Narrowed Extended XPath | (NEXI)

Andrew Trotman
Department of Computer Science
University of Otago
Dunedin, New Zealand

andrew@cs.otago.ac.nz

ABSTRACT

INEX has through the years provided two types of queries:
Content-Only queries (CO) and Content-And-Structure queries
(CAS). The CO language has not changed much, but the CAS
language has been more problematic. For the CAS queries, the
INEX 02 query language proved insufficient for specifying
problems for INEX 03. This was addressed by using an extended
version of XPath, which, in turn, proved too complex to use
correctly. Recently, an INEX working group identified the
minimal set of requirements for a suitable query language for
future workshops. From this analysis a new IR query language
NEXI is introduced for upcoming workshops.

1. INTRODUCTION

The INEX [4] query working-group recently identified the query
language requirements for future workshops. While no changes
were suggested for the CO queries, several amendments were
suggested for the CAS queries. The most over-riding requirement
was a language continuing to look like XPath [2], but not XPath.
An alternative syntax was proposed at the workshop [6].

The working group identified many aspects of XPath to be
dropped (e.g. functions), aspects to be severely limited (e.g. the
only operator to be allowed in a tag path is the descendant
operator). New features were also added (e.g. the about() filter).
The shape of XPath was considered appropriate while the
verbosity was considered inappropriate. The complete list of
changes is outlined in the working group report [8]. Amendments
were considered sufficient to warrant an XPath derivative
language. NEXI is now introduced as that language. Extra to the
working group list, the use of wildcards in search terms has been
dropped.

The most significant diversion from XPath is semantics. Whereas
in XPath the semantics are defined, in NEXI the retrieval engine
must deduce the semantics from the query. This is the
information retrieval problem — and to do otherwise is to make it
a database language. For clarity, strict and loose interpretations
of the syntax are included herein, however these should not be
considered the only interpretations of the language.

A NEXI parser has been implemented in Flex [7] and Bison [3]
(the GNU tools compatible with LEX and YACC). The parser is
made available for public use (and is included in the
appendices).The existing INEX queries (queries 1-126) have been
translated into NEXI (where possible) and are also included.

2. QUERY TYPES

There are currently two query types in INEX, the content only
(CO) query and the content and structure (CAS) query [5].

Borkur Sigurbjornsson
Informatics Institute
University of Amsterdam
Amsterdam, The Netherlands

borkur@science.uva.nl

2.1 The Content Only (CO) query

This is the traditional information retrieval query containing
words and phrases. No XML [1] element restrictions are allowed,
and no target element is specified. This kind of query occurs
when a user is unfamiliar with the tagging structure of the
document collection, or does not know where the result will be
found. To answer a CO query a retrieval engine must deduce the
information need from the query, identify relevant elements (of
relevant documents) in the corpus, and return those sorted most to
least relevant.

Deduction of the information need from the query is to determine
semantics from syntax. This is the information retrieval problem,
the problem being examined at INEX. As such, the queries must
be considered as “hints” as to how to find relevant documents.
Some relevant documents may not satisfy a strict interpretation of
the query. Equally, some documents that do satisfy a strict
interpretation of the query may not be relevant.

2.2 The Content And Structure (CAS) query

Content and structure queries may contain either explicit or
implicit structural requirements. Such a query might arise if a
user is aware of the document structure. To answer a CAS query
a retrieval engine must deduce the information need from the
query, identify elements that match structural requirements, and
return those sorted most to least relevant. CAS queries can be
interpreted in two ways, either strictly (SCAS) or loosely
(VCAS).

2.2.1 The SCAS interpretation

The target structure of the information need can be deduced
exactly from the query. All target-path constraints must be
upheld for a result to be relevant. If a user asks for <sec> tags to
be returned, these must be returned. All other aspects of the
query are interpreted from the IR perspective, i.e. loosely.

2.2.2 The VCAS interpretation

Specifying an information need is not an easy task, in particular
for semi-structured data with a wide variety of tag-names.
Although the user may think they have a clear idea of the
structural properties of the collection, there are likely to be
aspects to which they are unaware. Thus we introduce a vague
interpretation where target-path requirements need not be
fulfilled. Relevance of a result will be based on whether or not it
satisfies the information need. It will not be judged based on
strict conformance to the target-path of the query

3. THE INEX TOPIC FORMAT

This discussion of the INEX topic format is included for context.
As the topic format is likely to change from year to year readers
are advised to consult the latest edition of the guidelines for topic
development for complete details.

3.1 Restrictions on Queries

For an individual query to be useful for evaluation purposes it
must satisfy several requirements (the details of which are
explained below):

e It must be interpretable loosely. To satisty this requirement,
every query must contain at least one about() clause
requiring an IR interpretation (i.e. non-numerical). That
clause must occur in the final filter. In /A[B] queries, this is
B. In//A[BJ//C[D], this is D.

e [t must not be a simple mechanical process to resolve the
path. To satisfy this requirement, every query must be in the
form //A[B] or //A[B]//C[D]. The form //A[B)/C is not
allowed at INEX as the resolution of //C from //A[B] is a
simple mechanical process.

e It must have more than 5 known results. If this cannot be
satisfied, abandon the query and choose another.

e It must be “middle” complex. Perform the search and
examine the top 25 results. If there are less than 2 or more
than 20 relevant results, the query is not middle-complex.

e Queries should reflect a real information need. Contrived
queries are unlikely to be accepted.

e Queries should be diverse. If submitting more than one
query, please make each different.

