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Abstract 
Each year the ACM hosts a truly international programming contest – the 
International Collegiate Programming Contest (ICPC).  Dating back to a contest held 
by Texas A&M University in 1970, this annual event, along with the associated 
regional contests, has grown to 5,606 teams from 1,733 universities in 84 countries 
(in the year 2006). 
 
Despite the maturity of the event, and the number of competitors, there has never 
been a systematic examination of contest strategy.  Herein several strategies are 
proposed and examined to determine whether a team can gain an advantage by 
choosing a good strategy; and, if so, then what that strategy should be.  
 
We show that a team can gain an advantage by choosing a good strategy, but that 
there is no one best strategy.  A team must choose between winning by number of 
solved problems and winning by points.  Finding the optimal strategy to win by 
problems is shown to be NP-complete, while to win by points a team must solve 
problems in order from easiest to hardest. 

1. Introduction 
In 1970, the Alpha chapter of the UPE Computer Science Honor Society ran a programming contest at 
Texas A&M University.  By 1977, this contest had grown to become annual and multi-tiered, with US 
regional contests followed by finals conducted at the ACM Computer Science Conference.  Today it is 
a truly international event held each year [13]. 
 
The 2006 World Finals was attended by 83 teams, representing participation of over 5,606 teams from 
1,733 universities in 84 countries competing in regional contests at 183 sites.  Official contest estimates 
suggest that selection is from over 300,000 students each year [13]. 
 
A contest team consists of three students sharing one computer (with one keyboard and one mouse) 
working together to solve as many problems as possible from a “set” of about 9 previously unseen 
problems.  Within a region all teams are tackling the same set of problems at the same time.  Different 
regions usually use different problem sets, and are run at different times.  Some regional competitions 
are distributed across multiple sites and run concurrently [2] using software such as PC2 or Mooshak 
[14]. 
 
At the start of the contest teams are presented with the problems and the computer.  They are given five 
hours to solve as many problems as they can.  During this time each team must read, understand, and 
solve the problems.  Working in any of C, C++, C#, or JAVA, teams electronically submit solutions 
(called runs) to judges for scrutiny. 
 
Once the judges receive the run they compile and test it on data unseen by the contestants.  The 
submission is then assigned a judgment of one of: 

• Compile-time error:  The run did not compile. 
• Contest rule violation:  The run required libraries forbidden by the rules (such as sockets). 
• Run-time error:  The run crashed. 
• Time-limit exceeded:  The run exceeded the time limit for the problem (probably an infinite 

loop, hang on reading input, or a naïve algorithm that did not complete in time). 
• Wrong answer:  The run produced the wrong answer. 
• Presentation error:  The run produced the right answer, but in the wrong format. 
• Accepted:  The run is a correct problem solution. 

No further information is returned to the team.  They are, in essence, working blind. 
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Contact between contestants and judges is limited to problem clarifications.  Unless there truly is an 
error in the problem, these typically remain unanswered. 
 
The team that solves the most problems in the time period wins.  Ties often occur and are broken on 
sum of completion time for each problem, calculated as: the elapsed time (in minutes) from the 
beginning of the contest up to the point that the problem is successfully solved.  Thus, if a team solves 
two problems, the first after 8 minutes, and the second 7 minutes later (15 minutes into the contest), the 
team’s contest time (tie-break score) is 23 minutes.  Additionally, each incorrect attempt at a later 
solved problem attracts a 20 minute tie-break penalty.  Teams are therefore encouraged to submit as 
many problem solutions as possible, in as short a time as possible, without making any mistakes. 
 
The programming contest offers a unique environment for research in several areas of computer 
science – in particular computer science education.  We briefly discuss this before focusing specifically 
on team strategy.  We are seeking a strategy that will increase a team’s chance of winning should the 
team be matched against other teams of equal strength. 

1.1. Computer Science Education Research 
It is not clear why students choose to participate in contests.  Should we be able to identify this, we 
would be able to attract additional contestants.  One motivating factor could be the substantial prize 
money and (typically subsidized) overseas trip to the World Finals.  Or it may be that competitions are 
fun [17].  Manne surveyed 23 participants of the University of Bergen qualifying rounds: 19 responded, 
of whom 13 claimed to enter for fun, and 17 responded they would enter the following year.  Fitzgerald 
and Hines [9] note that some students become dissatisfied with programming contests, they note the 
low participation from female students (as did Manne [15]) and what they call minority students.  Even 
so, the 2004 World Finals had an all female team. 
 
There is a diverse set of programming and problem solving skills needed for the contest.  Skiena and 
Revilla [19] present an excellent curriculum.  They analyze previous contest problems and divide them 
into 13 categories including, amongst others, sorting, arithmetic and algebra, graph traversal, and 
dynamic programming.  Each chapter of their book addresses one of these topics.  Divided into two 
parts, a chapter presents a revision course in theoretical computer science of the given topic followed 
by a set of problems in the area. 
 
We believe that Skiena and Revilla’s work will have several effects: most noticeably the knowledge 
and understanding of participants in the chosen problem domains will increase considerably – the book 
is already being used as a training manual at several institutes.  Secondly, those responsible for 
authoring the problems will deliberately devise problems outside the discussed domains.  It is our 
opinion that this is already evident.  At the 2004 ICPC World Finals, several problems requiring a 
simple brute-force solution were posed, an area not previously well represented.  We believe that the 
problem authors and analyzers will enter a chase not dissimilar to that of virus writers and virus-
protector software authors – each time a new strain is discovered and described a newer strain is 
developed.  In this case, the strain is a programming contest problem domain. 
 
