
Narrowed Extended XPath I (NEXI)
Andrew Trotman

Department of Computer Science
University of Otago

Dunedin, New Zealand

andrew@cs.otago.ac.nz

Börkur Sigurbjörnsson
Informatics Institute

University of Amsterdam
Amsterdam, The Netherlands

borkur@science.uva.nl

ABSTRACT
INEX has through the years provided two types of queries:
Content-Only queries (CO) and Content-And-Structure queries
(CAS). The CO language has not changed much, but the CAS
language has been more problematic. For the CAS queries, the
INEX 02 query language proved insufficient for specifying
problems for INEX 03. This was addressed by using an extended
version of XPath, which, in turn, proved too complex to use
correctly. Recently, an INEX working group identified the
minimal set of requirements for a suitable query language for
future workshops. From this analysis a new IR query language
NEXI is introduced for upcoming workshops.

1. INTRODUCTION
The INEX [4] query working-group recently identified the query
language requirements for future workshops. While no changes
were suggested for the CO queries, several amendments were
suggested for the CAS queries. The most over-riding requirement
was a language continuing to look like XPath [2], but not XPath.
An alternative syntax was proposed at the workshop [6].
The working group identified many aspects of XPath to be
dropped (e.g. functions), aspects to be severely limited (e.g. the
only operator to be allowed in a tag path is the descendant
operator). New features were also added (e.g. the about() filter).
The shape of XPath was considered appropriate while the
verbosity was considered inappropriate. The complete list of
changes is outlined in the working group report [8]. Amendments
were considered sufficient to warrant an XPath derivative
language. NEXI is now introduced as that language. Extra to the
working group list, the use of wildcards in search terms has been
dropped.
The most significant diversion from XPath is semantics. Whereas
in XPath the semantics are defined, in NEXI the retrieval engine
must deduce the semantics from the query. This is the
information retrieval problem – and to do otherwise is to make it
a database language. For clarity, strict and loose interpretations
of the syntax are included herein, however these should not be
considered the only interpretations of the language.
A NEXI parser has been implemented in Flex [7] and Bison [3]
(the GNU tools compatible with LEX and YACC). The parser is
made available for public use (and is included in the
appendices).The existing INEX queries (queries 1-126) have been
translated into NEXI (where possible) and are also included.

2. QUERY TYPES
There are currently two query types in INEX, the content only
(CO) query and the content and structure (CAS) query [5].

2.1 The Content Only (CO) query
This is the traditional information retrieval query containing
words and phrases. No XML [1] element restrictions are allowed,
and no target element is specified. This kind of query occurs
when a user is unfamiliar with the tagging structure of the
document collection, or does not know where the result will be
found. To answer a CO query a retrieval engine must deduce the
information need from the query, identify relevant elements (of
relevant documents) in the corpus, and return those sorted most to
least relevant.
Deduction of the information need from the query is to determine
semantics from syntax. This is the information retrieval problem,
the problem being examined at INEX. As such, the queries must
be considered as “hints” as to how to find relevant documents.
Some relevant documents may not satisfy a strict interpretation of
the query. Equally, some documents that do satisfy a strict
interpretation of the query may not be relevant.

2.2 The Content And Structure (CAS) query
Content and structure queries may contain either explicit or
implicit structural requirements. Such a query might arise if a
user is aware of the document structure. To answer a CAS query
a retrieval engine must deduce the information need from the
query, identify elements that match structural requirements, and
return those sorted most to least relevant. CAS queries can be
interpreted in two ways, either strictly (SCAS) or loosely
(VCAS).

2.2.1 The SCAS interpretation
The target structure of the information need can be deduced
exactly from the query. All target-path constraints must be
upheld for a result to be relevant. If a user asks for <sec> tags to
be returned, these must be returned. All other aspects of the
query are interpreted from the IR perspective, i.e. loosely.

2.2.2 The VCAS interpretation
Specifying an information need is not an easy task, in particular
for semi-structured data with a wide variety of tag-names.
Although the user may think they have a clear idea of the
structural properties of the collection, there are likely to be
aspects to which they are unaware. Thus we introduce a vague
interpretation where target-path requirements need not be
fulfilled. Relevance of a result will be based on whether or not it
satisfies the information need. It will not be judged based on
strict conformance to the target-path of the query

3. THE INEX TOPIC FORMAT
This discussion of the INEX topic format is included for context.
As the topic format is likely to change from year to year readers
are advised to consult the latest edition of the guidelines for topic
development for complete details.

3.1 Restrictions on Queries
For an individual query to be useful for evaluation purposes it
must satisfy several requirements (the details of which are
explained below):

• It must be interpretable loosely. To satisfy this requirement,
every query must contain at least one about() clause
requiring an IR interpretation (i.e. non-numerical). That
clause must occur in the final filter. In //A[B] queries, this is
B. In //A[B]//C[D], this is D.