3.2 Equivalence Tags

In the current INEX collection there are several tags used
interchangeable (for historical paper-publishing reasons). Tags
belonging to the following groups are considered equivalent and
interchangeable in a query:

Paragraphs:

ilrj, ipl, ip2, ip3, ip4, ip5 itemnone, p, pl,
p2, p3

Sections:
sec, ssl1, ss2, ss3

Lists:

di, 11, 12, 13, 14, I5 16, 17, 18, 19, la, Ib,
lc, Id, le, list, nuneric-list, nuneric-rbrace,
bullet-1ist

Headings:

h, hl, hla, h2, h2a, h3, h4

Due to tag equivalence, the query
/larticlellsec[about(.//p, Conputer)]
and

/larticlel/lss2[about(.//itemnone, Conputer)]

are identical.

3.3 Submission format
Topics are submitted in the INEX topic format detailed each year
in the annual guidelines for topic development [5]. Detailed here

is the 2003 format, which to date has not changed for subsequent
workshops.

<?xm version="1.0" encodi ng="1SO 8859-1" ?>
<! ELEMENT inex_topic (title, description,
narrative, keywords)>
<! ELEMENT title (#PCDATA)>
<! ELEMENT description (#PCDATA) >
<! ELEMENT narrative (#PCDATA)>
<! ELEMENT keywor ds (#PCDATA) >
<I' ATTLI ST i nex_topic
topic_id CDATA #REQUI RED
query_type CDATA #REQUI RED>

<inex_topic topic_id=""> — Supplied by INEX once all topics
have been collected. This and other attributes may be present in
the final topics selected by INEX.

<inex_topic query_type=""> — either “CO” or “CAS”. This
attribute determines whether the topic is a content only (CO) or
content and structure (CAS) topic. It consequently determines the
query type used in the <title> tag.

<title> — a NEXI query (either CO or CAS, depending in the
query_type attribute of the inex_topic tag). It should be noted the
usual XML character encoding will be necessary, this includes
substituting ‘<’ with ‘<’. See sections 4 and 5 for details.

<description> — a short (one or two sentence) natural language
translation of the title. Although this can be used by any track, it
is also used by the Natural Language track as the query
specification.

<narrative> — a detailed explanation of the information need
including a description of what makes a result relevant. It should
be possible for someone other than the author to read the narrative
and a result and determine unambiguously if the result is relevant
or not.

<keywords> — a comma separated list of terms and phrases used
during the topic formulation.

It is important that the title, description, and narrative all describe
the same information need.

3.4 Example of an INEX topic
<inex_topi c query_type="CAS">
<title>
[larticle[.//yr = 2001 or .//yr =
2002]// sec[about (., sumer
hol i days)]
</title>
<descri ption>
Sunmmer hol i days either of 2001 or
of 2002.
</ descri ption>
<narrative>
Return section el enents, which are
about summer hol i days, where the
sections is descendent of article
elenent, and the article is from
2001 or 2002.
</narrative>
<keywor ds>
sumrer, holiday, 2001, 2002
</ keywor ds>
</inex_topic>

3.5 Topic Titles

The topic title contains the information retrieval query expressed
in NEXI. The syntax of such queries is precisely defined below
and a parser written in FLEX and BISON is included in the
appendices. It is the information retrieval problem to deduce the
semantics from the information need, however no meaningful
language can exist without semantics. This duality can only be
resolved by strictly defining the semantics to be loose.

4. THE CONTENT ONLY (CO) QUERY

4.1 Searching for words and numbers
The smallest searchable unit in a CO query is the word:

word: NUMBER | ALPHANUMERI C

ALPHANUMERI C: { LETTER} { LETTERDI Gl TEXTRAS} *
NUMBER. "-"?{DI G T} +

LETTER [a-zA-Z]

DIGT: [0-9]

LETTERDI A T: [a-zA-Z0-9]
LETTERDI G TEXTRAS [a- zA- Z0- 9' -]

Positive numbers, negative numbers and sequences of
alphanumerics proceeded by an alphabetic character are all valid
search words. Alphanumerics have already been used in query 41
so must be included. Hyphens are allowed after the first character
of an alphanumeric (to avoid confusion with term restrictions, see
section 4.3). The apostrophe can only occur after the first
character of an alphanumeric.

Example: To search for the single word Apple, the CO query is
Appl e

Loose interpretation: It is anticipated that using the word Apple
will help locate relevant documents. I won’t tell you if I mean
“Macintosh Computer”, “Granny Smith”, or “Mr Apple” but find
what I want anyway.

4.2 Searching for phrases

A phrase is a double quoted sequence of words:

phr ase: word_li st
word_list: word word | word_list word

A phrase must contain two or more words. A phrase containing
only one word is erroneous and the quotes should be removed to
make a single word query.