The problem writers are at a clear disadvantage because they are constrained in the problems they can 
set.  Problems must be tractable, by the contestants, during the contest, and potential solutions should 
be short (about 150 lines of code) [6].  Problems should neither be overly dependant on floating point 
computation, nor require exhaustive search.  They must be Computer Science problems and not require 
knowledge from other disciplines.  Of course, problems must read input and produce output. 
 
One area of significant collaboration is web-hosted online judges.  These web sites, typified by the 
Valladolid Online Judge [23], house many hundreds of problems from regional and World Finals 
dating back many years.  Students are encouraged to download problem descriptions, solve the 
problem, and submit their source code (online) for electronic judging.  Occasionally live online 
contests are held in order to simulate the environment of a real contest.  As many as 80% of the World 
Finalists train using the Valladolid site [19]. 
 
This kind of resource is in the interests of not only the contestants, but also the judges and the problem 
authors.  For the contestants there is a huge resource of problems to tackle in a submit-it-and-see 
environment.  For the judges it removes any unfair advantage one team might have over others as a 
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consequence of their institute housing a larger archive than any other.  For the problem authors these 
archives serve as a resource ensuring the true originality of new problems.  We foresee these sites 
expanding and becoming more sophisticated. 
 
The competition is an environment in which aspects of Computer Science such as teamwork can be 
taught [15].  A team must extract the essence of the description, formulate it as a mathematical 
problem, and then apply robust Computer Science theory to solve it.  An example of how this might be 
done is given by Shilov and Yi [18].  Old programming contest problems could be used to teach data 
structures and algorithms as is suggested by Szuecs [20].  Equally, the competition is an environment 
in which aspects of Computer Science such as object oriented design could be introduced [1]. 

1.2. Other Notable Contests 
The annual ICPF functional programming contest gives participating teams of any size 72 hours to 
solve the one given problem.  Teams may use any language of their choice (functional or not) and 
languages like OCaml and Haskell are frequently used.  The 2005 contest specifically tested a team’s 
ability to write adaptable code.  Two weeks after the initial submission date the problem definition 
changed and teams got a further 24 hours to adapt their solutions to the new specification [12].  The 
2005 contest was the 8th annual contest.  
 
TopCoder [22] run a 90-minute contest every week.  It attracts both developers and employers, using 
contests as a selection method for matching the two.  TopCoder also offers a component development 
program in which developers compete to build components that are then made available.  
 
At the Cyber Defense Exercise students from the US Service Academies develop a robust information 
system which is then attacked by other teams (for a period of 4 days) [7].  Competitions of this nature 
focus on a particular problem in the aim of both teaching domain specific principles and encouraging 
research in the domain. 
 
It is not uncommon for a funding agency to offer prize money as an incentive to stimulate research into 
a difficult problem.  The DARPA Grand Challenge [10] prize money was won after only 2 years and 
resulted in innovation in autonomous robotic vehicles and computer navigation systems.   The ten 
million dollar Ansari X-Prize was won in October 2004 by SpaceShipOne for flying twice into space in 
a two week period [24].  Similarly, in 2002 Google ran a contest in which task was to write a program 
that “does something interesting” with 900,000 web pages [11], no doubt stimulating research into web 
information retrieval. 
 

Time 
ongoing 
event 
ongoing-event 

Audience 
pre-tertiary 
tertiary 
post-tertiary 
open 

Location 
local 
regional 
international 
locationless 

Purpose 
special purpose 
general purpose 

Figure 1: Programming Contest Taxonomy 
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1.3. Competition Taxonomy 
There are many different competitions with different purposes, targeted at different audiences, and with 
different prizes.  Figure 1 shows a taxonomy which we discuss further in the remainder of this section. 

1.3.1. Time 
Some organizations are frequently and regularly running competitions.  TopCoder, for example, runs a 
90 minute competition every week.  Frequent competitions are also held on the Valladolid web site.  
Some of these ongoing contests score participants based not only on single contests but also on an 
ongoing basis. 
 
The ACM contest is held once a year with regional contests also held once a year.  At such event 
contests teams come together in one place at one time and often participate in activities other than just 
the contest.  The Java Challenge, for example, has been held several times at the ACM World Finals. 
 
Still other contests are both ongoing and events, they are ongoing-events.  The DARPA Grand 
Challenge, although an event, requires considerable ongoing activities by participating groups – in this 
case it took the teams two years and two annual events before a winner was declared.  The ICPF 
functional programming contest is ongoing in so far as it takes longer than a day, but also an event in 
so far as it is run annually. 

1.3.2. Audience 
The entry criterion for many contests is often strictly enforced.  The New Zealand Programming 
Contest has several categories including a pre-tertiary category designed to encourage high-school 
participation.  The South East Asia Regional Computer Conference (SEARCC) also has a pre-tertiary 
contest. 
 
The participation rules for the ACM contest are complex, but designed to ensure tertiary only 
participation.  Such rules are necessary as the duration of an undergraduate degree vary from country to 
country. 
 
Although we are not aware of any post-tertiary contests there are several open contests in which there 
is no audience restriction. The New Zealand Programming Contest has an open category, as does 
TopCoder. 

1.3.3. Location 
Local contests are often held by universities looking for the best teams to send to other contests.  We 
define a local contest as a contest held within a city or smaller geographical area (such as a single 
institution). 
 
Participants in regional contests are often required to travel to a given center to participate, or 
alternatively the contest is held at many different sites concurrently. The South Pacific Regional Finals 
of the ACM contest are, for example, held concurrently at multiple sites in both Australia and New 
Zealand. 
 
The ACM World Finals are an international contest in which participants from all over the world are 
required to travel to a single destination to compete.  The country in which this contest is held varies 
from year to year. 
 
With the advent of online judging came the locationless contest.  The only location requirement to 
enter such contests is an internet connection and being acclimated to the time zone in which the contest 
is run. 

