
An Artificial Intelligence Approach To Information
Retrieval

 Andrew Trotman
Department of Computer Science

University of Otago
Dunedin, New Zealand

andrew@cs.otago.ac.nz

ABSTRACT
Current approaches to information retrieval rely on the
creativity of individuals to develop new algorithms. In this
investigation the use of genetic algorithms (GA) and genetic
programming (GP) to learn IR algorithms is examined.
Document structure weighting is a technique whereby different
parts of a document (title, abstract, etc.) contribute unevenly to
the overall document weight during ranking. Near optimal
weights can be learned with a GA. Doing so shows a
statistically significant 5% relative improvement in MAP for
vector space inner product and Croft’s probabilistic ranking, but
no improvement for BM25. Two applications of this approach
are suggested: offline learning, and relevance feedback.
In a second set of experiments, a new ranking function was
learned using GP. This new function yields a statistically
significant 11% relative improvement on unseen queries tested
on the training documents. Portability tests to different
collections (not used in training) demonstrate the performance
of the new function exceeds vector space and probability, and
slightly exceeds BM25. Learning weights for this new function
is proposed.
The application of genetic learning to stemming and thesaurus
construction is discussed. Stemming rules such as those of the
Porter algorithm are candidates for GP learning whereas
synonym sets are candidates for GA learning.

Categories and Subject Descriptors
H3.3 [Information Storage And Retrieval]: Information
Search and Retrieval – retrieval models.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Information Retrieval, Genetic Algorithms, Genetic
Programming.

1. INTRODUCTION
There exists a plethora of models for information retrieval.
Proposing a new model is a tradition that traces its history to the
1970s. Early examples include the vector space model [22] and
the probability model [18]. More recent models include the set-
based model [16] and the logic model [12].
Evaluation of information retrieval systems also has a long
tradition. The first TREC [7] was held in 1992. In 2002, the
INEX [3] workshops for evaluation of XML retrieval started.

The model and the evaluation are inextricably related. A
theoretical model is of little value if it performs badly.
Conversely, if a method performs well before an underpinning
model is developed, it remains important. Such was the case
with Okapi BM25 [19], which has been shown to perform well,
even though it is a mish-mash of other models.
The best performing method to date is that of the human brain.
The evaluation forums take it as read. Each system is evaluated
by comparing the computer-generated output to the human-
made judgments.
Information retrieval systems are routinely evaluated against
standard test sets. In a typical scenario a researcher develops a
new technique, implements it, then compares it with existing
techniques. The result is positive if a significant improvement
in the appropriate metric is shown. In the case of ad hoc
retrieval of whole documents, the standard metric is mean
average precision, while significance is determined using the
Wilcoxon’s signed rank test [28].
Development of a new technique is comparable to guessing
what a human does; yet explicit in every judgment is what a
human did. It seems likely, therefore, that the judgments can
themselves be used to improve information retrieval techniques.
The Holy Grail of information retrieval is 100% precision and
100% recall, relative to the human judge. This cannot be
achieved (multiple human judges often don’t agree on
judgments [23]), but significant improvements in precision are
expected.

2. PROPOSED RESEARCH
Artificial intelligence techniques will be used to improve
precision. Standard test sets and judgments from TREC will be
used for learning and evaluation. Ad hoc retrieval of whole
XML documents will be examined, but the techniques are also
applicable to relevance feedback. Web retrieval will not be
examined

2.1. Improving Precision
Three approaches will be explored: first, the use of document
structures to improve precision, second, general purpose ranking
methods, and finally, the combination of the two techniques.

2.1.1. Structure Weighted Ranking
TREC documents are distributed in XML. Wall Street Journal
(WSJ) documents, for example, include structure markup for
title, first paragraph, text, as well as other fields. Term
occurrences could be weighted based on which of these
structures they occur. This technique is not new [4]. Precision
improvements have already been shown [26], and different
weight choosing techniques have been tried [10; 17]. However,

there is no systematic method of choosing the weights, which
may be why choosing weights was a recurring question at INEX
2003.
The weights can be encoded in an array, with one array element
for each document structure weight. The natural choice of
learning method for this encoding is the genetic algorithm [8].
Initially a population of individuals is chosen with randomized
weights. At each generation the mean average precision of each
individual is computed. Individuals for the next generation are
then chosen through reproduction, mutation and crossover.
Optimal document structure weighting will not reduce mean
average precision when compared to retrieval without structure
weighting. If all document structures are weighted equal and 1,
the equivalent of un-weighted retrieval occurs. Performance of
weighted retrieval (with optimal weights) can therefore always
at least equal that of un-weighted retrieval over a large set of
queries. Further, GAs are a well-established optimization
technique so it should be possible to put a performance upper
bound on this technique.