Example: To search for Charles Babbage, the CO query will be

" Charl es Babbage"

Loose interpretation: Relevant documents are anticipated to
contain these two words adjacent to each other, but need not.
They may contain both words non-adjacent. For that matter they
might not contain both words. A relevant document might not
even contain either word.

4.3 Term restrictions
Terms can be preceded by either a plus (+) or minus (-) sign

term termrestriction unrestricted_term
termrestriction: EMPTY | "+ | '-'
unrestricted_term word | phrase

Loose interpretation: The ‘+’ signifies the user expects the
word will appear in a relevant element. The user will be surprised
if a *-> word is found, but this will not prevent the document from
being relevant. Words without a sign are specified because the
user anticipates such terms will help the search engine to find
relevant elements. As restrictions are only hints, it is entirely
possible for the most relevant element to contain none of the
query terms, or for that matter only the ‘-’ terms.

4.4 CO queries

A CO query is a sequence of one or more searchable terms.

co : term| co term

Example:

+"face recognition" approach

Loose interpretation: “I expect the phrase ‘face recognition’ will
appear in a relevant document, I also anticipate the word
‘approach’ will help you find the documents I want”.

4.5 Bag of Words

Term ordering in IR queries is often assumed to be irrelevant. In
the “bag of words” interpretation, a query is an unordered set of
search terms (and phrases). The assumption does not hold true for
some queries. For example,

conputer history
and
hi story conputer

express different information needs even though the “bag of
words” is identical.

Additionally, if a term occurs multiple times, the occurrence
count is lost when the term is added to the “bag of words”. For
some queries, multiple term occurrences are needed to adequately
specify the information need. For example, the query

The The

should search for documents about the well known rock band of
the same name, and cannot be specified without the use of the
multiple occurring term. Further, some search engines “stop”
common words not considered useful for searching (such as the,
and, of, etc). This query requires the use of such a term.

Loose interpretation: There may or may not be an implied order
to the terms in a query. If a term occurs multiple times this may
or may not imply meaning. Stopping common words may or may
not alter the meaning of the query.

4.6 The pitfalls of queries

The minus sign (-) maintains two meanings; it is used for both
exclusionary terms and negative numbers. For the purpose of
clarity, 12 and —12 are numbers. By inserting a space
(represented as ‘LI’ in this paragraph) between the — and the 12 (-
LI12), the meaning is changed to exclusionary. “Don’t search for
the number —12” can be expressed as --12 or -L-12. Equally, --
LI12 is an error.

5. THE CONTENT AND STRUCTURE
(CAS) QUERY

CAS queries can take three possible forms:

//A[B] Return A tags about B

/IA[B]//C Return C descendants of A where A is about B
(used in INEX’02)

//A[B]//C[D] Return C descendants of A where A is about B

and C is about D

A and C are paths whereas B and D are filters. The syntax is
defined as:

cas: path cas_filter
| path cas_filter path
| path cas_filter path cas_filter

cas_filter: '"[' filtered_clause ']’

Use of the form //A[B]//C is not useful for information retrieval
evaluation purposes. Once the result of //A[B] has been
determined, it is a mechanical process to extract the //C
descendants. Use of this form was deprecated in INEX’03.

5.1 Path specification
Tag and attribute names follow the XML 1.1 [1] specification

XMLTAG { XM__NANE} { XM._ NAVECHAR} *

XML_NAMECHAR: [-_.:a-zA-Z0-9]
XML_NAME: [_:a-zA-Z]

Element nodes in the XML tree are identified as ““//tag” and
attribute nodes as “//@attribute”. The wildcard “//*” is included
to identify first or subsequent descendant (tag or attribute).
Convoluted use of attributes and wildcards is discouraged.

node: naned_node | any_node | tag_list_node
NODE_QUALI FIER: "/ /"

named_node: NODE_QUALI FI ER t ag
attribute_node: NODE QUALIFIER '@ tag
any_node: NODE_QUALIFIER ' *'

In cases where either tag A or tag B is required, it is written
“/I(AIB)”.

tag_list: tag '|' tag | tag_list '|' tag
tag_list_node: NODE_QUALIFIER '(' tag_list ")’

A path through the XML tree is specified as a sequence of nodes.
The only relationship between nodes in a path is descendant.
There is no way to specify the child relationship or other XPath
axes. Attributes cannot have descendant nodes so may only be
specified at the end of a path.

pat h: node_sequence | node_sequence attri bute_node
node_sequence: node | node_sequence node

Strict interpretation: “//A” is any A tag in the tree. “//A//B”,
any B descendant of an A tag in the tree. “/@C” is the C
attribute of any tag. “//A//@C” is any C attribute anywhere in the
tree beneath an A tag in the tree.

For any descendant of A use “//A//*”. Any descendant of the
root, “//*”, is also any tag in the tree. “//*//*//*” is any tag at least
three levels deep in the tree. “//*//A” is an A that is not the root of
the tree, while “//*//A//*” means any descendant of A so long as
A is not the root.