1.3.4. Purpose 
Contests such as the Ansari X-Prize and the DARPA Grand Challenge have a special purpose.  Both 
contests were designed to stimulate research.  In our observation these special purpose contests tend to 
be ongoing or ongoing-events. 
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Other more general purpose contests are held for the pleasure of competing or to pit teams against each 
other to see which will outperform the others.  The ACM International Collegiate Programming 
Contest (ICPC) is an example, and we focus the remainder of our investigation on this contest due to its 
prestige and its connection with tertiary computer science education. 

2. Strategy of the ICPC 
Skiena and Revilla [19] suggest that a team be made up of members with quite different duties.  The 
coder has strong programming language skills and can type quickly.  The algorist is a good problem 
solver and communicator.  The debugger is good at debugging incorrect solutions on paper.  As they 
point out, the duties might change during the course of the contest, especially at the request of the 
designated leader.  They work together, solving either one or two problems at a time, coordinated by 
the leader. 
 
Van Brackle [4] and Manzoor [16] suggest that team members should solve problems independently, 
only working together if necessary.  In this way problems can be solved three at a time, increasing the 
throughput of the team. 
 
Skiena and Revilla suggest that problems should be tackled in order of easiest to hardest (as do Van 
Brackle [4], and Manzoor [16])  with the caveat that should other teams be successful in solving a 
problem previously considered difficult, then perhaps the classification is incorrect.  Manzoor suggests 
that if a team member is struggling with an easy problem then a different team member should redo the 
solution. 
 
Ernst et al. [8] suggest that hard problems should be tackled early in the contest so that there is time to 
solve them, and easy problems must be solved quickly.  This is to burn the candle at both ends; to solve 
easy and hard problems in parallel. 
 
Each of the above suggestions was presented in the context of what worked for the respective authors.  
We choose a different approach: to propose a team strategy through analysis. 
 
Imagine a competition in which all teams are equally strong and all teams solve the same problems in 
the same order and at the same time.  All teams draw equal and first.  What if one team chooses to 
solve three problems in parallel while the others work sequentially?  The same outcome is not expected 
and does not occur.  Increasing parallelism increases throughput. 
 
What if the teams choose equal parallelism, but solve the problems in a different order?  One would 
hope for a draw, but, as is shown below, this does not occur; some orders are better than others.  
Specifically, we identify the increasing complexity / diminished time problem that we describe next. 
 
Throughout this investigation we make several assumptions.  First, all team members are equal.  
Second, all teams are equal.  These are reasonable assumptions for the top few teams at any contest.  
Third, once a team member starts on a problem they work continuously on that problem and only that 
problem until it is solved; problems cannot be transferred between team members.  Fourth, there is no 
waiting time at the computer when a problem is ready for coding.  Our experience with actual contests 
suggests these two assumptions are not unreasonable.  Finally, a problem takes the same time to solve 
regardless of the number of people working on it.  We believe the final assumption is acceptable, but 
questionable, an alternative could be to reduce the problem solution time be some factor for each 
additional team member working on it. 

2.1. The Increasing Complexity / Diminished Time Problem 
When solving in order of easiest to hardest, as the contest progresses the team is attempting to solve 
harder and harder problems (i.e. ones that take longer and longer to solve) whereas the time available to 
solve them is strictly decreasing.  Eventually there comes a point at which there is not enough time to 
solve the next problem.  This could occur one or even two hours before the end of the contest. 
 
For example; should there be three problems in a 5 hour competition, the first of which will take 2 
hours to solve, the second 3 hours to solve and the last 4 hours to solve; and should the team be 
concurrently solving two problems at a time; then a team solving the problems easy to hard, two at a 
time, will only solve two problems (the two easy ones).  Meanwhile a team starting on the hardest and 



Programming Contest Strategy   Page 6 

easiest problem concurrently will solve first the easiest, then the hardest, then the remaining problem.  
This is illustrated in Figure 2. 
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Figure 2:  Problem solutions may not be maximized if tackled easiest to hardest (top). 

2.1.1. Proof 
This problem is the well understood scheduling concept of makespan minimization [5].  We include a 
proof for completeness.   
 
Definition 1 
Let Θ be a contest.  Let |Θ| be the duration of the contest (in minutes). 
 
Definition 2 
Let X be a student participating in the contest.  Let X’ and X’’ be team members with identical skills to 
those of X.  Let χ be the set of X, X’ and X’’. 
 
Definition 3 
Let pi be a soluble contest problem and |pi| be an estimate of the time (in minutes) it will take X to solve 
problem pi in a competition environment.  χ never submits incorrect solutions.  Let |pi| ≤ |Θ|.  Let Π be 
a set of problems.  Let |Π| be the number of problems in the set Π. 
 
Definition 4 
The complexity of a problem pi is |pi|.  If |pi| < |pj| then pi is said to be easier than pj.  If |pi| > |pj| then pi 
is said to be harder than pj. 
 
Our definition of complexity is not a traditional measure of difficulty, but of duration.  For the purpose 
of programming contests the two are essentially equivalent.  We also note that a problem which, from 
visual inspection, appears difficult may in fact have a low duration to solve.  Manzoor [16] notes that 
problems with long descriptions are often easy and vice versa. 
 
Theorem 1 
In Θ the optimal number of problem solutions is not always achieved if the problems are tackled in 
order of easiest to hardest (in order of increasing complexity). 
 
Proof 
We examine three cases: solving one problem at a time, two at a time, and three at a time (the only 
possible cases with a team of three): 
 
Sequential Problem Solving 
The sequential case can be reformulated thus: What is the maximum number of problems, m, that can 
be selected from Π such that Σi∈m(pi) ≤ |Θ|.  This is a one dimensional box packing problem, which can 
be solved by queuing. 
 
