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ABSTRACT 
Current approaches to information retrieval rely on the 
creativity of individuals to develop new algorithms.  In this 
investigation the use of genetic algorithms (GA) and genetic 
programming (GP) to learn IR algorithms is examined. 
Document structure weighting is a technique whereby different 
parts of a document (title, abstract, etc.) contribute unevenly to 
the overall document weight during ranking.  Near optimal 
weights can be learned with a GA.  Doing so shows a 
statistically significant 5% relative improvement in MAP for 
vector space inner product and Croft’s probabilistic ranking, but 
no improvement for BM25.  Two applications of this approach 
are suggested: offline learning, and relevance feedback. 
In a second set of experiments, a new ranking function was 
learned using GP.  This new function yields a statistically 
significant 11% relative improvement on unseen queries tested 
on the training documents.  Portability tests to different 
collections (not used in training) demonstrate the performance 
of the new function exceeds vector space and probability, and 
slightly exceeds BM25.  Learning weights for this new function 
is proposed. 
The application of genetic learning to stemming and thesaurus 
construction is discussed.  Stemming rules such as those of the 
Porter algorithm are candidates for GP learning whereas 
synonym sets are candidates for GA learning. 

Categories and Subject Descriptors 
H3.3 [Information Storage And Retrieval]: Information 
Search and Retrieval – retrieval models. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Information Retrieval, Genetic Algorithms, Genetic 
Programming. 

1. INTRODUCTION 
There exists a plethora of models for information retrieval.  
Proposing a new model is a tradition that traces its history to the 
1970s.  Early examples include the vector space model [22] and 
the probability model [18].  More recent models include the set-
based model [16] and the logic model [12]. 
Evaluation of information retrieval systems also has a long 
tradition.  The first TREC [7] was held in 1992.  In 2002, the 
INEX [3] workshops for evaluation of XML retrieval started. 

The model and the evaluation are inextricably related.  A 
theoretical model is of little value if it performs badly.  
Conversely, if a method performs well before an underpinning 
model is developed, it remains important.  Such was the case 
with Okapi BM25 [19], which has been shown to perform well, 
even though it is a mish-mash of other models.  
The best performing method to date is that of the human brain.  
The evaluation forums take it as read.  Each system is evaluated 
by comparing the computer-generated output to the human-
made judgments. 
Information retrieval systems are routinely evaluated against 
standard test sets.  In a typical scenario a researcher develops a 
new technique, implements it, then compares it with existing 
techniques.  The result is positive if a significant improvement 
in the appropriate metric is shown.  In the case of ad hoc 
retrieval of whole documents, the standard metric is mean 
average precision, while significance is determined using the 
Wilcoxon’s signed rank test [28]. 
Development of a new technique is comparable to guessing 
what a human does; yet explicit in every judgment is what a 
human did.  It seems likely, therefore, that the judgments can 
themselves be used to improve information retrieval techniques. 
The Holy Grail of information retrieval is 100% precision and 
100% recall, relative to the human judge.  This cannot be 
achieved (multiple human judges often don’t agree on 
judgments [23]), but significant improvements in precision are 
expected. 

2. PROPOSED RESEARCH 
Artificial intelligence techniques will be used to improve 
precision.  Standard test sets and judgments from TREC will be 
used for learning and evaluation.  Ad hoc retrieval of whole 
XML documents will be examined, but the techniques are also 
applicable to relevance feedback.  Web retrieval will not be 
examined 

2.1. Improving Precision 
Three approaches will be explored: first, the use of document 
structures to improve precision, second, general purpose ranking 
methods, and finally, the combination of the two techniques. 

2.1.1. Structure Weighted Ranking 
TREC documents are distributed in XML.  Wall Street Journal 
(WSJ) documents, for example, include structure markup for 
title, first paragraph, text, as well as other fields.  Term 
occurrences could be weighted based on which of these 
structures they occur.  This technique is not new [4].  Precision 
improvements have already been shown [26], and different 
weight choosing techniques have been tried [10; 17].  However, 



there is no systematic method of choosing the weights, which 
may be why choosing weights was a recurring question at INEX 
2003. 
The weights can be encoded in an array, with one array element 
for each document structure weight.  The natural choice of 
learning method for this encoding is the genetic algorithm [8].  
Initially a population of individuals is chosen with randomized 
weights.  At each generation the mean average precision of each 
individual is computed.  Individuals for the next generation are 
then chosen through reproduction, mutation and crossover. 
Optimal document structure weighting will not reduce mean 
average precision when compared to retrieval without structure 
weighting.  If all document structures are weighted equal and 1, 
the equivalent of un-weighted retrieval occurs.  Performance of 
weighted retrieval (with optimal weights) can therefore always 
at least equal that of un-weighted retrieval over a large set of 
queries.  Further, GAs are a well-established optimization 
technique so it should be possible to put a performance upper 
bound on this technique. 