The path “//(A|B)” means any A tag in the tree or any B tag in the
tree. “//(A|B)//(C|D)” is any C or D descendant of either an A or
B tag. This includes “//A//C”, “//A//D”, “//B//C” and “//B//D”.
Convoluted use of this syntax is discouraged.

The path /T,...//T, is an ordered sequence of nodes in the tree
starting with 7; and terminating at T, such that for all pen, T, is
a descendant of T,.

Loose interpretation: There is likely to be relevant information
in the document in places not specified in a user query. The path
specifications should therefore be considered hints as to where to
look.

5.1.1 A Note on Attributes

No real query using attributes on the INEX collection is believed
to exist. Query authors are discouraged from using attributes
simply because they can.

5.2 Path filters

At present paths can be filtered either with search strings, or
numerically. In future versions, filtering based on proper nouns
(e.g. Author Names), and other data types is anticipated.

5.2.1 String filtering

Documents can be filtered to only those that satisfy a given
textural (CO) query in the given path (or relative to the given
path).

about _clause : ABOUT '(' relative_path '," co ')’
relative_path: '".' | '.' path

ABQUT: "about"

Relative paths are specified relative to a context path. At B in
//A[B] the context path is //A. At B in //A[B]/C[D] the context
path is //A. At D in //A[B]//C[D] the context path is //A//C. The
relative path “.” is interpreted as “the context path”. The relative
path “.//p” is interpreted as “a p descendant of the context path”.

Example:

[larticle[about(.//p, "infornmation retrieval")]

Strict interpretation: “What ever you do, you must return article
tags. Now, as a suggestion, look for //article//p elements about
information retrieval.”

Loose interpretation: “What I want is most likely a whole article
that mentions information retrieval in a p tag. Relevant results are
not limited to this, but I'm pretty sure it’ll help you find what I
want.”

5.2.2 Arithmetic filtering

Documents can also be filtered to only those that satisfy a
numeric query. As with string filtering, this is specified with a
relative path.

arithmetic_clause: relative_path
arithmeti c_operator NUMBER

arithmetic_operator: '>" | '<' | "= | '>= 't <=
Example:

[larticle[.//pdt//yr = 2003]

Strict interpretation: Retrieve article elements from documents
that loosely “contain the value 2003 in an //article//pdt//yr
element”.

Loose interpretation: A loose interpretation could be to look at a
year range (2002, 2003, and 2004). This might be useful if, for
example, a workshop held in December 2003, published the
formal proceedings in 2004. Alternatively, a paper published

electronically in December 2002 might finally appear in print in
January 2004 leading to confusion over the publication date.

The above example could also be described using string filtering

/larticle[about(.//pdt//yr, 2003)]

however, the arithmetic syntax is preferred.

Both positive and negative numbers are supported by CO and
CAS queries. The ambiguity arising from the multiple meaning
of the minus (-) was discussed in section 4.6.

5.2.3 Boolean Operators
Path filters can be joined with Boolean operators AND and OR.
They can also be bracketed.

filter: about_clause | arithnetic_clause

filtered_clause: filter
| filtered_clause AND filtered_cl ause
| filtered_clause OR filtered_clause
| (" filtered_clause ")’

AND: "AND' | "and"
R "OR'" | "or"

Examples:

/larticle[about(., apple) and about(., conputer)]

/larticle[about(., apple) or about(., conputer)]

Strict interpretation: The first example will return article
elements from documents about apple and about computer, the
second about apple or about computer (remember: these are only
hints). This introduces a subtle difference in query meaning
between the two queries:

/larticle[about(.//sec, apple conputer)]

and

/larticle[about(.//sec, apple) and
about (.//sec, conputer)]

The first query asks for articles that have a section discussing
‘apple computer’. The second asks for articles that have a section
discussing ‘apple’ and a section discussing ‘computer’ (even if
they are not the same section). In the first query, the topics must
co-occur. In the second they may co-occur.

Loose interpretation: AND is interpreted as ANDish, OR as
ORish. The query contains the Boolean operators strictly as hints

on how to resolve the information need. CO, SCAS and VCAS
all interpret Boolean operators loosely.

5.2.4 Examples

Examples of some CAS queries are given here along with strict
interpretations. Loose interpretation of each is the same “I’m sure
this’ll help find what I want”.

//sec[about (., nobile electronic paynment systen)]

Return sec tags where the sec tag mentions mobile electronic
payment systems.

//*[about (., singular value deconposition)]

Return elements about singular value decomposition. The
retrieval engine must deduce the most appropriate element to
return.

[larticle[.//fm/yr >= 1998]//sec[about(.//p,
"virtual reality")]

Return sec tags of documents about virtual reality and published
on or after 1998.

[larticle[(.//fm/yr = 2000 OR .//fm/yr = 1999)
AND about (., "intelligent transportation
systen')]//sec[about (., autonation +vehicle)]

Return sec elements about vehicle automation from documents
published in 1999 or 2000 that are about intelligent transportation
systems.