Let there be a problem, pq, such that |pq| = |Θ|.  By solving pq, only one problem will be solved.  
However, by solving a different problem, pr (|pr| < |pq|), it is possible to solve an additional problem, ps, 
(|ps| + |pr| ≤ |Θ|).  Let |pr| be the largest |pi| such that there exists a ps.  This has partitioned the contest, 
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Θ, into three parts, Θpr, Θps, and e (|Θpr| + |Θps| + |e| = |Θ|, e ≥ 0), where e is the lost time at the end of 
Θ.  Now, add |e| to |Θpr| and apply the argument recursively. 
 
So, in the case of solving sequentially, the optimal number of problems is solved by addressing the 
problems in order of increasing complexity. 
 
Solving Two Concurrently 
A proof has already been given in Figure 2. 
 
Solving Three Concurrently 
Extending the proof for the case of two concurrent problems, we introduce a new problem, p4, |p4|=240.  
Now, solving three at a time in order of increasing |pi|, first p1, then p2 then p3 will be solved.  No time 
remains for p4.  Solving in order of decreasing |pi|, in other words p4, p3, p2, p1, all problems will be 
solved.  The theorem holds in this case. 

2.1.2. Consequences of the Proof 
The proof demonstrates that the optimal number of problems may not be solved if tackled in order of 
easiest to hardest.  Consequently, not all strategies are equal.  Of two equal teams, the team that 
chooses the better strategy will win.  To this end, we now investigate the optimal strategy.  

3. Team Strategy 

3.1. Proposed Teamwork Methods 
Programming contest problem sets are deliberately designed so that an individual cannot, on their own, 
solve all the problems.  In other words, it takes a team to win. 
 
Before the 1991/1992 contest a team consisted of four members [3].  Today a team consists of three.  
This change was necessitated by the observation that some teams were not working as a team, but 
rather as a pair of couples.  Before the contest began the decision would be made as to who was 
working in which couple.  At the beginning of the contest the team would divide the problems into two 
subsets, one subset for each couple.  The first couple to solve a problem on paper gained access to the 
keyboard while the remaining couple continued to solve problems on paper..  This is not in the spirit of 
the contest and consequently was outlawed in the only practical way: team size was reduced to three.  
 
Today there are three ways a team can work: as a single entity, as a group of three disconnected 
individuals, or in a pair swapping manner. 

3.1.1. Pure Teamwork 
At any one time only one problem is being tackled by the team.  The team is working purely as a team, 
three minds working as one.  Tackling the problems can be done in a number of ways.  Skiena and 
Revilla suggest a coder, algorist, and debugger split – however this is only one of many possible splits. 
 
Only one person can be interacting with the computer at any given time – this person, we concede, 
should be called the coder.  However, we have observed teams in which the coder is necessarily the 
algorist.  Teams following this approach would argue, perhaps correctly, that the best person to code 
the solution is the person who solved it.  The remaining two team members take on other duties.  As 
each problem is solved, the duties might change; the coder might become the debugger, and so on. 
 
A team might argue that most mistakes are made not in problem comprehension but in translation into 
programs.  These teams are characterized by having two people in front of the computer at any given 
time – the coder, and the observer.  The third team member is meanwhile designing test data in order to 
foil the implementation. 
 
Perhaps the most visually obvious characteristic of teams employing pure teamwork is the three way 
discussion that occurs before a problem solution is attempted.  Each team member reads the problem 
(at World Finals three copies are provided, but often not at regional contests).  When, through 
discussion, the problem is solved, coding begins. 
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3.1.2. No-teamwork 
In contrast to the sequential problem solving of pure team work, the no-teamwork approach advocates 
each individual solving problems entirely on their own.  Parallel problem solving is far more efficient 
than sequential solution, however not necessarily three times so in this context. 
 
Van Brackle [4] and Manzoor [16] advocate this strategy.  It maximizes throughput, reduces 
communication and avoids programming style debates.  Teams only work as a team when there are 
fewer problems left than team members, or when a problem requires the specific skills of more than 
one team member. Ernst et al. [8] give anecdotal evidence that this approach worked for their team. 
 
Teams solving more than one problem concurrently must avoid a computer bottleneck.  For example, 
imagine that there are three problems in the problem set.  Each individual in the team takes a different 
problem.  Each individual, on their own, can correctly solve their problem in 20 minutes, and correctly 
code their solution in 10 minutes.  After 20 minutes there are three solved problems and a queue for the 
keyboard.  At 30 minutes there is one correct solution, at 40 a second, and at 50 finally a third. 
 
The bottleneck can disable teams.  We agree with the comments of Skiena and Revilla [19], “teams 
which fight for the terminal go nowhere”; those of Cormack [19], “always use the keyboard, even if 
you are just typing in the shell of a program for reading input”; and those of Manzoor [16], “real-time 
debugging is the ultimate sin”.  Throughout this investigation the bottleneck is ignored, primarily 
because we believe that solving the problems takes longer than coding the solution. 

3.1.3. Paired Methods 
The obvious middle ground between pure teamwork and no-teamwork is to work in pairs.  As three 
cannot work in pairs, this must be interpreted with respect to other methods.  The paired method is, 
therefore, to solve two problems at a time. 
 
Since only one team member can interact with the computer at any one time, the other two are forced to 
work together.  One of this pair takes ownership of the problem; that team member is the algorist and 
coder for the problem.  Before being allowed access to the keyboard the algorist must, to the 
satisfaction of the other member of the pair, explain the solution, then code it on paper.  The remaining 
member of the pair, meanwhile, devises test cases for the solution.  When the keyboard becomes 
available, the pairs necessarily shift.  At the beginning of the contest the group can either work with 
pure teamwork or no-teamwork. 
 