2.1.2. General Purpose Ranking
Any precision improvements gained through structure-weighted
retrieval will be gained relative to a baseline. That baseline is
the precision of the chosen un-weighted ranking function.
Many functions have been published, so many that taxonomies
of ranking functions exist [29]. These taxonomies account for as
many as 100,000 ranking functions.
Exhaustively testing 100,000 functions is impractical, but a
directed search is not. GP [11] is a well-established technique
for such a search. By contrast to GA, GP represents individuals
as an abstract syntax tree. The ranking function itself is an
individual. Mutation and reproduction are similar to that in GA;
crossover is the swapping of branches from tree to tree.
The evidences to combine (the atoms in the ranking function)
should be those “freely” available in an inverted file (for
efficiency reasons). This not only includes term frequencies,
but also document-lengths, collection size, and the highest
document term frequency, amongst others.
Significant improvements are expected with this technique,
however they have not yet been seen. Previous experiments to
combine a limited amount of tf.idf like evidence on the cystic
fibrosis collection [24] failed to show a significant improvement
[14]. Meanwhile, experiments to learn more general ranking
functions for HTML have failed to better Okapi BM25 without
using document structures [2].
Prior results are contrary to expectation. They suggest tf.idf and
Okapi BM25 are perfect ranking functions for the examined
collections, and cannot be bettered. This is unlikely.
Close examination of the prior results shows why they are
unexpected. The learned ranking function should be at least a
combination of evidence and operators used in the baseline
function. Unless this is the case the baseline could not be
learned and it is reasonable to assume it will not be bettered.
In other words, if an already existing ranking function f() is the
combination of evidence (α) and operators (β), it cannot
outperform a GP learned function being the combination of
evidence (ε) with operators (φ) if α is a subset of ε, and β is a

subset of φ. This is because the GP could learn f(). Further, the
learning can be seeded with f() guaranteeing at least f().
Choice of evidence is important. Previous experiments had
negative results because the choice of evidence was inadequate.

2.1.3. The Structure Weighted / Learned Function
It should be possible first to learn an improved general purpose
ranking function, then to learn improving structure weights for
such a function. Better, the two could be learned in conjunction,
this way any interaction of the two techniques would be
exploited during learning.
In prior experiments, term frequencies in some HTML tags were
used in a GP learning experiment [2]. This resulted in an
improvement over un-weighted retrieval with Okapi BM25. An
improvement is also expected if this technique is applied to non-
web documents.

2.2. Improving Precision and Recall
There already exist many techniques to improve recall;
examples include relevance feedback, stemming and thesaurus.
These techniques can, instead, be thought of as pure precision
enhancers. Every newly identified relevant document takes a
prevision score above 0 where, while unidentified, its precision
score was 0. This is increasing precision by identifying
additional relevant documents. Optimizing precision using
conflation is to ask a new question: which terms, when
conflated, will increase precision regardless of the recall effect?
As an optimization problem this lends itself to genetic learning.

2.2.1. Relevance Feedback
In relevance feedback, a user performs a search, the result is
returned for judging, then, with knowledge of the judgments, the
search is re-evaluated and the new results retrieved.
The techniques already discussed could be used for relevance
feedback. After the initial judging round, the original query and
a set of judgments are known – all that is needed to learn a
ranking function and structure weights.
Pre-existing techniques for relevance feedback [21] such as
query expansion and term weighting could be used in
conjunction with this learning technique. GA has already been
used to learn term weights [27].

2.2.2. Stemming
During indexing, each word in the document collection is
converted algorithmically into a stem. All words with the same
stem are then indexed as if they were a single term. The
intention is to merge the postings for all words with a common
morphology. For example, the postings for “treatment”,
“treating” and “treat” would be merged into the stem “treat”.
When a user searches for “treats”, that word is stemmed to
“treat” and the postings for the stem are retrieved, finding
documents not containing the search term.