• It must not be a simple mechanical process to resolve the
path. To satisfy this requirement, every query must be in the
form //A[B] or //A[B]//C[D]. The form //A[B]//C is not
allowed at INEX as the resolution of //C from //A[B] is a
simple mechanical process.

• It must have more than 5 known results. If this cannot be
satisfied, abandon the query and choose another.

• It must be “middle” complex. Perform the search and
examine the top 25 results. If there are less than 2 or more
than 20 relevant results, the query is not middle-complex.

• Queries should reflect a real information need. Contrived
queries are unlikely to be accepted.

• Queries should be diverse. If submitting more than one
query, please make each different.

3.2 Equivalence Tags
In the current INEX collection there are several tags used
interchangeable (for historical paper-publishing reasons). Tags
belonging to the following groups are considered equivalent and
interchangeable in a query:

Paragraphs:
ilrj, ip1, ip2, ip3, ip4, ip5, item-none, p, p1,
p2, p3

Sections:
sec, ss1, ss2, ss3

Lists:
dl, l1, l2, l3, l4, l5, l6, l7, l8, l9, la, lb,
lc, ld, le, list, numeric-list, numeric-rbrace,
bullet-list

Headings:
h, h1, h1a, h2, h2a, h3, h4

Due to tag equivalence, the query

//article//sec[about(.//p, Computer)]

and

//article//ss2[about(.//item-none, Computer)]

are identical.

3.3 Submission format
Topics are submitted in the INEX topic format detailed each year
in the annual guidelines for topic development [5]. Detailed here

is the 2003 format, which to date has not changed for subsequent
workshops.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!ELEMENT inex_topic (title, description,

narrative, keywords)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT narrative (#PCDATA)>

<!ELEMENT keywords (#PCDATA)>

<!ATTLIST inex_topic

topic_id CDATA #REQUIRED

query_type CDATA #REQUIRED>

<inex_topic topic_id=””> – Supplied by INEX once all topics
have been collected. This and other attributes may be present in
the final topics selected by INEX.
<inex_topic query_type=””> – either “CO” or “CAS”. This
attribute determines whether the topic is a content only (CO) or
content and structure (CAS) topic. It consequently determines the
query type used in the <title> tag.
<title> – a NEXI query (either CO or CAS, depending in the
query_type attribute of the inex_topic tag). It should be noted the
usual XML character encoding will be necessary, this includes
substituting ‘<’ with ‘<’. See sections 4 and 5 for details.
<description> – a short (one or two sentence) natural language
translation of the title. Although this can be used by any track, it
is also used by the Natural Language track as the query
specification.
<narrative> – a detailed explanation of the information need
including a description of what makes a result relevant. It should
be possible for someone other than the author to read the narrative
and a result and determine unambiguously if the result is relevant
or not.
<keywords> – a comma separated list of terms and phrases used
during the topic formulation.
It is important that the title, description, and narrative all describe
the same information need.

3.4 Example of an INEX topic
<inex_topic query_type="CAS">

<title>
//article[.//yr = 2001 or .//yr =
2002]//sec[about(.,summer
holidays)]

</title>
<description>

Summer holidays either of 2001 or
of 2002.

</description>
<narrative>

Return section elements, which are
about summer holidays, where the
sections is descendent of article
element, and the article is from
2001 or 2002.

</narrative>
<keywords>

summer, holiday, 2001,2002
</keywords>

</inex_topic>

3.5 Topic Titles
The topic title contains the information retrieval query expressed
in NEXI. The syntax of such queries is precisely defined below
and a parser written in FLEX and BISON is included in the
appendices. It is the information retrieval problem to deduce the
semantics from the information need, however no meaningful
language can exist without semantics. This duality can only be
resolved by strictly defining the semantics to be loose.

4. THE CONTENT ONLY (CO) QUERY
4.1 Searching for words and numbers
The smallest searchable unit in a CO query is the word:

word: NUMBER | ALPHANUMERIC

ALPHANUMERIC: {LETTER}{LETTERDIGITEXTRAS}*

NUMBER: "-"?{DIGIT}+

LETTER: [a-zA-Z]

DIGIT: [0-9]

LETTERDIGIT: [a-zA-Z0-9]

LETTERDIGITEXTRAS [a-zA-Z0-9'-]

Positive numbers, negative numbers and sequences of
alphanumerics proceeded by an alphabetic character are all valid
search words. Alphanumerics have already been used in query 41
so must be included. Hyphens are allowed after the first character
of an alphanumeric (to avoid confusion with term restrictions, see
section 4.3). The apostrophe can only occur after the first
character of an alphanumeric.
Example: To search for the single word Apple, the CO query is

Apple

Loose interpretation: It is anticipated that using the word Apple
will help locate relevant documents. I won’t tell you if I mean
“Macintosh Computer”, “Granny Smith”, or “Mr Apple” but find
what I want anyway.