Ernst et al. [8] use a paired strategy called think-tank.  The two best problem solvers read the problems 
while the third team member (the programmer) codes standard subroutines.  The think-tank gives the 
easiest problem to the programmer, along with a solution.  The think-tank decides how many problems 
are to be solved, allocates the easiest problems to the programmer, and then divides the remaining 
problems between themselves. 
 
When tackling high complexity problems, shifting pair strategies can benefit from team member 
“cycling”.  That is, as the contest progresses, the pair working on the given problem changes.  At one 
point X and X’ might be working on the problem, at a later moment, X’ and X’’, then later still X’’ and 
X.  Each time a substitution is made, the advances made on the problem must be communicated to the 
team member, thus increasing the overall understanding of the whole team. 

3.2. Proposed Problem Order 
Accepting the variety of working models, and team choice of how to organize itself, there remains the 
equally important question of what order the problems should be tackled.  Skiena and Revilla [19], Van 
Brackle [4], and Manzoor [16] suggest working from easiest to hardest; above we prove this is only 
optimal if the team is solving problems strictly sequentially. 
 
For the purpose of this investigation we assume there are 9 problems in the set (|Π| = 9), and a 
competition runs for 5 hours (|Θ|=300), for no reason other than this being the case at the 2005 South 
Pacific Regional Finals in which the authors were involved organizationally.  For clarity we choose to 
describe possible orders as if the team is employing pure teamwork; we believe adjusting to other 
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teamwork methods is intuitive.  For the purpose of this discussion we distinguish problems from each 
other using a unique identifier in the range 1-9. 

3.2.1. Numeric Order 
Upon seeing the problems the team attempts to solve the problems in numeric order.  Some contests 
(e.g. South Pacific Regional Finals) openly rank the problems in order of complexity.  Under this 
circumstance numeric order is the same as order of increasing complexity.  At World Finals the 
problems are assigned in no particular order.  Under this circumstance, numeric order is equivalent to 
random order. 
 
Although solving in numeric order is viable if all problems are soluble, should the first problem be 
insoluble the team will immediately stall.  This was evidenced at the 2004 World Finals; from the final 
scoreboard given after 240 minutes, none of the top 30 teams tackled the numerically first problem 
whereas one team that failed to solve any problems had tackled only the numerically first problem. 

3.2.2. Order of Ease 
At the beginning of the contest the team ranks the problems from easiest to hardest and then solves the 
easiest problem, progressing onto the next easiest only upon a correct solution of the first.  This is the 
order advocated by Van Brackle [4], and Manzoor [16]. It is noted as “correct” by Salenieks and 
Naylor [17]. 

3.2.3. Reverse Order of Ease 
The team tackles the problems in reverse order of complexity.  When the contest starts the team ranks 
the problems hardest to easiest and tackles the hardest.  Upon solving this, they move on to the 
remaining hardest unsolved problem. 
 
Advantageously, as the contest progresses, the problems become easier while the remaining time 
decreases; there is no diminishing time / increasing complexity issue.  Disadvantageously, the hardest 
problem may be insoluble in the time given.  This is evidenced by the 2004 South Pacific Regional 
Finals where no team solved problem 9 even though the winning team, having solved 8 of the 9 
problems in 156 minutes, worked continuously on the remaining problem for at least 144 minutes 
without solving it (they were granted a solution post facto). 
 
A team working from the hard end must, before starting, decide how many problems it will solve 
during the competition, and work backwards from there – it is quite usual for the sum of completion 
times to be very much larger then the duration of the contest. 
 
Assuming all teams can solve all problems; this strategy is prone to high tie-break times.  The time to 
first submission is high.  The time to second submission is higher, and so on.  Since the scoring is 
based on total elapsed time to submission, the long time to the first submission is incrementally 
included in every submission. 

3.2.4. Burn the Candle at Both Ends 
In an attempt to decrease the high tie-break times, while at the same time not suffer from the 
diminishing time / increasing complexity problem, a team might choose to rank the problems in order 
of complexity then solve first the easiest, then the hardest, then remaining easiest, remaining hardest 
and so on. 
 
This approach benefits from the no-teamwork and paired teamwork methods.  One person (or pair) 
starts on the hardest problem; meanwhile the easier problems are being solved easiest to hardest.  High 
tie-break scores are alleviated while time is available for solving complex problems.  Ernst et al. [8] 
use this approach with two team members working from the hard end and one from the easy end. 

3.2.5. Middle Out 
Ranked from easiest to hardest, the problems are tackled middle out.  In other words, if the problems 
are ranked 1 to 9, then problem 5 is tackled first.  This approach manifests itself in two forms.  We call 
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these middle(5,4) and middle(5,6) where the two numbers represent the identifier of the first and 
second problem tackled.   

3.2.6. Others 
Solving in order of ease is equivalent to forming a queue of problems in order of increasing 
complexity, then solving in order of queue.  Reverse order of ease is equivalent to queuing in order of 
decreasing complexity and solving in order of the queue.  In fact, any problem order can be described 
in this way.  The number of possible problem solution orders is, therefore, the number of unique 
queues that can be formed from the problems, i.e., the number of permutations of problems (|Π|!).  For 
a contest of 9 problems there are 362,880 orders.  When solving problems in parallel, some of these are 
equivalent ({1, 2, 3, 4} and {3, 2, 1, 4} are the same when three problems are solved in parallel).  
|Π|!  is, therefore, an upper bound on the number of distinct orders. 

4. Analysis 
A team must choose both a teamwork method and an order to tackle the problems (together a strategy).  
It must choose these so as to increase the number of problems solved, while decreasing the tie-break 
score. 
 