2.1.2. General Purpose Ranking 
Any precision improvements gained through structure-weighted 
retrieval will be gained relative to a baseline.  That baseline is 
the precision of the chosen un-weighted ranking function.  
Many functions have been published, so many that taxonomies 
of ranking functions exist [29]. These taxonomies account for as 
many as 100,000 ranking functions. 
Exhaustively testing 100,000 functions is impractical, but a 
directed search is not.  GP [11] is a well-established technique 
for such a search.  By contrast to GA, GP represents individuals 
as an abstract syntax tree.  The ranking function itself is an 
individual.  Mutation and reproduction are similar to that in GA; 
crossover is the swapping of branches from tree to tree. 
The evidences to combine (the atoms in the ranking function) 
should be those “freely” available in an inverted file (for 
efficiency reasons).  This not only includes term frequencies, 
but also document-lengths, collection size, and the highest 
document term frequency, amongst others. 
Significant improvements are expected with this technique, 
however they have not yet been seen.  Previous experiments to 
combine a limited amount of tf.idf like evidence on the cystic 
fibrosis collection [24] failed to show a significant improvement 
[14].  Meanwhile, experiments to learn more general ranking 
functions for HTML have failed to better Okapi BM25 without 
using document structures [2]. 
Prior results are contrary to expectation.  They suggest tf.idf and 
Okapi BM25 are perfect ranking functions for the examined 
collections, and cannot be bettered.  This is unlikely. 
Close examination of the prior results shows why they are 
unexpected.  The learned ranking function should be at least a 
combination of evidence and operators used in the baseline 
function.  Unless this is the case the baseline could not be 
learned and it is reasonable to assume it will not be bettered. 
In other words, if an already existing ranking function f() is the 
combination of evidence (α) and operators (β), it cannot 
outperform a GP learned function being the combination of 
evidence (ε) with operators (φ) if α is a subset of ε, and β is a 

subset of φ.  This is because the GP could learn f().  Further, the 
learning can be seeded with f() guaranteeing at least f(). 
Choice of evidence is important.  Previous experiments had 
negative results because the choice of evidence was inadequate. 

2.1.3. The Structure Weighted / Learned Function 
It should be possible first to learn an improved general purpose 
ranking function, then to learn improving structure weights for 
such a function.  Better, the two could be learned in conjunction, 
this way any interaction of the two techniques would be 
exploited during learning. 
In prior experiments, term frequencies in some HTML tags were 
used in a GP learning experiment [2].  This resulted in an 
improvement over un-weighted retrieval with Okapi BM25.  An 
improvement is also expected if this technique is applied to non-
web documents. 

2.2. Improving Precision and Recall 
There already exist many techniques to improve recall; 
examples include relevance feedback, stemming and thesaurus.  
These techniques can, instead, be thought of as pure precision 
enhancers.  Every newly identified relevant document takes a 
prevision score above 0 where, while unidentified, its precision 
score was 0.  This is increasing precision by identifying 
additional relevant documents.  Optimizing precision using 
conflation is to ask a new question: which terms, when 
conflated, will increase precision regardless of the recall effect?  
As an optimization problem this lends itself to genetic learning. 

2.2.1. Relevance Feedback 
In relevance feedback, a user performs a search, the result is 
returned for judging, then, with knowledge of the judgments, the 
search is re-evaluated and the new results retrieved. 
The techniques already discussed could be used for relevance 
feedback.  After the initial judging round, the original query and 
a set of judgments are known – all that is needed to learn a 
ranking function and structure weights. 
Pre-existing techniques for relevance feedback [21] such as 
query expansion and term weighting could be used in 
conjunction with this learning technique.  GA has already been 
used to learn term weights [27]. 