4.2 Searching for phrases
A phrase is a double quoted sequence of words:

phrase: '"' word_list '"'

word_list: word word | word_list word

A phrase must contain two or more words. A phrase containing
only one word is erroneous and the quotes should be removed to
make a single word query.
Example: To search for Charles Babbage, the CO query will be

"Charles Babbage"

Loose interpretation: Relevant documents are anticipated to
contain these two words adjacent to each other, but need not.
They may contain both words non-adjacent. For that matter they
might not contain both words. A relevant document might not
even contain either word.

4.3 Term restrictions
Terms can be preceded by either a plus (+) or minus (-) sign

term: term_restriction unrestricted_term

term_restriction: EMPTY | '+' | '-'

unrestricted_term: word | phrase

Loose interpretation: The ‘+’ signifies the user expects the
word will appear in a relevant element. The user will be surprised
if a ‘-’ word is found, but this will not prevent the document from
being relevant. Words without a sign are specified because the
user anticipates such terms will help the search engine to find
relevant elements. As restrictions are only hints, it is entirely
possible for the most relevant element to contain none of the
query terms, or for that matter only the ‘-’ terms.

4.4 CO queries
A CO query is a sequence of one or more searchable terms.

co : term | co term

Example:

+"face recognition" approach

Loose interpretation: “I expect the phrase ‘face recognition’ will
appear in a relevant document, I also anticipate the word
‘approach’ will help you find the documents I want”.

4.5 Bag of Words
Term ordering in IR queries is often assumed to be irrelevant. In
the “bag of words” interpretation, a query is an unordered set of
search terms (and phrases). The assumption does not hold true for
some queries. For example,

computer history

and

history computer

express different information needs even though the “bag of
words” is identical.
Additionally, if a term occurs multiple times, the occurrence
count is lost when the term is added to the “bag of words”. For
some queries, multiple term occurrences are needed to adequately
specify the information need. For example, the query

The The

should search for documents about the well known rock band of
the same name, and cannot be specified without the use of the
multiple occurring term. Further, some search engines “stop”
common words not considered useful for searching (such as the,
and, of, etc). This query requires the use of such a term.
Loose interpretation: There may or may not be an implied order
to the terms in a query. If a term occurs multiple times this may
or may not imply meaning. Stopping common words may or may
not alter the meaning of the query.

4.6 The pitfalls of queries
The minus sign (-) maintains two meanings; it is used for both
exclusionary terms and negative numbers. For the purpose of
clarity, 12 and –12 are numbers. By inserting a space
(represented as ‘+’ in this paragraph) between the – and the 12 (-
+12), the meaning is changed to exclusionary. “Don’t search for
the number –12” can be expressed as --12 or -+-12. Equally, --
+12 is an error.

5. THE CONTENT AND STRUCTURE
(CAS) QUERY
CAS queries can take three possible forms:

//A[B] Return A tags about B
//A[B]//C Return C descendants of A where A is about B

(used in INEX’02)
//A[B]//C[D] Return C descendants of A where A is about B

and C is about D

A and C are paths whereas B and D are filters. The syntax is
defined as:

cas: path cas_filter

| path cas_filter path

| path cas_filter path cas_filter

cas_filter: '[' filtered_clause ']'

Use of the form //A[B]//C is not useful for information retrieval
evaluation purposes. Once the result of //A[B] has been
determined, it is a mechanical process to extract the //C
descendants. Use of this form was deprecated in INEX’03.

5.1 Path specification
Tag and attribute names follow the XML 1.1 [1] specification

XMLTAG: {XML_NAME}{XML_NAMECHAR}*

XML_NAMECHAR: [-_.:a-zA-Z0-9]

XML_NAME: [_:a-zA-Z]

Element nodes in the XML tree are identified as “//tag” and
attribute nodes as “//@attribute”. The wildcard “//*” is included
to identify first or subsequent descendant (tag or attribute).
Convoluted use of attributes and wildcards is discouraged.

node: named_node | any_node | tag_list_node

NODE_QUALIFIER: "//"

named_node: NODE_QUALIFIER tag

attribute_node: NODE_QUALIFIER '@' tag

any_node: NODE_QUALIFIER '*'

In cases where either tag A or tag B is required, it is written
“//(A|B)”.

tag_list: tag '|' tag | tag_list '|' tag

tag_list_node: NODE_QUALIFIER '(' tag_list ')'

A path through the XML tree is specified as a sequence of nodes.
The only relationship between nodes in a path is descendant.
There is no way to specify the child relationship or other XPath
axes. Attributes cannot have descendant nodes so may only be
specified at the end of a path.

