
Sigma Encoded Inverted Files

Andrew Trotman
Department of Computer Science

University of Otago
Dunedin, New Zealand

andrew@cs.otago.ac.nz

Vikram Subramanya
Department of Computer Engineering

National Institute of Technology Karnataka
Surathkal, India

vicky.nitk@gmail.com

ABSTRACT
Compression of term frequency lists and very long document-id
lists within an inverted file search engine are examined. Several
compression schemes are compared including Elias γ and δ codes,
Golomb Encoding, Variable Byte Encoding, and a class of word-
based encoding schemes including Simple-9, Relative-10 and
Carryover-12. It is shown that these compression methods are not
well suited to compressing these kinds of lists of numbers. Of
those tested, Carryover-12 is preferred because it is both effective
at compression and fast at decompression.

A novel technique, Sigma Encoding prior to compression, is
proposed and tested. Sigma Encoding utilizes a parameterized
dictionary to reduce the number of bits necessary to store an
integer. This method shows an about 0.3 bit per integer
improvement over Carryover-12 while costing only about 3 extra
clock cycles per integer to decompress.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis and
Indexing - Indexing methods

General Terms
Algorithms, Performance

Keywords
Inverted Files, Compression

1. INTRODUCTION
Inverted file search engines are thought to be I/O bound. The
amount of time it takes to process the index and produce the list
of results is more a function of the time it takes to read the
postings from disk than the time to process the postings. For this
reason, Zobel & Moffat [7] and Williams & Zobel [6] recommend
adding compression in order to increase throughput.

Scholer et al. [4] and Trotman [5] examine two fundamentally
different forms of index compression: bit-based and byte-based.

Trotman [5] compares the effectiveness and decompression speed
of Elias-γ Elias-δ, Golomb, Binary Interpolative Coding, and
Variable Byte Encoding and shows that Variable Byte Encoding
requires more storage, but can be decompressed more efficiently
than others. Scholer et al. [4] showed that a search engine using
Variable Byte Encoding is more efficient that one based on bit-
wise compression schemes.

Variable Byte Encoding is preferred because the rate of
decompression easily compensates for the loss in compression
effectiveness. Decompression can be performed in as little as 10%
of the time taken for bit-based schemes such as Golomb. The loss
in storage space, however, can be as much as 300%.

Anh and Moffat [2] propose several word-based compression
schemes. These schemes pack many integers into a fixed-sized
word by carving that word into a number of fixed bit-length
pieces. Doing this allows many integers to be packed into a word,
whereas Variable Byte Encoding packs at most one integer into a
byte.

Several schemes have been proposed including Simple-9. Simple-
9 compression uses a 32-bit word divided into two parts, a 4-bit
selector and a 28-bit body. This 28-bit body can be divided into 9
different fixed-sized chunks (1, 2, 3, 4, 5, 7, 9, 14, and 28 bits).
The 4-bit selector is used to describe which division is being used.
Decompression is fast and compression effectiveness is high.

Relative-10 compression shrinks the selector to just 2 bits (using
30 bits for storage). Instead of directly representing the division, it
represents the division relative to the previous word. That is, the
next word might be divided the same way, one worse, or one
better then the current word (or it might be reset to one integer
only).

When the division of 30 bits into 7-bits each (or 4-bits each) is
performed, there are 2 wasted bits in a word. These might be used
as the selector bits for the next word (consequently 32 bits are
available in the latter). Exactly this is the case in Carryover-12
compression.

The algorithms of Anh and Moffat [2] result in compression
almost as effective as bit-wise schemes while being almost as
efficient as Variable Byte Encoding at decompression.

Common to these prior studies is the desire to increase throughput
and decrease the storage space necessary to store the document-
ids in an inverted file search engine. We, instead, examine
compression of the term frequencies. We show that the nature of
the term frequencies is different from that of document-ids and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’07, November 6--8, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-803-9/07/0011...$5.00.

propose a dictionary-based encoding (Sigma Encoding) followed
by integer compression. When used with Carryover-12, a space
saving of about 0.3 bits per integer for an extra about 3 cycles per
integer to decompress is shown as compared to Carryover-12
without Sigma Encoding.