2.2.2. Stemming 
During indexing, each word in the document collection is 
converted algorithmically into a stem.  All words with the same 
stem are then indexed as if they were a single term.  The 
intention is to merge the postings for all words with a common 
morphology.  For example, the postings for “treatment”, 
“treating” and “treat” would be merged into the stem “treat”.  
When a user searches for “treats”, that word is stemmed to 
“treat” and the postings for the stem are retrieved, finding 
documents not containing the search term. 

Many stemming algorithms exist (e.g. [15]).  Often they exist as 
a sequence of re-write rules.  Each rewrite rule is a program 
statement.  It should, therefore, be possible to learn to stem 
using GP.  
Investigation into stemming effectiveness has shown stemming 
is ineffective [5].  This is perhaps because the “stemming 
quality” of a stemming algorithm is measured with stemming 



error rate, but the “IR quality” is measured with mean average 
precision, two independent measures.  If a stemming algorithm 
is developed with the sole purpose of increasing mean average 
precision, an improvement on this negative result might be seen. 
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Query expansion using a thesaurus is common.  There are 
general-purpose thesauri in the public domain but few document 
collections are general-purpose.  Domain specific thesauri (e.g. 
UMLS [1]) exist, but are costly to hand produce.  Automated 
thesaurus generation has also been tried [20]. 
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A thesaurus can be represented as a set of bit-strings, one for 
each thesaurus entry.  Each bit-string has a bit for each unique 
term in the document collection.  If, in a given bit-string, two 
bits are set, those terms are synonyms. 

where C = 1, K = 0.3. 
The BM25 implementation was faithful according to that of 
Robertson et al. [19] 

These bit-strings can be learned with a GA.  A population is 
seeded with individuals having random bits set and a traditional 
GA is used to learn good combinations.  Selective pressure is 
applied to increase precision irrespective of the effect on recall. 

In each case, N was the number of documents, nt the number of 
documents in which the term occurs and tftd is the number of 
occurrences of term t in document d (likewise  tftq in the query). 
The training set was the TREC WSJ (1987-1992), with topics 
151-200.  Topics with fewer than 5 judgments were discarded.  
The population size was 50 and several experiments were run 
for 25 generations.  Evaluation was against topics 101-150; 
results are shown in Table 1. 

The same technique can be used to learn phrasal synonyms (e.g. 
‘information retrieval’ and IR).  Individual content baring 
phrases would first be identified using pre-existing techniques 
[9], the document collection indexed to include these terms, and 
the bit-string thesaurus learning applied. Table 1:  Differences in MAP for un-weighted retrieval 

(MAP) and weighted retrieval (W-MAP) for the evaluation 
topics.  P is computed using Wilcoxon’s signed rank test. 

Terms to exclude from a search (antonyms) could also be 
learned the same way. 

Function MAP W-MAP Imp Imp% P-Value 

BM25 0.2289 0.2281 -0.0008 -0.35% 0.92 

Probability 0.1675 0.1787 0.0112 6.69% 0.00 

Inner Prod 0.1657 0.1735 0.0078 4.71% 0.00 

3. PORTABILITY OF RESULTS 
Documents, queries and judgments are needed for all the 
proposed experiments.  Collecting the judgments is a time 
consuming and costly exercise so the TREC collections are 
used.  However, unless the results of these learning experiments 
are portable from one document collection to another, learning 
on TREC data will produce results that can’t be used elsewhere. 

A 5% improvement on un-weighted retrieval is seen in inner 
product and probability model (significant at 1%).  Okapi BM25 
shows no improvement.  No examined technique significantly 
outperformed un-weighted Okapi BM25 [25]. Experiments that learn structure weights are tied to structure.  

For XML, this is not just the DTD, but rather the particular use 
of the DTD.  These results are not portable from collection to 
collection. 

To place an upper bound on the improvement, the training and 
evaluation queries were pooled and a series of experiments run 
to optimize structure weights across all queries.  The results 
were similar to those shown in Table 1, this technique yields an 
improvement of about 5% in inner product and probability, but 
of less than 1% in BM25. 

Portability is expected from learned ranking functions, so long 
as no evidence tying the function to the particular document 
collection is used.  Additionally, the portability can be tested by 
measuring the performance of any learned function on a diverse 
set of document collections.  Statistical comparison to other 
portable ranking functions such as BM25 will determine if, or 
not, these functions are portable. 

Improved Topics

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

Topic

Im
pr

ov
em

en
t

 

Equally, stemming and synonym sets learned on one collection 
are expected to port to other collections. 