path: node_sequence | node_sequence attribute_node

node_sequence: node | node_sequence node

Strict interpretation: “//A” is any A tag in the tree. “//A//B”,
any B descendant of an A tag in the tree. “//@C” is the C
attribute of any tag. “//A//@C” is any C attribute anywhere in the
tree beneath an A tag in the tree.
For any descendant of A use “//A//*”. Any descendant of the
root, “//*”, is also any tag in the tree. “//*//*//*” is any tag at least
three levels deep in the tree. “//*//A” is an A that is not the root of
the tree, while “//*//A//*” means any descendant of A so long as
A is not the root.
The path “//(A|B)” means any A tag in the tree or any B tag in the
tree. “//(A|B)//(C|D)” is any C or D descendant of either an A or
B tag. This includes “//A//C”, “//A//D”, “//B//C” and “//B//D”.
Convoluted use of this syntax is discouraged.
The path //T1…//Tn is an ordered sequence of nodes in the tree
starting with T1 and terminating at Tn such that for all p∈n, Tp+1 is
a descendant of Tp.
Loose interpretation: There is likely to be relevant information
in the document in places not specified in a user query. The path
specifications should therefore be considered hints as to where to
look.

5.1.1 A Note on Attributes
No real query using attributes on the INEX collection is believed
to exist. Query authors are discouraged from using attributes
simply because they can.

5.2 Path filters
At present paths can be filtered either with search strings, or
numerically. In future versions, filtering based on proper nouns
(e.g. Author Names), and other data types is anticipated.

5.2.1 String filtering
Documents can be filtered to only those that satisfy a given
textural (CO) query in the given path (or relative to the given
path).

about_clause : ABOUT '(' relative_path ',' co ')'

relative_path: '.' | '.' path

ABOUT: "about"

Relative paths are specified relative to a context path. At B in
//A[B] the context path is //A. At B in //A[B]//C[D] the context
path is //A. At D in //A[B]//C[D] the context path is //A//C. The
relative path “.” is interpreted as “the context path”. The relative
path “.//p” is interpreted as “a p descendant of the context path”.
Example:

//article[about(.//p, "information retrieval")]

Strict interpretation: “What ever you do, you must return article
tags. Now, as a suggestion, look for //article//p elements about
information retrieval.”
Loose interpretation: “What I want is most likely a whole article
that mentions information retrieval in a p tag. Relevant results are
not limited to this, but I’m pretty sure it’ll help you find what I
want.”

5.2.2 Arithmetic filtering
Documents can also be filtered to only those that satisfy a
numeric query. As with string filtering, this is specified with a
relative path.

arithmetic_clause: relative_path

arithmetic_operator NUMBER

arithmetic_operator: '>' | '<' | '=' | '>=' | '<='

Example:

//article[.//pdt//yr = 2003]

Strict interpretation: Retrieve article elements from documents
that loosely “contain the value 2003 in an //article//pdt//yr
element”.
Loose interpretation: A loose interpretation could be to look at a
year range (2002, 2003, and 2004). This might be useful if, for
example, a workshop held in December 2003, published the
formal proceedings in 2004. Alternatively, a paper published

electronically in December 2002 might finally appear in print in
January 2004 leading to confusion over the publication date.
The above example could also be described using string filtering

//article[about(.//pdt//yr, 2003)]

however, the arithmetic syntax is preferred.
Both positive and negative numbers are supported by CO and
CAS queries. The ambiguity arising from the multiple meaning
of the minus (-) was discussed in section 4.6.

5.2.3 Boolean Operators
Path filters can be joined with Boolean operators AND and OR.
They can also be bracketed.

filter: about_clause | arithmetic_clause

filtered_clause: filter

| filtered_clause AND filtered_clause

| filtered_clause OR filtered_clause

| '(' filtered_clause ')'

AND: "AND" | "and"

OR: "OR" | "or"

Examples:

//article[about(., apple) and about(., computer)]

//article[about(., apple) or about(., computer)]

Strict interpretation: The first example will return article
elements from documents about apple and about computer, the
second about apple or about computer (remember: these are only
hints). This introduces a subtle difference in query meaning
between the two queries:

//article[about(.//sec, apple computer)]

and

//article[about(.//sec, apple) and

about(.//sec, computer)]

The first query asks for articles that have a section discussing
‘apple computer’. The second asks for articles that have a section
discussing ‘apple’ and a section discussing ‘computer’ (even if
they are not the same section). In the first query, the topics must
co-occur. In the second they may co-occur.
Loose interpretation: AND is interpreted as ANDish, OR as
ORish. The query contains the Boolean operators strictly as hints

on how to resolve the information need. CO, SCAS and VCAS
all interpret Boolean operators loosely.

5.2.4 Examples
Examples of some CAS queries are given here along with strict
interpretations. Loose interpretation of each is the same “I’m sure
this’ll help find what I want”.

//sec[about(., mobile electronic payment system)]

Return sec tags where the sec tag mentions mobile electronic
payment systems.

//*[about(., singular value decomposition)]

Return elements about singular value decomposition. The
retrieval engine must deduce the most appropriate element to
return.