6. CONCLUSIONS

The INEX query working-group at the INEX workshop outlined a
set of requirements necessary for a query language to be used for
future workshops. The language was to be similar in form to
XPath, while at the same time being both severely reduced, and
expanded. The language, NEXI, is defined herein and satisfies
these needs.

A parser written in Flex and Bison and is included. The existing
INEX topics have been translated into NEXI and checked against
the parser. Only those queries using features deprecated by the
working-group could not be translated — in these cases a near
translation is included.

7. ACKNOWLEDGEMENTS

Richard A. O’Keefe read several drafts and commented on many
aspects of this language.

8. REFERENCES
[1] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,
Yergeau, F., & Cowan, J. (2003). Extensible markup language
(XML) 1.1 W3C proposed recommendation. The World Wide
Web Consortium. Available: http://www.w3.0org/TR/2003/PR-
xml11-20031105/ [2003.

[2] Clark,J., & DeRose, S. (1999). XML path language (xpath)
1.0, W3C recommendation. The World Wide Web
Consortium. Available: http://www.w3.org/TR/xpath [2004.

[3] Donnelly, C., & Stallman, R. (1995). Bison - the yacc-
compatible parser generator. Available:
http://www.gnu.org/directory/bison.html.

[4] Fuhr, N., Govert, N., Kazai, G., & Lalmas, M. (2002). INEX:
Initiative for the evaluation of XML retrieval. In Proceedings
of the ACM SIGIR 2000 Workshop on XML and Information
Retrieval.

[5] Kazai, G., Lalmas, M., & Malik, S. (2003). INEX'03
guidelines for topic development.

[6] O'Keefe, R. A., & Trotman, A. (2003). The simplest query
language that could possibly work. In Proceedings of the 2nd
workshop of the initiative for the evaluation of XML retrieval
(INEX).

[71 Paxson, V. (1995). Flex, version 2.5, a fast scanner generator.
Available: http://www.gnu.org/directory/flex.html.

[8] Sigurbjornsson, B., & Trotman, A. (2003). Queries: INEX
2003 working group report. In Proceedings of the 2nd
workshop of the initiative for the evaluation of XML retrieval
(INEX).

Al. MAKEFILE

#

Makefile

eememea-

Andrew Trot man

University of Otago 2004

#

Script to build the NEXI parser
#

tokeni zer : parser.tab.c lex.yy.c

gcc lex.yy.c parser.tab.c -Im-o tokenizer

I ex.yy.c : tokenizer.| parser.tab.h
flex tokenizer.|

parser.tab.c :
bi son parser.y -d

parser.y

clean :
rmtokeni zer parser.tab.h parser.tab.c lex.yy.c

A2. FLEX SCRIPT
A
/*
TOKENI ZER. L
Andr ew Tr ot man
Uni versity of Qtago 2004

FLEX script to tokenize | NEX NEXI queries and
check for syntax errors

*/

#i ncl ude <stdi o. h>

#i ncl ude "parser.tab. h"
int c;

extern int yylval;
extern int |ine_nunber;
extern int char_nunber;

%

LETTER [a- zA- Z]

DG T [0-9]

LETTERDIA T [a- zA- Z0- 9]

LETTERDI G TEXTRAS [a- zA-Z0-9'\ -]
XML_NAMECHAR [a-zA-Z0-9_:.\-]
XML_NAME [a-zA-Z:]

W

" " { char_nunber++; }

"\r" { char_nunber++; }

"\ n" {
I'i ne_nunber ++;
char _nunber = 1;
return yytext[O0];

}

"about " {
char _nunber += 5;
yylval = yytext[O0];
return ABOUT;
}

"AND' {
char _nunber += 3;
yylval = yytext[O0];
return AND;
}

and" {
char _nunber += 3;
yylval = yytext[O0];
return AND;
}

"R {
char _nunber += 2;
yylval = yytext[0];
return OR;

}

or" {

char _nunber += 2;
yylval = yytext[O0];
return OR;

}

nsng
char _nunber ++;
yylval = yytext[O0];
return GREATER
}

ner g
char _nunber ++;
yylval = yytext[O0];
return LESS;

}

nan g
char _nunber ++;
yylval = yytext[O0];
return EQUAL;

}

{LETTER} { LETTERDI G TEXTRAS} * {
char_nunber += strlen(yytext);
yylval = yytext[O0];
ret urn ALPHANUVERI C,

}

-t {DIATHE |
char _nunber += strlen(yytext);
yylval = yytext[O0];
return NUMBER,
}

e {
char _nunber += 2;
yylval = yytext[O0];
return NODE_QUALI FI ER;
}

{ XML_NAME} { XM__NAMECHAR} * {
char _nunber += strlen(yytext);
yylval = yytext[O0];
return XM.TAG
}

{

char _nunber ++;
return yytext[O0];
}

W

*/

int yyw ap(void)
{

return 1;

}

A3. BISON SCRIPT

A

/ *
PARSER. Y
Andr ew Tr ot man
University of Gtago 2004

Bl SON script to tokenize | NEX NEXI queries and
check for syntax errors

*/

#defi ne YYDEBUG 1
#i ncl ude <math. h>
#i ncl ude <stdio. h>
#i ncl ude <ctype. h>

int |line_nunber 1;
int char_nunber = 1;
extern char *yytext;

voi d yyerror(char *err) /* Called by yyparse on
error */

{
printf ("Line % (char %l): % at '%'\n",
I'i ne_nunber, char_nunber, err, yytext);