Teamwork method and problem order are orthogonal.  Any combination of one of each is a valid 
strategy.  Above, 3 teamwork methods are given along with 5 problem order approaches.  This 
provides 15 possible strategies.  These are analyzed in light of different models for the complexity of 
the problems. 

4.1. Problem Complexity Patterns 
Judges deliberately look for problems of differing complexity [6], in part so that every team will solve 
at least one problem.  Accepting this simplification, there are several possible complexity models for 
problem sets and we examine 4 of these. 
 
Equal Complexity – All problems are of equal complexity.  No one problem is either harder or easier 
than any other problem. 
  
Linear Increasing Complexity – The first problem takes time |pi|, the second twice that (2 × |pi|), the 
third three times (3 × |pi|) and so on. 
 
Exponential Increasing Complexity – Each problem takes twice as long as the previous problem.  
The hardest problem takes half the contest, the second hardest taking a quarter, and so on. 
 
Stratified Complexity – At some contests, including the New Zealand Programming Contest (which is 
not affiliated with ICPC), the problems are divided by complexity level.  We assume three complexity 
levels: easy, intermediate, and hard; with three problems at each level.  The time to solve each problem 
at a given level is constant whereas the time to solve a problem of the next highest complexity is twice 
that to solve a problem at the previous level.  In competitions that do not strictly divide problems into 
levels, Manzoor [16] suggests that the team do this themselves anyway.  

4.2. Simulation 
All 15 strategies are tested against the four complexity patterns.  For the purpose of the simulation 
several assumptions are made.  Consistent throughout this investigation |Π| = 9 and |Θ| = 300; there are 
9 problems, the contest runs 300 minutes.  A team, χ, consists of three identical members all with 
identical skills.  No problem is ever submitted incorrectly so there are no penalties.  Teams always 
make an accurate estimate of the time, |pi| to solve problem pi.  There is no keyboard queue.  Problems 
must be solved to completion by one team member. 
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Problem 1 2 3 4 5 6 7 8 9 

Equal 0:33:20 0:33:20 0:33:20 0:33:20 0:33:20 0:33:20 0:33:20 0:33:20 0:33:20 
Linear 0:06:40 0:13:20 0:20:00 0:26:40 0:33:20 0:40:00 0:46:40 0:53:20 1:00:00 

Exponential 0:00:35 0:01:10 0:02:20 0:04:41 0:09:22 0:18:45 0:37:30 1:15:00 2:30:00 
Stratified 0:14:17 0:14:17 0:14:17 0:28:34 0:28:34 0:28:34 0:57:08 0:57:08 0:57:08 

Table 1:  Time (in hours, minutes and seconds) that the hypothetical team estimates each 
problem will take to solve.  Problems are presented to the team in order from easiest (1) to 

hardest (9). 

In Table 1, the time required (in hours, minutes and seconds) to solve each problem is given.  The 
problems have been sorted in order of complexity with the easiest problem listed first.  Each of the 
complexity patterns discussed above is represented as a single row of this table.  Due to rounding 
errors, not all simulated contests are of equal length; this does not matter as there are no comparisons 
that assume they are. 
 

  Ease Reverse Ease Candle Middle(5,4) Middle(5,6) 
  Time Score Time Score Time Score Time Score Time Score 

Equal 5:00:00 1500 5:00:00 1500 5:00:00 1500 5:00:00 1500 5:00:00 1500 
Linear 5:00:00 1100 5:00:00 1900 5:00:00 1567 5:00:00 1433 5:00:00 1567 

Exponential 4:59:23 593 4:59:23 2400 4:59:23 2158 4:59:23 835 4:59:23 1108 
Stratified 4:59:57 1114 4:59:57 1885 4:59:57 1628 4:59:57 1371 4:59:57 1500 

Table 2:  Time to complete the problem set and tie-breaking score when problems are solved 
sequentially. 

Presented in Table 2 are the times required to complete all problems (and the tie-break score) for each 
complexity model when problems are all tackled using the pure team work model.  When the problems 
are of equal complexity, all strategies are equal, and there is no difference in completion time, or tie-
breaker score.  Although each strategy results in the competition completing at the same time, the tie-
breaking score is always lowest when order of ease is used, and highest when reverse order of ease us 
used. 
 

  Ease Reverse Ease Candle Middle(5,4) Middle(5,6) 
  Time Score Time Score Time Score Time Score Time Score 

Equal 2:46:40 833 2:46:40 833 2:46:40 833 2:46:40 833 2:46:40 833 
Linear 2:46:40 633 2:33:20 1020 2:40:00 707 2:46:40 767 2:40:00 833 

Exponential 3:19:47 397 2:30:00 1200 2:30:00 444 3:19:47 472 3:22:43 563 
Stratified 2:51:24 643 2:37:07 1000 2:51:24 728 2:51:24 743 2:37:07 800 

Table 3:  Time to complete the problem set and tie-breaking score when two problems are solved 
concurrently. 

Examining the case of two problems solved concurrently (Table 3) again all methods are identical if the 
problems are of equal complexity.  To complete the most problems in the shortest period of time, 
reverse order of ease is best for all complexity models.  However this is not a winning strategy; the 
winner must optimize both the number of problems solved and the tie-break score.  The lowest tie-
break score is achieved when problems are solved in order of ease.  The team must choose a strategy, 
one of either order of ease or reverse order of ease, based on whether they wish to finish first, or reduce 
the tie-break score. 
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  Ease Reverse Ease Candle Middle(5,4) Middle(5,6) 
  Time Score Time Score Time Score Time Score Time Score 

Equal 1:40:00 600 1:40:00 600 1:40:00 600 1:40:00 600 1:40:00 600 
Linear 2:00:00 480 1:46:40 720 1:53:20 507 2:00:00 560 2:06:40 593 

Exponential 2:51:05 340 2:30:00 675 2:30:00 347 2:49:20 369 2:49:55 406 
Stratified 1:39:59 471 1:39:59 728 1:54:16 514 1:54:16 528 1:54:16 571 

Table 4:  Time to complete the problem set and tie-breaking score when three problems are 
solved concurrently. 