//article[.//fm//yr >= 1998]//sec[about(.//p,
"virtual reality")]

Return sec tags of documents about virtual reality and published
on or after 1998.

//article[(.//fm//yr = 2000 OR .//fm//yr = 1999)
AND about(., "intelligent transportation
system")]//sec[about(., automation +vehicle)]

Return sec elements about vehicle automation from documents
published in 1999 or 2000 that are about intelligent transportation
systems.

6. CONCLUSIONS
The INEX query working-group at the INEX workshop outlined a
set of requirements necessary for a query language to be used for
future workshops. The language was to be similar in form to
XPath, while at the same time being both severely reduced, and
expanded. The language, NEXI, is defined herein and satisfies
these needs.
A parser written in Flex and Bison and is included. The existing
INEX topics have been translated into NEXI and checked against
the parser. Only those queries using features deprecated by the
working-group could not be translated – in these cases a near
translation is included.

7. ACKNOWLEDGEMENTS
Richard A. O’Keefe read several drafts and commented on many
aspects of this language.

8. REFERENCES
[1] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,

Yergeau, F., & Cowan, J. (2003). Extensible markup language
(XML) 1.1 W3C proposed recommendation. The World Wide
Web Consortium. Available: http://www.w3.org/TR/2003/PR-
xml11-20031105/ [2003.

[2] Clark, J., & DeRose, S. (1999). XML path language (xpath)
1.0, W3C recommendation. The World Wide Web
Consortium. Available: http://www.w3.org/TR/xpath [2004.

[3] Donnelly, C., & Stallman, R. (1995). Bison - the yacc-
compatible parser generator. Available:
http://www.gnu.org/directory/bison.html.

[4] Fuhr, N., Gövert, N., Kazai, G., & Lalmas, M. (2002). INEX:
Initiative for the evaluation of XML retrieval. In Proceedings
of the ACM SIGIR 2000 Workshop on XML and Information
Retrieval.

[5] Kazai, G., Lalmas, M., & Malik, S. (2003). INEX'03
guidelines for topic development.

[6] O'Keefe, R. A., & Trotman, A. (2003). The simplest query
language that could possibly work. In Proceedings of the 2nd
workshop of the initiative for the evaluation of XML retrieval
(INEX).

[7] Paxson, V. (1995). Flex, version 2.5, a fast scanner generator.
Available: http://www.gnu.org/directory/flex.html.

[8] Sigurbjörnsson, B., & Trotman, A. (2003). Queries: INEX
2003 working group report. In Proceedings of the 2nd
workshop of the initiative for the evaluation of XML retrieval
(INEX).

A1. MAKEFILE

Makefile

Andrew Trotman

University of Otago 2004

Script to build the NEXI parser

tokenizer : parser.tab.c lex.yy.c

 gcc lex.yy.c parser.tab.c -lm -o tokenizer

lex.yy.c : tokenizer.l parser.tab.h

 flex tokenizer.l

parser.tab.c : parser.y

 bison parser.y -d

clean :

 rm tokenizer parser.tab.h parser.tab.c lex.yy.c

A2. FLEX SCRIPT
%{

/*

 TOKENIZER.L

 Andrew Trotman

 University of Otago 2004

 FLEX script to tokenize INEX NEXI queries and
check for syntax errors

*/

#include <stdio.h>

#include "parser.tab.h"

int c;

extern int yylval;

extern int line_number;

extern int char_number;

%}

LETTER [a-zA-Z]

DIGIT [0-9]

LETTERDIGIT [a-zA-Z0-9]

LETTERDIGITEXTRAS [a-zA-Z0-9'\-]

XML_NAMECHAR [a-zA-Z0-9_:.\-]

XML_NAME [a-zA-Z:_]

%%

" " { char_number++; }

"\r" { char_number++; }

"\n" {

 line_number++;

 char_number = 1;

 return yytext[0];

 }

"about" {

 char_number += 5;

 yylval = yytext[0];

 return ABOUT;

 }

"AND" {

 char_number += 3;

 yylval = yytext[0];

 return AND;

 }

"and" {

 char_number += 3;

 yylval = yytext[0];

 return AND;

 }

"OR" {

 char_number += 2;

 yylval = yytext[0];

 return OR;

 }

"or" {

 char_number += 2;

 yylval = yytext[0];

 return OR;

 }

">" {

 char_number++;

 yylval = yytext[0];

 return GREATER;

 }

"<" {

 char_number++;

 yylval = yytext[0];

 return LESS;

 }

"=" {

 char_number++;

 yylval = yytext[0];

 return EQUAL;

 }

{LETTER}{LETTERDIGITEXTRAS}* {

 char_number += strlen(yytext);

 yylval = yytext[0];

 return ALPHANUMERIC;

 }

"-"?{DIGIT}+ {

 char_number += strlen(yytext);

 yylval = yytext[0];

 return NUMBER;

 }

"//" {

 char_number += 2;

 yylval = yytext[0];

 return NODE_QUALIFIER;