}

/ *
NOTES:

I NEX topics 10, 14, 19, 20 are not strict
transl ations as they cannot be expressed (nultiple
specified target elenents)

INEX topic 13 is not a strict translation
due to instance (au[1l]) usage

*/

%

% oken NUMBER ALPHANUMERI C XMLTAG
% oken ABOUT NODE_QUALI FI ER

% oken AND OR

% oken GREATER LESS EQUAL

% eft AND OR

%4 * Gammar rules and actions follow */

input: /* enpty */ | input line;

line: "\n
| co'\n" { printf("CO Passed\n"); }

| cas *\n" { printf("CAS Passed\n"); };

/*
in a CAS query:

the initial can be the termnal "//*" to
specify "a descendant of"

the final part can be an unrestricted
target path (for conpatibility with I NEX 2002)

*/
cas: path cas_filter | path cas_filter path | path
cas_filter path cas_filter;

cas_filter: '"[' filtered_clause ']";
filtered_clause : filter
| filtered_clause AND filtered_cl ause
| filtered_clause OR filtered_clause
| "(' filtered_clause ")";

filter: about_clause | arithnetic_clause;

about _clause : ABOUT '(' relative_path ',' co ")"';

arithmetic_clause: relative_path
arithmetic_operator NUMBER

arithmetic_operator: GREATER | LESS | EQUAL |
greater_equal | |ess_equal;

greater_equal : GREATER EQUAL;
| ess_equal : LESS EQUAL;

/*

child has been elimnated and replaced with
descendant. In the unlikley event child is ever
needed, it can (nost likley) be specified as those
descendants enough to nake the specification
unanbi gi ous.

now, a PATH is either:
"//" for root
"I/IA" for tag A
"IIANIB" for tag Bwithin tag A
“/1*" for any tag
"Il AN/*" for any descendant of A
"/l @\" for attribute A
"IN/ @" for attribute B descendant of node A
*/
pat h: node_sequence | node_sequence
attribute_node;

rel ative_path: pat h;

node_sequence: node | node_sequence node;

any_node: NODE_QUALIFIER '*';

attribute_node: NODE_QUALIFIER '@ tag;

named_node: NODE_QUALI FI ER t ag;

tag_list: tag '|' tag | tag_list '|' tag;

tag_list_node: NODE QUALIFIER ' (' tag_list ")";

node: named_node | any_node | tag_|ist_node;

tag: al phanurmeric | XM.TAG

/*
CO topics are sequences of nunbers, terns and

phrases with optional specifiers nmandatory (+) and
unwanted (-)

not e:
"12" is a nunber
"-12" is nunber
"- 12" is don't search for nunber 12
"--12" | "- -12" is don't search for number -12
"-- 12" is an error
"content-based" is an error
*/
co: term| co term

term termrestriction unrestricted_term

termrestriction: /* enpty */ | "+ | '-';

unrestricted_term word | phrase;

/*
A phrase is a sequence of two or nore words
surounded by doubl e quotes

*/

phr ase:

word_li st ;

word_list: word word | word_list word;

/*
a word i s a sequence:
of al phabetics
of digits

of digits preceeded by a negative (-) sign
(a negative nunber)

al phanunerics starting with an al pha (for
both ipl tags and Y2K queri es)

As the operators are also valid search terns, a
word is

operator or a sequence of al phabetic characters

*/
word: NUMBER | al phanuneri c;

al phanuneric : ALPHANUMERIC | ABOUT | AND | OR

%06
/*

*/

int nmain(void)
{

/1yydebug = 1;
yyparse();

return O;

}

A4. INEX QUERIES 1-126

The pre-existing INEX queries have all been converted and
checked against the parser. Topics 10, 14, 19 and 20 originally
specified a set of target elements. This practice was banned for
INEX’03 and is not supported here either. Topic 13 specifies a
particular instance of an element as the target, again outlawed for
INEX’03 and not supported here. Topic 44 used wildcards. As
such, these 6 queries are not accurately translated.

1. /larticle[about(.//(abs|kwd), description
logics)]//fm/au

2. /l ack[about (., research funded anerica)]

3. //*[about (.//kwd, information data
visualization) and about (., large information
hi erarchi es spaces nmul tidi nensi onal data
dat abases)]

4. //*[about (.//(atl]abs|st), experience results
probl ens) and about (., extrene progranm ng)]

5. /larticle[about(.//bibl, @BIC and about(.,
imge retrieval)]//tig

6. /larticle[about(., Survey on Software
Engi neering) and about (.//sec, progranm ng
| anguages)]//tig[about (., software
engi neeri ng survey programm ng survey
programmi ng tutorial software engineering
tutorial)]

7. /larticle[about(., Content-based retrieval of
vi deo dat abases)]//sec

8. /larticle[about(.//fm/aff, ibn) and
about (.//bdy//sec, certificates)]

9. /larticle[about(.//bdy//sec, nonmonotonic
reasoning) and (.//hdr//yr = 1999 or
.//hdr//yr = 2000) and about(.//tig//atl, -
cal endar) and about (., belief revision)]

10. //*[about(.//(atl]|st|title), book review) and
about (.//(st|p), nachine |earning adaptative
al gorithm probabilistic nodel neural network
support vector machi ne kernel nethods
nunerical conputation)]

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.
33.
34.

