002). INEX: Initiative for the evaluation of
XML retrieval. In Proceedings of the ACM SIGIR

2000 Workshop on XML and Information
Retrieval.

[6] Fuhr, N., & Großjohann, K. (2000). XIRQL an
extension of XQL for information retrieval. In
Proceedings of the ACM SIGIR 2000 Workshop
on XML and Information Retrieval.

[7] Fuller, M., Mackie, E., Sacks-Davis, R., &
Wilkinson, R. (1993). Structured answers for a
large structured document collection. In
Proceedings of the 16th ACM SIGIR Conference
on Information Retrieval, (pp. 204-213).

[8] Goldberg, D. E. (1989). Genetic algorithms in
search, optimization and machine learning:
Addison-Wesley.

[9] Gordon, M. (1988). Probabilistic and genetic
algorithms in document retrieval.
Communications of the ACM, 31(10), 1208-1218.

[10] Harman, D. (1992). Ranking algorithms. In W. B.
Frakes & R. Baeza-Yates (Eds.), Information
retrieval: Data structures and algorithms (pp.
363-392). Englewood Cliffs, New Jersey, USA:
Prentice Hall.

[11] Harman, D. (1993). Overview of the first TREC
conference. In Proceedings of the 16th ACM
SIGIR Conference on Information Retrieval, (pp.
36-47).

[12] Holland, J. H. (1975). Adaptation in natural and
artificial systems. Ann Arbor: University of
Michigan Press.

[13] ISO8879:1986. (1986). Information processing -
text and office systems - standard generalised
markup language (SGML).

[14] Kim, Y.-H., Kim, S., Eom, J.-H., & Zhang, B.-T.
(2000). SCAI experiments on TREC-9. In
Proceedings of the 9th Text REtrieval Conference
(TREC-9), (pp. 392-399).

[15] Kotsakis, E. (2002). Structured information
retrieval in XML documents. In Proceedings of
the ACM Symposium on Applied Computing, (pp.
663-667).

[16] Lee, Y. K., Yoo, S.-J., Yoon, K., & Berra, P. B.
(1996). Index structures for structured documents.
In Proceedings of the 1st ACM International
Conference on Digital Libraries, (pp. 91-99).

[17] Meuss, H., & Strohmaier, C. (1999). Improving
index structures for structured document retrieval.
In Proceedings of the 21st Annual Colloquium on
IR Research (IRSG'99).

[18] Rapela, J. (2001). Automatically combining
ranking heuristics for HTML documents. In
Proceedings of the 3rd International Workshop
on Web Information and Data Management, (pp.
61-67).

[19] Robertson, S. E., Walker, S., Beaulieu, M. M.,
Gatford, M., & Payne, A. (1995). Okapi at TREC-
4. In Proceedings of the 4th Text REtrieval
Conference (TREC-4), (pp. 73-96).

[20] Salton, G., Wong, A., & Yang, C. S. (1975). A
vector space model for automatic indexing.
Communications of the ACM, 18(11), 613-620.

[21] Schlieder, T., & Meuss, H. (2000). Result ranking
for structured queries against XML documents. In
Proceedings of the DELOS Workshop on
Information Seeking, Searching and Querying in
Digital Libraries.

[22] Schlieder, T., & Meuss, H. (2002). Querying and
ranking XML documents. Journal of the
American Society for Information Science and
Technology, 53(6), 489-503.

[23] Shaw, W. M., Wood, J. B., Wood, R. E., &
Tibbo, H. R. (1991). The cystic fibrosis database:
Content and research opportunities. Library and
Information Science Research, 13, 347-366.

[24] Shin, D., Jang, H., & Jin, H. (1998). BUS: An
effective indexing and retrieval scheme in
structured documents. In Proceedings of the 3rd
ACM International Conference on Digital
libraries, (pp. 235-243).

[25] Thom, J. A., Zobel, J., & Grima, B. (1995).
Design of indexes for structured documents
(CITRI/TR-95- 8). Melbourne, Australia:
Department of Computer Science, RMIT.

[26] Trotman, A. (2005). Choosing document structure
weights. Information Processing & Management,
41(2), 243-264.

[27] Vrajitoru, D. (2000). Large population or many
generations for genetic algorithms? Implications
in information retrieval. In F. Crestani & G. Pasi
(Eds.), Soft computing in information retrieval.
Techniques and applications (pp. 199-222):
Physica-Verlag.

[28] Wilkinson, R. (1994). Effective retrieval of
structured documents. In Proceedings of the 17th
ACM SIGIR Conference on Information Retrieval,
(pp. 311-317).