Many stemming algorithms exist (e.g. [15]). Often they exist as
a sequence of re-write rules. Each rewrite rule is a program
statement. It should, therefore, be possible to learn to stem
using GP.
Investigation into stemming effectiveness has shown stemming
is ineffective [5]. This is perhaps because the “stemming
quality” of a stemming algorithm is measured with stemming

error rate, but the “IR quality” is measured with mean average
precision, two independent measures. If a stemming algorithm
is developed with the sole purpose of increasing mean average
precision, an improvement on this negative result might be seen.

t

t
t n

nNvidf 1log2
+−

=

The probabilistic function was that according to Harman [6]:

() ()∑
∈









−+×+=

qt d

td
tdq tf

tfKKpidfCw
)max(

*1 2.2.3. Thesaurus
Query expansion using a thesaurus is common. There are
general-purpose thesauri in the public domain but few document
collections are general-purpose. Domain specific thesauri (e.g.
UMLS [1]) exist, but are costly to hand produce. Automated
thesaurus generation has also been tried [20].

where

t

t
t n

nNpidf 1log2
+−

=

A thesaurus can be represented as a set of bit-strings, one for
each thesaurus entry. Each bit-string has a bit for each unique
term in the document collection. If, in a given bit-string, two
bits are set, those terms are synonyms.

where C = 1, K = 0.3.
The BM25 implementation was faithful according to that of
Robertson et al. [19]

These bit-strings can be learned with a GA. A population is
seeded with individuals having random bits set and a traditional
GA is used to learn good combinations. Selective pressure is
applied to increase precision irrespective of the effect on recall.

In each case, N was the number of documents, nt the number of
documents in which the term occurs and tftd is the number of
occurrences of term t in document d (likewise tftq in the query).
The training set was the TREC WSJ (1987-1992), with topics
151-200. Topics with fewer than 5 judgments were discarded.
The population size was 50 and several experiments were run
for 25 generations. Evaluation was against topics 101-150;
results are shown in Table 1.

The same technique can be used to learn phrasal synonyms (e.g.
‘information retrieval’ and IR). Individual content baring
phrases would first be identified using pre-existing techniques
[9], the document collection indexed to include these terms, and
the bit-string thesaurus learning applied. Table 1: Differences in MAP for un-weighted retrieval

(MAP) and weighted retrieval (W-MAP) for the evaluation
topics. P is computed using Wilcoxon’s signed rank test.

Terms to exclude from a search (antonyms) could also be
learned the same way.

Function MAP W-MAP Imp Imp% P-Value

BM25 0.2289 0.2281 -0.0008 -0.35% 0.92

Probability 0.1675 0.1787 0.0112 6.69% 0.00

Inner Prod 0.1657 0.1735 0.0078 4.71% 0.00

3. PORTABILITY OF RESULTS
Documents, queries and judgments are needed for all the
proposed experiments. Collecting the judgments is a time
consuming and costly exercise so the TREC collections are
used. However, unless the results of these learning experiments
are portable from one document collection to another, learning
on TREC data will produce results that can’t be used elsewhere.

A 5% improvement on un-weighted retrieval is seen in inner
product and probability model (significant at 1%). Okapi BM25
shows no improvement. No examined technique significantly
outperformed un-weighted Okapi BM25 [25]. Experiments that learn structure weights are tied to structure.

For XML, this is not just the DTD, but rather the particular use
of the DTD. These results are not portable from collection to
collection.

To place an upper bound on the improvement, the training and
evaluation queries were pooled and a series of experiments run
to optimize structure weights across all queries. The results
were similar to those shown in Table 1, this technique yields an
improvement of about 5% in inner product and probability, but
of less than 1% in BM25.

Portability is expected from learned ranking functions, so long
as no evidence tying the function to the particular document
collection is used. Additionally, the portability can be tested by
measuring the performance of any learned function on a diverse
set of document collections. Statistical comparison to other
portable ranking functions such as BM25 will determine if, or
not, these functions are portable.

Improved Topics

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

Topic

Im
pr

ov
em

en
t

Equally, stemming and synonym sets learned on one collection
are expected to port to other collections.

4. PRELIMINARY RESULTS
Initial investigation into learning document structure weights
was conducted with inner product, probabilistic and Okapi
BM25 ranking.
The inner product function was a straightforward tf.idf
implementation:

() ()∑
∈

×⋅×=
qt

ttqttddq vidftfvidftfw Figure 1: Few topics show large improvements while many
topics show small improvements. About 50% of topics show

an improvement of over 10%. where

Table 3: Comparison of different ranking functions on different document collections.
Function WSJ CysFib CR FR94 FT Trec 4 FBIS LATimes Trec 5 Trec 4+5

Run 5 0.2849 0.2860 0.1727 0.1820 0.2223 0.1702 0.2566 0.1881 0.1834 0.1625

BM25 0.2553 0.2728 0.1949 0.2079 0.2022 0.1767 0.2082 0.1996 0.1824 0.1658

Probability 0.1890 0.2781 0.1481 0.1311 0.1240 0.0857 0.1423 0.1352 0.1155 0.0855

Inner Prod 0.1497 0.2873 0.0992 0.0863 0.1203 0.0346 0.0665 0.0797 0.0473 0.0286

MAP Imp 0.0297 0.0133 -0.0223 -0.0259 0.0200 -0.0065 0.0484 -0.0115 0.0010 -0.0033

Imp% 11.63% 4.86% -11.42% -12.48% 9.91% -3.70% 23.24% -5.78% 0.54% -2.00%

P-Value 0.00 0.04 0.91 0.95 0.19 0.83 0.00 0.50 0.17 0.33

Table 2: Improvements for query-customized weights.