35.

//*[about(.//p, wreless) and
about (.// (abs| kwd), security) and about(.,
security applications)]

/larticle[.//pdt//yr = 2001 or .//pdt//yr =
2002]// bdy// sec[about (., internet search
engi ne)]

/larticle[about(.//fm/au// @equence,
additional) and about(.//fm/abs, review) and
about (., AR VR virtual augnented reality
system]//fm/au

/1 *[about (.//fgc, Corba architecture) and
about (.//p, Figure Corba Architecture)]

/larticle[.//fm/hdr//hdr2//pdt = 1996 or
At/ hdr//hdr2//pdt =

1997]//bm / bi b/ / bi bl // bb[about (., hypercube
mesh torus toroidal i dat abase)]

/larticle[about(.//bm/bib//bibl//bbl/atl,
concurrency control)]//fm/tig//atl

/larticle[about(.//fm/au, -W-Bruce -
Croft)]//bb[about(.//au, WBruce Croft)]

/larticle[about(., Hypertext |nformation
Retrieval) and about(.//bib//bibl//bb//atl,
Hypertext Information Retrieval)]

/1 *[about (.,
formul a)]

/larticle[about(.//atl, Concurrency Control)
and about (.//fm /hdr//hdrl//ti, data) and
about (., Concurrency Control in real-tinme
dat abases)]//sec

//*[about (.//(p|st]it]bb),
recommender agent)]

/larticle[about(.//bb//au//snm Mannila) and
(about (.//bb//aul//fnm Heikki) or

about (.//bb//au//fnm H)) and about (.,
Mannila)]//fm/au

/larticle[(.//yr = 1995 or .//yr = 1996 or
Ll lyr= 1997 or .//yr = 1998 or .//yr = 1999)
and about (.//bdy, XM el ectronic commrerce)]

non- numeri cal

si ngul ar val ue deconposition svd

recommender system

/larticle[about(.//au, Smth Jones) and
about (.//bdy, software engineering and
process inprovenent)]

/larticle[about(.//fm/hdr//hdr1//ti, |EEE
Mul ti Medi a) and about (., QS Qality of
Service)]

/larticle[about(./ XM.) and about (., data

/ st
processing system]//fm/tigl//atl

/larticle[about(.//atl, 1999 Revi ewers List)
and about(.//ti, |EEE Transactions

Vi sual i zation and Conputer Graphics) and
./lyr = 2000]//revi ewer//name

/larticle[about(.//secl//title, Special
Feature) and about(.//ti, IEEE Mcro)]//atl

//*[about(.//atl, image retrieval) and
about (., inage retrieval colour shape
texture)]

/larticle[.//yr >= 1996 and about (.,
parallelism]//au

conput ati onal bi ol ogy
semanti ¢ web
sof tware patents

Ef fici ent database search structures and
t echni ques

Paral | el query optim zation

36.
37.

38.
39.
40.
41.
42.
43.
44.

45.
46.
47.

48.
49.

50.
51.
52.
53.
54.
55.

56.
57.

58.
59.
60.
61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Heat di ssipation of microconputer chips

Tenpor al database queries and query
processi ng

nul ti di mensi onal indices

Vi deo on demand

Cont ent - based retrieval

Y2K spendi ng

Decryption of the Enigma code

approxi mate string matching al gorithm

internet society comunication netizen soci al
soci ol ogy web usenet nmil network cul ture

augnented real ity and nedicine
Firewalls in internet security

concurrency control senmantic transaction
managenent application performance benefit

active database rule specification

Query rel axation approxinmate and intelligent
guery answering

XML editors or parsers

Text Data M ning

Hi story of Conputing of USSR

infornmation retrieval xm

know edge buil ding acquisition and sharing
Digital
pl anni ng

Di vide city planning nei ghbourhood

open hypernedi a systens and agents

public key cryptography RSA EC DSA al gebraic
nurmber field

Locati on managenment schene
schema i ntegration nethods
I nternet speed

/larticle[about(.,clustering +distributed)
and about(.//sec,java)]

/larticle[about(.,security +bionetrics) AND
about (.//sec,"facial recognition")]

/larticle[about(.,"digital library") AND
about (.//p, +authorization +"access control"
+security)]

//article[about(.,
DEHOVAG)]

[larticle[.//fm/yr > 1998 AND about (.,
"image retrieval")]

[larticle[.//fm/yr <
2000]// sec[about (., "search engi nes")]

/larticle//fnfabout(.//(tig|abs), +software
+architecture) and about(., -distributed -
Véb)]

/larticle[about(., +Smalltalk) or about(.,
+Li sp) or about(.,+Erlang) or about(.,
+Java)]//bdy//sec[about (., +"garbage

col l ection" +algorithm]

hol l erith)]//sec[about (.,

/larticlellbdy//sec[about(.//st,"information
retrieval")]

/larticle[about(.//fm/abs, "information
retrieval” "digital libraries")]

71.