 }

{XML_NAME}{XML_NAMECHAR}* {

 char_number += strlen(yytext);

 yylval = yytext[0];

 return XMLTAG;

 }

. {

 char_number++;

 return yytext[0];

 }

%%

/*

 YYWRAP()

*/

int yywrap(void)

{

return 1;

}

A3. BISON SCRIPT
%{

/*

 PARSER.Y

 Andrew Trotman

 University of Otago 2004

 BISON script to tokenize INEX NEXI queries and
check for syntax errors

*/

#define YYDEBUG 1

#include <math.h>

#include <stdio.h>

#include <ctype.h>

int line_number = 1;

int char_number = 1;

extern char *yytext;

void yyerror(char *err) /* Called by yyparse on
error */

{

printf ("Line %d (char %d): %s at '%s'\n",
line_number, char_number, err, yytext);

}

/*

 NOTES:

 INEX topics 10, 14, 19, 20 are not strict
translations as they cannot be expressed (multiple
specified target elements)

 INEX topic 13 is not a strict translation
due to instance (au[1]) usage

*/

%}

%token NUMBER ALPHANUMERIC XMLTAG

%token ABOUT NODE_QUALIFIER

%token AND OR

%token GREATER LESS EQUAL

%left AND OR

%%/* Grammar rules and actions follow */

input: /* empty */ | input line;

line: '\n'

 | co '\n' { printf("CO Passed\n"); }

 | cas '\n' { printf("CAS Passed\n"); };

/*

 in a CAS query:

 the initial can be the terminal "//*" to
specify "a descendant of"

 the final part can be an unrestricted
target path (for compatibility with INEX 2002)

*/

cas: path cas_filter | path cas_filter path | path
cas_filter path cas_filter;

cas_filter: '[' filtered_clause ']';

filtered_clause : filter

 | filtered_clause AND filtered_clause

 | filtered_clause OR filtered_clause

 | '(' filtered_clause ')';

filter: about_clause | arithmetic_clause;

about_clause : ABOUT '(' relative_path ',' co ')';

arithmetic_clause: relative_path
arithmetic_operator NUMBER;

arithmetic_operator: GREATER | LESS | EQUAL |
greater_equal | less_equal;

greater_equal: GREATER EQUAL;

less_equal: LESS EQUAL;

/*

 child has been eliminated and replaced with
descendant. In the unlikley event child is ever
needed, it can (most likley) be specified as those
descendants enough to make the specification
unambigious.

now, a PATH is either:

 "//" for root

 "//A" for tag A

 "//A//B" for tag B within tag A

 "//*" for any tag

 "//A//*" for any descendant of A

 "//@A" for attribute A

 "//A//@B" for attribute B descendant of node A

*/

path: node_sequence | node_sequence
attribute_node;

relative_path: '.' | '.' path;

node_sequence: node | node_sequence node;

any_node: NODE_QUALIFIER '*';

attribute_node: NODE_QUALIFIER '@' tag;

named_node: NODE_QUALIFIER tag;

tag_list: tag '|' tag | tag_list '|' tag;

tag_list_node: NODE_QUALIFIER '(' tag_list ')';

node: named_node | any_node | tag_list_node;

tag: alphanumeric | XMLTAG;

/*

 CO topics are sequences of numbers, terms and
phrases with optional specifiers mandatory (+) and
unwanted (-)

note:

 "12" is a number

 "-12" is number

 "- 12" is don't search for number 12

 "--12" | "- -12" is don't search for number -12

 "-- 12" is an error

 "content-based" is an error

*/

co : term | co term;

term: term_restriction unrestricted_term;

term_restriction: /* empty */ | '+' | '-';

unrestricted_term: word | phrase;

/*

 A phrase is a sequence of two or more words
 surounded by double quotes

*/

phrase: '"' word_list '"';

word_list: word word | word_list word;

/*

 a word is a sequence:

 of alphabetics

 of digits

 of digits preceeded by a negative (-) sign
(a negative number)

 alphanumerics starting with an alpha (for
both ip1 tags and Y2K queries)

 As the operators are also valid search terms, a
word is

 operator or a sequence of alphabetic characters

*/

word: NUMBER | alphanumeric;

alphanumeric : ALPHANUMERIC | ABOUT | AND | OR;

%%

/*

 MAIN ()

*/

int main(void)

{

//yydebug = 1;

yyparse();

return 0;

}

A4. INEX QUERIES 1-126
The pre-existing INEX queries have all been converted and
checked against the parser. Topics 10, 14, 19 and 20 originally
specified a set of target elements. This practice was banned for
INEX’03 and is not supported here either. Topic 13 specifies a
particular instance of an element as the target, again outlawed for
INEX’03 and not supported here. Topic 44 used wildcards. As
such, these 6 queries are not accurately translated.