Tackling three problems at a time (Table 4) shows a pattern similar to two at a time.  A team solves the 
most problems in the shortest time when working from hard to easy, but achieves the lowest tie-break 
score when working from easy to hard.  
 
Comparing Tables 2, 3, and 4, in all cases, as the concurrency increases, both the time to solve all 
problems and the tie-break score decrease (as expected).  

4.3. Discussion 
The analysis shows that problems should be solved in parallel if possible.  Solving problems in order of 
ease results in the lowest tie-break score, but takes longer to solve the problems.  In a programming 
competition a winning team must optimize both the number of solved problems and the tie-break score 
to win. 
 
Should the team be confident in completing all problems; having longer to do so, while at the same 
time reducing the tie-break, is a good strategy.  Subconscious analysis of a problem will begin as soon 
as the problem is read.  By reading the problem at the beginning of the contest, more time can be spent 
in subconscious analysis; while at the same time the conscious analysis time remains constant.  At the 
South Pacific Regional Finals, and at World Finals, it is highly unusual for any team to solve all the 
problems in the allotted time. 
 
To find a winning strategy it is necessary to examine two independent events: first is how tie-break 
score increases with solved problems, and second, the number of problems that can be solved in a 
given time period.  These are presented for the case of three problems solved concurrently.  The case of 
problems with equal complexity is not shown as all strategies are equal in this case. 
 
As the number of problems solved increases, so too does the score.  From Figure 3, at all times and 
irrespective of complexity model, solving problems easiest to hardest is (at worst) the best strategy.  
The tie-break score is always minimized.  Should a tie occur; the team can maximize the chance of 
winning by adopting this strategy. 
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Figure 3: The score increases with solved problems for each strategy when three problems are 
solved in parallel. 
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Accumulation of tie-break score is a repeated sum.  In the sequential case, time to solve the first 
problem is included in this sum for each solved problem.  Time to solve the second problem is included 
one fewer times and so on until the time to solve the final problem is included only once.  When 
multiple problems are solved concurrently, the score can be considered a sum of these scores.  More 
formally, in the single case, tie-break score, s, is given by 
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where N is the number of problems solved by team t, and |pt,n|, is the time to solve the n-th problem 
solved by team t.  For any score, that score can be reduced if the first clause (N)|pt,1| can be reduced, so 
to the second clause, and so on to the last clause.  More formally, 
 
Theorem 2 
Tie-break score is minimal when problems are solved in order of increasing complexity. 
 
Proof 
This is the scheduling concept total flow time which is know to be optimal when the shortest jobs are 
scheduled first [5].  We include a proof for completeness. 
 
Sequential Problem Solving 
In the case of only one problem, p1, there is only one order. 
 
Examine the case of two problems, p1 and p2; |p1| < |p2|.  Solving p1, p2 the score is 
 
2 × |p1| + |p2| (3) 
 
solving p2, p1, the score is 
 
2 × |p2| + |p1| (4) 
 
the difference, equation (4) minus equation (3), is  
 
|p2| - |p1|  (5) 
 
as |p1| < |p2|, this is necessarily positive.  Therefore equation (3) is necessarily smaller than (4). 
 
In the general case, take two problems, ps and ps+1 (|ps| < |ps+1|), and solve in order ps, then ps+1.  The 
influence of ps on the score is (N – s + 1)|ps|.  For problem ps+1, it is (N – (s + 1) + 1) |ps+1|.  The total 
influence on score is  
 
(N – s + 1)|ps| + (N – s) |ps + 1| (6) 
 
solving in the reverse order the score is 
 
(N – s + 1)|ps+1| + (N – s) |ps| (7) 
 
Subtracting equation (7) minus equation (6), to find the additional cost of solving in this order gives 
 
(N – s + 1)|ps+1| + (N – s) |ps| - (N – s + 1)|ps| - (N – s) |ps + 1| (8) 
 
This reduces to |ps+1| - |ps|, which (as |ps+1| is greater than |ps|) is necessarily positive.  Therefore there 
is a positive impact on the score when any two problems are solved “out of order”.  The only possible 
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order sustaining |ps+1| > |ps| for all ps is increasing order of complexity.  In other words, solving in 
order of increasing complexity is minimal. 
 
Solving Two Concurrently 
In this case, the tie-break score is the sum of two sums, one for each concurrent solver. In the case of 
each solver, the score is minimized when solved in order of increasing complexity.  But the interaction 
of the two concurrent solvers must be considered. 
 
Given one problem, p1, the score is constant regardless of who solves the problem. 
 
Given two problems, p1 and p2, (|p1| < |p2|) which could be distributed in two ways; either one team 
member solves both, or each solves one.  In the first case the score is 2 × |p1| + |p2|.  In the second case 
the score is |p1| + |p2|.  The second case is necessarily smaller than the first case. 
 
Given three problems, p1, p2, and p3, (|p1| < |p2| < |p3|) from the solution to two problems, there are two 
possible distributions; X solves p1 and p2, or X solves p1 and p3; in both cases X’ solves the remaining 
problem.  In the first case the score is 2 × |p1| + |p2| + |p3|.  In the second case the score is 2 × |p1| + |p3| + 
|p2|.  The score for these two are equal.  
 