72.

73.

74.

75.

76.

77.

78.

79.
80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

/larticle[about(.,formal
correctness aviation
systens)]//bdy//*[about (., case study

appl i cati on nodel checking theorem proving)]

/larticle[about(.//fm/au//aff,United States
of Anmerica)]//bdy//*[about(.,weather
forecasting systens)]

net hods verify

/larticle[about(.//st,+conmparison) and
about (. //bi b, "machi ne | earning")]

/larticle[about(., video stream ng
applications)]//sec[about(., nmedia stream
synchroni zati on) OR about (., streamdelivery

protocol)]
/larticle[about(., Petri net) AND
about (.//sec, fornal definition) AND

about (.//sec, algorithmefficiency
conmput ati on approxi mati on)]

/larticle[(.//fm/yr = 2000 OR
1999) AND about (., "intelligent
transportation

systent)]//sec[about (.,

Alfmyr =

automati on +vehicle)]

/larticle[about(.//sec,"reverse
engi neering")]//sec[about(., legal) OR

about (., 1 egislation)]
//vt[about(.,"Information Retrieval"
student)]

/larticle[about(.,XM) AND about (.

/larticlel/lbdy//sec[about(.,"clock
synchroni zation" "distributed systens")]

, dat abase)]

/larticle[about(.//p,"multi concurrency
control™) AND about(.//p, algorithm AND
about (.//fm/atl, databases)]

/larticle[about(.,handwiting recognition)
AND about (.//fm/au, kin]

/larticlel/fm/abs[about(.,
"frequent itemset")]

/1 p[about (.,

"data m ning"

overview "distributed query

processing" join)]

[larticle[.//fm/yr >= 1998 and .//fig//no >
9]//sec[about (.//p,VR "virtual reality"
"virtual environment" cyberspace "augnented
reality")]

!/ sec[about (., npbil e el ectronic paynent
system]

/larticle[(.// n1/yr = 1998 OR .//fm/yr =
1999 OR .//fm/yr = 2000 OR . //fn1/yr = 2001
orR .//fn1/yr = 2002) AND about("support
vect or machi nes")]

/larticle[(. //fn1/yr = 1998 OR .//fnml/yr =
1999 OR .//fm/yr = 2000 OR . //frﬂ/yr = 2001)
AND about (., "web craV\A er")]
/larticle[about(.//bdy,clustering "vector

quanti zation" +fuzzy +k-neans +c-nmeans - SOFM
-SOM 1/ /bm / bb[about (., "vector quantization"
+fuzzy clustering +k-nmeans +c-neans) AND
about (.//pdt, 1999) AND about(.//au//snm -
kohonen)]

/larticle[about(.//sec,+trust authentication
"el ectroni c conmerce" e-conmerce e-business
mar ket pl ace)]//abs[about (., trust

aut henti cation)]

Internet traffic

92.

93.
94.
95.
96.
97.
98.

99.

100.
101.
102.

103.
104.
105.

106.
107.

108.

109.

110.

111.

112.

113.
114.
115.
116.

117.
118.
119.
120.
121.
122.
123.

124.

125.
126.

"query tightening" "narrow the search"
"incremental query answering"

"Charl es Babbage" -institute -inst
"hyperlink analysis" +"topic distillation"
+"face recognition" approach
+"sof tware cost estination"
Converting Fortran source code

"I nformati on Exchange" +XM. "I nformation

I ntegration”

perl features

+associ ati on +mning +rul e +nedical
+"t test" +information

distributed storage systens for grid
conmputing

UML formal |ogic

Toy Story

+cat egori zation "textual docunment” | earning
eval uation

Content protection schenes

"artificial intelligence" Al practical

application industry "real world"

ont ol ogy ontol ogi es overvi ew "how to"
practical exanple

"CPU cool i ng" "cooling fan design" "heatsink
design" "heat dissipation" airflow casing

"stream delivery" "stream synchronization"
audi o video streaning applications

"natural |anguage processing" -"programm ng
| anguage" -"nodeling | anguage" +"hunman
| anguage"

+" Cascadi ng Styl e Sheets" -"Content
Scranbl i ng Systent

"Mar kov nodel s" "user behaviour”
+wonen "history of conputing"
+"1 P tel ephony" +chal | enges

"conputer assisted art"
art”

"conput er generated

Patricia Tries

"shared nothi ng" database
Optimzing joins in relational databases
information retrieval nodels
Real Tine Qperating Systens
Lossy Conpression Al gorithm

mul ti di mensi onal i ndex

search”

"near est nei ghbour

application algorithm +clustering +k-nmeans
+c-neans "vector quantization" "speech
conpressi on" "image conpression" "video
conpr essi on"

+wear abl e ubi qui t ous nobile conputing devices

Open standards for digital video in distance

| ear ni ng