1. //article[about(.//(abs|kwd), description
logics)]//fm//au

2. //ack[about(., research funded america)]

3. //*[about(.//kwd, information data
visualization) and about(., large information
hierarchies spaces multidimensional data
databases)]

4. //*[about(.//(atl|abs|st), experience results
problems) and about(., extreme programming)]

5. //article[about(.//bibl, QBIC) and about(.,
image retrieval)]//tig

6. //article[about(., Survey on Software
Engineering) and about(.//sec, programming
languages)]//tig[about(., software
engineering survey programming survey
programming tutorial software engineering
tutorial)]

7. //article[about(., Content-based retrieval of
video databases)]//sec

8. //article[about(.//fm//aff, ibm) and
about(.//bdy//sec, certificates)]

9. //article[about(.//bdy//sec, nonmonotonic
reasoning) and (.//hdr//yr = 1999 or
.//hdr//yr = 2000) and about(.//tig//atl, -
calendar) and about(., belief revision)]

10. //*[about(.//(atl|st|title), book review) and
about(.//(st|p), machine learning adaptative
algorithm probabilistic model neural network
support vector machine kernel methods
numerical computation)]

11. //*[about(.//p, wireless) and
about(.//(abs|kwd), security) and about(.,
security applications)]

12. //article[.//pdt//yr = 2001 or .//pdt//yr =
2002]//bdy//sec[about(., internet search
engine)]

13. //article[about(.//fm//au//@sequence,
additional) and about(.//fm//abs, review) and
about(., AR VR virtual augmented reality
system)]//fm//au

14. //*[about(.//fgc, Corba architecture) and
about(.//p, Figure Corba Architecture)]

15. //article[.//fm//hdr//hdr2//pdt = 1996 or
.//fm//hdr//hdr2//pdt =
1997]//bm//bib//bibl//bb[about(., hypercube
mesh torus toroidal non-numerical database)]

16. //article[about(.//bm//bib//bibl//bb//atl,
concurrency control)]//fm//tig//atl

17. //article[about(.//fm//au, -W -Bruce -
Croft)]//bb[about(.//au, W Bruce Croft)]

18. //article[about(., Hypertext Information
Retrieval) and about(.//bib//bibl//bb//atl,
Hypertext Information Retrieval)]

19. //*[about(., singular value decomposition svd
formula)]

20. //article[about(.//atl, Concurrency Control)
and about(.//fm//hdr//hdr1//ti, data) and
about(., Concurrency Control in real-time
databases)]//sec

21. //*[about(.//(p|st|it|bb), recommender system
recommender agent)]

22. //article[about(.//bb//au//snm, Mannila) and
(about(.//bb//au//fnm, Heikki) or
about(.//bb//au//fnm, H)) and about(.,
Mannila)]//fm//au

23. //article[(.//yr = 1995 or .//yr = 1996 or
.//yr= 1997 or .//yr = 1998 or .//yr = 1999)
and about(.//bdy, XML electronic commerce)]

24. //article[about(.//au, Smith Jones) and
about(.//bdy, software engineering and
process improvement)]

25. //article[about(.//fm//hdr//hdr1//ti, IEEE
MultiMedia) and about(., QoS Quality of
Service)]

26. //article[about(.//st, XML) and about(., data
processing system)]//fm//tig//atl

27. //article[about(.//atl, 1999 Reviewers List)
and about(.//ti, IEEE Transactions
Visualization and Computer Graphics) and
.//yr = 2000]//reviewer//name

28. //article[about(.//sec1//title, Special
Feature) and about(.//ti, IEEE Micro)]//atl

29. //*[about(.//atl, image retrieval) and
about(., image retrieval colour shape
texture)]

30. //article[.//yr >= 1996 and about(.,
parallelism)]//au

31. computational biology

32. semantic web

33. software patents

34. Efficient database search structures and
techniques

35. Parallel query optimization

36. Heat dissipation of microcomputer chips

37. Temporal database queries and query
processing

38. multidimensional indices

39. Video on demand

40. Content-based retrieval

41. Y2K spending

42. Decryption of the Enigma code

43. approximate string matching algorithm

44. internet society communication netizen social
sociology web usenet mail network culture

45. augmented reality and medicine

46. Firewalls in internet security

47. concurrency control semantic transaction
management application performance benefit

48. active database rule specification

49. Query relaxation approximate and intelligent
query answering

50. XML editors or parsers

51. Text Data Mining

52. History of Computing of USSR

53. information retrieval xml

54. knowledge building acquisition and sharing

55. Digital Divide city planning neighbourhood
planning

56. open hypermedia systems and agents

57. public key cryptography RSA EC DSA algebraic
number field

58. Location management scheme

59. schema integration methods

60. Internet speed

61. //article[about(.,clustering +distributed)
and about(.//sec,java)]

62. //article[about(.,security +biometrics) AND
about(.//sec,"facial recognition")]