4. PRELIMINARY RESULTS 
Initial investigation into learning document structure weights 
was conducted with inner product, probabilistic and Okapi 
BM25 ranking. 
The inner product function was a straightforward tf.idf 
implementation: 
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topics show small improvements.  About 50% of topics show 

an improvement of over 10%. where 



 
 

Table 3:  Comparison of different ranking functions on different document collections. 
Function WSJ CysFib CR FR94 FT Trec 4 FBIS LATimes Trec 5 Trec 4+5 

Run 5 0.2849 0.2860 0.1727 0.1820 0.2223 0.1702 0.2566 0.1881 0.1834 0.1625 

BM25 0.2553 0.2728 0.1949 0.2079 0.2022 0.1767 0.2082 0.1996 0.1824 0.1658 

Probability 0.1890 0.2781 0.1481 0.1311 0.1240 0.0857 0.1423 0.1352 0.1155 0.0855 

Inner Prod 0.1497 0.2873 0.0992 0.0863 0.1203 0.0346 0.0665 0.0797 0.0473 0.0286 

MAP Imp 0.0297 0.0133 -0.0223 -0.0259 0.0200 -0.0065 0.0484 -0.0115 0.0010 -0.0033 

Imp% 11.63% 4.86% -11.42% -12.48% 9.91% -3.70% 23.24% -5.78% 0.54% -2.00% 

P-Value 0.00 0.04 0.91 0.95 0.19 0.83 0.00 0.50 0.17 0.33 

 
Table 2: Improvements for query-customized weights. 

Function MAP Each Imp Imp% P-Value 

BM25 0.2418 0.2775 0.0357 14.77% 0.00 

Probability 0.1780 0.2056 0.0276 15.48% 0.00 

Inner Prod 0.1567 0.2033 0.0466 29.70% 0.00 

Training on each query in isolation showed improvements for 
BM25 ranging from 10 times (0.047 to 0.443 for topic 103) 
through to less than 1%.  The mean average precision 
improvement for inner product was 30%, and was 15% for 
probability and Okapi BM25.  This result suggests this 
technique might be successful for relevance feedback, further 
experiments are required.  Table 2 shows the improvement in 
MAP.  In Figure 1 the improvements in each query are shown 
ordered from most to least.  In these experiments, the definition 
of vidfi was changed to 

t
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there was no theoretic justification for doing so and the 
experiments have not been conducted using the earlier 
definition.  It should be noted that the performance of inner 
product using this later definition is worse than that used earlier. 
Experiments to learn a general purpose ranking function were 
conducted on the same training set (WSJ, Topics 151-200).  
Several runs of 100 individuals for 100 generations were 
conducted.  Learning was elitist and was seeded with other 
ranking functions including BM25. 
Evaluation was against WSJ (topics 101-150), collections from 
TREC disks 4 and 5 (topics 301-350), and the cystic fibrosis 
collection [24].  A diverse set of evaluation collections is 
necessary because ranking performance is known to vary greatly 
from collection to collection [29].  The evaluation results are 
shown in Table 3 where Run 5 is the best learned function to 
date.  From this, each of BM25 and Run 5 out-performed the 
other an equal number of times, but of the results significant at 
the 5% level, Run 5 always outperformed BM25.  Function Run 
5 has proven to be portable from collection to collection. 

5. DISCUSSION 
This investigation centers around one question:  How can 
artificial intelligence techniques be used to improve information 
retrieval?  Already shown is how GA and GP can be used to 

improve precision.  The advantage of these algorithms over 
others (e.g., Neural Networks) is in the symbolic results.  The 
ranking function can be examined.  The thesaurus results can be 
printed as a thesaurus.  More importantly, the results can be 
moved from one document collection to another and can be 
expected to continue to perform well. 
Examination of precision and recall is an arbitrary choice, and 
may not be the best choice.  Surely categorization can be 
improved with AI.  How could it be used in a question / answer 
system?  How could these techniques be used to improve the 
interactive experience of a user?  Could GP be used for index 
compression?  Perhaps an intelligent caching mechanism would 
improve throughput?  Clearly AI is important for clustering, but 
can genetic techniques be used? 
Still unanswered AI questions include: do other AI techniques 
(such as particle swarm optimization [13]) better fit this problem 
domain?  What better encodings exist than those proposed 
herein?  Have these techniques been tried before?  What 
efficiency issues should be examined? 
The most important unanswered question is:  In what future 
directions can (and should) this approach be taken? 
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