Given four problems, p1, p2, p3, p4, (|p1| < |p2| < |p3| < |p4|), where X is solving p1 and p2, and X’ is 
solving p3 and p4, the individual scores |X| and |X’| are given by |X| = 2 × |p1| + |p2|, and |X’| = 2 × |p3| + 
|p4|.  Each solver is, necessarily, solving problems in order of easiest to hardest.  The effect of swapping 
p2 and p3 is |p3| - |p2| which, as |p3| > |p2|, is necessarily positive. 
 
Given N problems, p1, p2, ..., pN (|p1| < |p2| < … < |pN|), ordered with optimal score, introduce a new 
problem p0 such that |p0| < |p1|.  We now ask who must solve that problem to maintain the optimal 
score.  Introducing before p1, solved by X, will increase the overall score of the team by  |XN+1| × |p0|, 
where |XN| is the number of problems that X has already solved.  Adding before p2, solved by X’, will 
increase the score by |X’N+1| × |p0|.  The problem must be given to whoever will solve the fewest 
problems in the remainder of the contest.  In other words, solvers must take it in turn to solve problems.   
 
Succinctly, to minimize individual score the problems must be solved easiest to hardest, and to 
minimize overall score, the problems solved must be the easiest problems available. 
 
Solving Three Concurrently 
Appealing to the solution of solving two concurrently, the same holds true for three problems solved 
concurrently.  Each solver must solve in order of increasing |pi| and problems must be distributed in 
increasing |pi|. 
 
Consequences of the Proof 
In Figure 4, the number of problems solved at any moment in time is shown for each problem order.  
Examining linear complexity, first to solve four problems is order of ease, then candle, followed by 
middle(5,4), middle(5,6), then finally reverse.  At the end of the competition, the order is different.  
First to finish is reverse, then candle, followed jointly by ease and middle(5,4) and finally middle(5,6).  
Throughout most of the competition, order of ease is a winning strategy, but at the end, reverse order is 
the better strategy.  Of the strategies tested, there is no “always wins” strategy. 
 
A consistent error in estimating the problem solution time is equivalent to reducing the length of the 
competition by the error.  Imagine the linear complexity competition finishing after one hour and 50 
minutes (|Θ| = 110).  In this case, a team adopting reverse order of ease will solve one more problem 
than any other team – and win. 
 
This raises the question:  What is the optimal order in which to tackle the problems so as to reduce the 
overall completion time? 
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Figure 4: The number of solved problems increases with time for each strategy. 
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Theorem 3 
There is no single a priori total time minimizing strategy. 
 
Sequential Problem Solving 
The time to solve all problems is the sum of solution times, |pi|, for each problem.  As addition is 
commutative, this is constant regardless of the order in which the problems are solved.  No one strategy 
is any better than any other. 
 
Solving Two Concurrently 
This problem can be restated:  Given a set of jobs (pi ∈ Π) with completion times, |pi|, and two 
identical processors (X and X’), partition the jobs so as to minimize the completion time of the last job.  
This is a well known scheduling problem [21] equivalent to the 2-PARTITION problem and known to be 
NP-complete.   The team must solve the NP-complete problem to determine the optimal strategy. 
 
Solving Three Concurrently 
Three concurrently is equivalent to the NP-complete problem 3-PARTITION.  
 
Consequences of the Proof 
There is not only no one best strategy, but, with the exception of sequential problem solving, there is no 
polynomial time algorithm for finding the best strategy. 

4.4. The Proposed Winning Strategy 
The equivalent scheduling problem is that of minimizing the makespan of the total flow time minimal 
schedules.  This is known to be NP-complete. [5].  
 
The most important skill of a team is solution time estimation.  Given this, a team must first determine 
which strategies will complete the maximum number of problems in the time period.  Then, from this it 
must determine which strategy has the lowest tie-break score.  The team can use rules of thumb such 
as: 
 

• Order of ease is low tie breaking, but slow, 
• Reverse order of ease is fast, but high tie-breaking, 
• Candle is not-so-fast and not-so-bad for tie-breaks, 
• Middle strategies are bad. 

 
To win by problems solved, reverse order of ease is effective.  To win tie-breaks, order of ease is 
effective.  There are, however many other factors affecting a real contest;  we agree with Manzoor [16] 
that “success in programming contests in affected by factors other than skill, most importantly 
adrenaline, luck, and the problem set of the contest”. 

5. Conclusions 
Each year the ACM runs a programming contest, now known as the ICPC.  In this contest teams solve 
previously unseen problems.  The contest runs for five hours, during which time teams of three 
programmers are expected to solve as many of about nine problems as they can.  Scoring is on a two-
tier basis.  The team to solve the most problems wins, unless two or more teams solve the same number 
of problems.  In this case, a tie is broken on accumulated solution time. 
 
Choice of strategy is shown to affect a team’s chance of winning – not all strategies are equal.  Several 
strategies were proposed and examined.  Parallelization of problem solving shows that the more 
problems are solved concurrently, the quicker the team will solve the problems and the lower the tie-
break score.  The optimal strategy for minimizing the tie-break score is shown to be solving in order of 
easiest to hardest.  Not only is there no one single strategy that will reduce the overall time to solve all 
problems, but there is not even a polynomial time algorithm to find that strategy. 
 
A team must decide, on entering the competition, how many problems it is likely to solve, and how 
many problems other teams will solve.  Should the team suspect that more than one team will tie on 
solved problems, solving from easiest to hardest will increase the team’s chance of winning the tie, 
even though the actual time to completion is longer.  Should the team suspect that it can win by solved 
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problems alone; it should tackle the problems in order of hardest to easiest as in this investigation that 
strategy has always resulted in the first solution to the last problem.  Using this mixed strategy a team 
can maximize the chance of winning. 
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