63. //article[about(.,"digital library") AND
about(.//p, +authorization +"access control"
+security)]

64. //article[about(., hollerith)]//sec[about(.,
DEHOMAG)]

65. //article[.//fm//yr > 1998 AND about(.,
"image retrieval")]

66. //article[.//fm//yr <
2000]//sec[about(.,"search engines")]

67. //article//fm[about(.//(tig|abs), +software
+architecture) and about(., -distributed -
Web)]

68. //article[about(., +Smalltalk) or about(.,
+Lisp) or about(.,+Erlang) or about(.,
+Java)]//bdy//sec[about(., +"garbage
collection" +algorithm)]

69. //article//bdy//sec[about(.//st,"information
retrieval")]

70. //article[about(.//fm//abs, "information
retrieval" "digital libraries")]

71. //article[about(.,formal methods verify
correctness aviation
systems)]//bdy//*[about(.,case study
application model checking theorem proving)]

72. //article[about(.//fm//au//aff,United States
of America)]//bdy//*[about(.,weather
forecasting systems)]

73. //article[about(.//st,+comparison) and
about(.//bib,"machine learning")]

74. //article[about(., video streaming
applications)]//sec[about(., media stream
synchronization) OR about(., stream delivery
protocol)]

75. //article[about(., Petri net) AND
about(.//sec, formal definition) AND
about(.//sec, algorithm efficiency
computation approximation)]

76. //article[(.//fm//yr = 2000 OR .//fm//yr =
1999) AND about(., "intelligent
transportation
system")]//sec[about(.,automation +vehicle)]

77. //article[about(.//sec,"reverse
engineering")]//sec[about(., legal) OR
about(.,legislation)]

78. //vt[about(.,"Information Retrieval"
student)]

79. //article[about(.,XML) AND about(.,database)]

80. //article//bdy//sec[about(.,"clock
synchronization" "distributed systems")]

81. //article[about(.//p,"multi concurrency
control") AND about(.//p, algorithm) AND
about(.//fm//atl, databases)]

82. //article[about(.,handwriting recognition)
AND about(.//fm//au,kim)]

83. //article//fm//abs[about(., "data mining"
"frequent itemset")]

84. //p[about(.,overview "distributed query
processing" join)]

85. //article[.//fm//yr >= 1998 and .//fig//no >
9]//sec[about(.//p,VR "virtual reality"
"virtual environment" cyberspace "augmented
reality")]

86. //sec[about(.,mobile electronic payment
system)]

87. //article[(.//fm//yr = 1998 OR .//fm//yr =
1999 OR .//fm//yr = 2000 OR .//fm//yr = 2001
OR .//fm//yr = 2002) AND about(., "support
vector machines")]

88. //article[(.//fm//yr = 1998 OR .//fm//yr =
1999 OR .//fm//yr = 2000 OR .//fm//yr = 2001)
AND about(., "web crawler")]

89. //article[about(.//bdy,clustering "vector
quantization" +fuzzy +k-means +c-means -SOFM
-SOM)]//bm//bb[about(.,"vector quantization"
+fuzzy clustering +k-means +c-means) AND
about(.//pdt,1999) AND about(.//au//snm, -
kohonen)]

90. //article[about(.//sec,+trust authentication
"electronic commerce" e-commerce e-business
marketplace)]//abs[about(., trust
authentication)]

91. Internet traffic

92. "query tightening" "narrow the search"
"incremental query answering"

93. "Charles Babbage" -institute -inst

94. "hyperlink analysis" +"topic distillation"

95. +"face recognition" approach

96. +"software cost estimation"

97. Converting Fortran source code

98. "Information Exchange" +XML "Information
Integration"

99. perl features

100. +association +mining +rule +medical

101. +"t test" +information

102. distributed storage systems for grid
computing

103. UML formal logic

104. Toy Story

105. +categorization "textual document" learning
evaluation

106. Content protection schemes

107. "artificial intelligence" AI practical
application industry "real world"

108. ontology ontologies overview "how to"
practical example

109. "CPU cooling" "cooling fan design" "heatsink
design" "heat dissipation" airflow casing

110. "stream delivery" "stream synchronization"
audio video streaming applications

111. "natural language processing" -"programming
language" -"modeling language" +"human
language"

112. +"Cascading Style Sheets" -"Content
Scrambling System"

113. "Markov models" "user behaviour"

114. +women "history of computing"

115. +"IP telephony" +challenges

116. "computer assisted art" "computer generated
art"

117. Patricia Tries

118. "shared nothing" database

119. Optimizing joins in relational databases

120. information retrieval models

121. Real Time Operating Systems

122. Lossy Compression Algorithm

123. multidimensional index "nearest neighbour
search"

124. application algorithm +clustering +k-means
+c-means "vector quantization" "speech
compression" "image compression" "video
compression"

125. +wearable ubiquitous mobile computing devices

126. Open standards for digital video in distance
learning