Function MAP Each Imp Imp% P-Value

BM25 0.2418 0.2775 0.0357 14.77% 0.00

Probability 0.1780 0.2056 0.0276 15.48% 0.00

Inner Prod 0.1567 0.2033 0.0466 29.70% 0.00

Training on each query in isolation showed improvements for
BM25 ranging from 10 times (0.047 to 0.443 for topic 103)
through to less than 1%. The mean average precision
improvement for inner product was 30%, and was 15% for
probability and Okapi BM25. This result suggests this
technique might be successful for relevance feedback, further
experiments are required. Table 2 shows the improvement in
MAP. In Figure 1 the improvements in each query are shown
ordered from most to least. In these experiments, the definition
of vidfi was changed to

t
t n

Nvidf 1log2
+

=

there was no theoretic justification for doing so and the
experiments have not been conducted using the earlier
definition. It should be noted that the performance of inner
product using this later definition is worse than that used earlier.
Experiments to learn a general purpose ranking function were
conducted on the same training set (WSJ, Topics 151-200).
Several runs of 100 individuals for 100 generations were
conducted. Learning was elitist and was seeded with other
ranking functions including BM25.
Evaluation was against WSJ (topics 101-150), collections from
TREC disks 4 and 5 (topics 301-350), and the cystic fibrosis
collection [24]. A diverse set of evaluation collections is
necessary because ranking performance is known to vary greatly
from collection to collection [29]. The evaluation results are
shown in Table 3 where Run 5 is the best learned function to
date. From this, each of BM25 and Run 5 out-performed the
other an equal number of times, but of the results significant at
the 5% level, Run 5 always outperformed BM25. Function Run
5 has proven to be portable from collection to collection.

5. DISCUSSION
This investigation centers around one question: How can
artificial intelligence techniques be used to improve information
retrieval? Already shown is how GA and GP can be used to

improve precision. The advantage of these algorithms over
others (e.g., Neural Networks) is in the symbolic results. The
ranking function can be examined. The thesaurus results can be
printed as a thesaurus. More importantly, the results can be
moved from one document collection to another and can be
expected to continue to perform well.
Examination of precision and recall is an arbitrary choice, and
may not be the best choice. Surely categorization can be
improved with AI. How could it be used in a question / answer
system? How could these techniques be used to improve the
interactive experience of a user? Could GP be used for index
compression? Perhaps an intelligent caching mechanism would
improve throughput? Clearly AI is important for clustering, but
can genetic techniques be used?
Still unanswered AI questions include: do other AI techniques
(such as particle swarm optimization [13]) better fit this problem
domain? What better encodings exist than those proposed
herein? Have these techniques been tried before? What
efficiency issues should be examined?
The most important unanswered question is: In what future
directions can (and should) this approach be taken?

REFERENCES
[1] Anonymous. (2001). UMLS knowledge sources (12 ed.):

U.S. Department of Health & Human Services, National
Institutes of Health, National Library of Medicine.

[2] Fan, W., Gordon, M. D., Pathak, P., Xi, W., & Fox, E. A.
(2004). Ranking function optimization for effective web
search by genetic programming: An empirical study. In
Proceedings of the 37th Annual Hawaii International
Conference on System Sciences.

[3] Fuhr, N., Gövert, N., Kazai, G., & Lalmas, M. (2002).
INEX: Initiative for the evaluation of XML retrieval. In
Proceedings of the ACM SIGIR 2000 Workshop on XML
and Information Retrieval.

[4] Fuller, M., Mackie, E., Sacks-Davis, R., & Wilkinson, R.
(1993). Structured answers for a large structured
document collection. In Proceedings of the 16th ACM
SIGIR Conference on Information Retrieval, (pp. 204-
213).

[5] Harman, D. (1991). How effective is suffixing? Journal of
the American Society for Information Science, 42(1), 7-15.

[6] Harman, D. (1992). Ranking algorithms. In W. B. Frakes
& R. Baeza-Yates (Eds.), Information retrieval: Data
structures and algorithms (pp. 363-392). Englewood
Cliffs, New Jersey, USA: Prentice Hall.

[7] Harman, D. (1993). Overview of the first TREC
conference. In Proceedings of the 16th ACM SIGIR
Conference on Information Retrieval, (pp. 36-47).

[8] Holland, J. H. (1975). Adaptation in natural and artificial
systems. Ann Arbor: University of Michigan Press.

[9] Kim, W., & Wilbur, W. J. (2001). Corpus-based statistical
screening for content-bearing terms. Journal of the
American Society for Information Science and
Technology, 52(3), 247-259.

[10] Kim, Y.-H., Kim, S., Eom, J.-H., & Zhang, B.-T. (2000).
SCAI experiments on TREC-9. In Proceedings of the 9th
Text REtrieval Conference (TREC-9), (pp. 392-399).

[11] Koza, J. R. (1992). Genetic programming: On the
programming of computers by means of natural selection.
Cambridge, MA, USA: MIT Press.

[12] Losada, D. E., & Barreiro, A. (2001). A logical model for
information retrieval based on propositional logic and
belief revision. Computer Journal, 44(5), 410-424.

[13] Løvbjerg, M., Rasmussen, T. K., & Krink, T. (2001).
Hybrid particle swarm optimizer with breeding and
subpopulations. In Proceedings of the 3rd Genetic and
Evolutionary Computation Conference.

[14] Oren, N. (2002). Reexamining tf.idf based information
retrieval with genetic programming. In Proceedings of the
2002 Annual Research Conference of the South African
Institute of Computer Scientists and Information
Technologists on Enablement through Technology
(SAICSIT), (pp. 224-234).

[15] Porter, M. (1980). An algorithm for suffix stripping.
Program, 14(3), 130-137.

[16] Pôssas, B., Ziviani, N., Meira, W., & Ribeiro-Neto, B.
(2002). Set-based model: A new approach for information
retrieval. In Proceedings of the 25th ACM SIGIR
Conference on Information Retrieval, (pp. 230-237).

[17] Rapela, J. (2001). Automatically combining ranking
heuristics for HTML documents. In Proceedings of the
3rd International Workshop on Web Information and Data
Management, (pp. 61-67).

[18] Robertson, S. E., & Sparck Jones, K. (1976). Relevance
weighting of search terms. Journal of the American
Society for Information Science, 27(3), 129-146.

[19] Robertson, S. E., Walker, S., Jones, S., Beaulieu, M. M.,
& Gatford, M. (1994). Okapi at TREC-3. In Proceedings
of the 3rd Text REtrieval Conference (TREC-3), (pp. 109-
126).

[20] Roussinov, D., & Chen, H. (1998). A scalable self-
organizing map algorithm for textual classification: A
neural network approach to thesaurus generation.
Communication and Cognition, 15(1-2), 81-112.

[21] Ruthven, I., & Lalmas, M. (2003). A survey on the use of
relevance feedback for information access systems.
Knowledge Engineering Review, 18(2), 95 - 145.

[22] Salton, G., Wong, A., & Yang, C. S. (1975). A vector
space model for automatic indexing. Communications of
the ACM, 18(11), 613-620.

[23] Schamber, L. (1994). Relevance and information
behavior. Annual Review of Information Science and
Technology, 29, 3-48.

[24] Shaw, W. M., Wood, J. B., Wood, R. E., & Tibbo, H. R.
(1991). The cystic fibrosis database: Content and research
opportunities. Library and Information Science Research,
13, 347-366.

[25] Trotman, A. (2003). Choosing document structure
weights. Information Processing & Management, to
appear.

[26] Wilkinson, R. (1994). Effective retrieval of structured
documents. In Proceedings of the 17th ACM SIGIR
Conference on Information Retrieval, (pp. 311-317).

[27] Yang, J., Korfhage, R., & Rasmussen, E. (1992). Query
improvement in information retrieval using genetic
algorithms - a report on the experiments of the TREC
project. In Proceedings of the 1st Text REtrieval
Conference (TREC-1), (pp. 31-58).

[28] Zobel, J. (1998). How reliable are the results of large-scale
information retrieval experiments? In Proceedings of the
21st ACM SIGIR Conference on Information Retrieval,
(pp. 307-314).

[29] Zobel, J., & Moffat, A. (1998). Exploring the similarity
space. SIGIR Forum, 32(1), 18-34.

	INTRODUCTION
	PROPOSED RESEARCH
	Improving Precision
	Structure Weighted Ranking
	General Purpose Ranking
	The Structure Weighted / Learned Function

	Improving Precision and Recall
	Relevance Feedback
	Stemming
	Thesaurus

	PORTABILITY OF RESULTS
	PRELIMINARY RESULTS
	DISCUSSION
	REFERENCES