2. INVERTED FILE INDEXING
The postings for a single term in an inverted file search engine are
often represented as: <dft: <dt1,tft1>, <dt2,tft2>, …, <dtn,tftn>>
where dft is the number of documents containing term t (the
document frequency) and tftn is the number of times the term
occurs in document dtn (the term frequency). The dft component is
often stored in the vocabulary and the <dtn,tftn> (posting) pairs in
the postings file.

Investigations into ways of storing postings suggest the
document-ids and the frequencies should be encoded separately
and stored sequentially [3]. This allows the loading of only
document-ids for Boolean searching, or additionally the
frequencies for ranking.

The document-ids are a monotonic sequence and delta coding is
often applied. The sequence <d1, d2, d3,…, dtn> for example <3,
10, 16, …, 123> is stored as <d1-0, d2-d1, d3-d2, …, dtn – dtn-1> for
example <3, 7, 6, …, 1>. The deltas (or differences) are, by
necessity, smaller than the ids and hence compress more
effectively with adaptive compression. As the frequency of a term
increases, the average delta must decrease in size. The deltas for a
term occurring in every document form the sequence <1, 1, 1,
…>, with a mean of 1. For a term occurring in half the
documents, the mean delta will be 2.

Term frequencies, the tftn component of the postings, unlike
document-ids, do not form a monotonic sequence. Further, as
document frequency (dft) increases, we expect the average term
frequency (tftn) to increase as well, and so we expect the sequence
to compress less effectively. The grammatical conjunctions (but,
when, etc.), for example, are expected to occur in a large number
of documents and to occur many times in those documents. The
consequence of this observation is that as document frequency
increases, the document-ids will compress more effectively, but
the term frequencies will compress less effectively.

2.1 Impact ordering
Impact ordered inverted files [1] are represented <i1:di1-1, di1-2, di1-

3,…, di1-tn, i2:di2-1, di2-2, di2-3,…, di2-tn> where ij is the impact factor
of the given set of documents. The impact factor is, essentially, a
coarse-grained bucketing of term frequency. With respect to
compression, documents with the same impact factor form a
monotonic sequence.

Using impact factors does not fundamentally change the nature of
inverted file compression; however it does (essentially) remove
the necessity of compressing term frequencies. Section 4
demonstrates that Sigma Encoding is effective for very long lists
of document-ids. These continue to be seen even with impact
ordering; however, we leave for further work the demonstration of
the effectiveness of Sigma Encoding in impact ordered inverted
files.

3. SIGMA ENCODING
Each term frequency list is compressed separately and there are
no dependencies between the lists. Given a single list, a dictionary
is constructed for that list; it is a dictionary of the unique values
seen in the list. The dictionary is then sorted by decreasing
frequency of occurrence of value in the list. For example, for <5,
3, 12, 5, 3, 5, 5, 3, 12, 4>, the most frequent value is 5, then 3,
then 12 and finally 4, so the dictionary is <5, 3, 12, 4>. Integers in
the original list are then renumbered with the ordinal value from
the dictionary (the sigma). In the example, this results in the
sequence <0, 1, 2, 0, 1, 0, 0, 1, 2, 3>, when counting from 0. This
is standard dictionary-based compression.

To encode each term frequency list, it is necessary to encode the
dictionary length, the dictionary, and the sigmas. In the example,
it is necessary to store <<3><5, 3, 12, 4><0, 1, 2, 0, 1, 0, 0, 1, 2,
3>>. This new sequence is longer than the original list. But if an
adaptive compression scheme such as Carryover-12 is used to
further compress the whole sequence, gains can be seen because
the most frequent terms are represented by the smallest sigmas,
which in turn compress well.

3.1 Dictionary Compression
Carryover-12 encodes integer i in log2(i) bits (at best). It is,
consequently, possible to swap two entries in the dictionary with
no effect on the number of bits used to compress a sequence
containing the two, as long as their sigmas are of the same
magnitude. That is, if a dictionary entry is in position 14 and
another in position 15, each takes 4 bits to store, so the order of
the two does not matter when considering how many bits are
necessary to store the sigma (because both sigmas are 4 bits in
length). Reordering the dictionary is effective if, consequently,
the dictionary can be stored more efficiently.

Within the dictionary, all values whose sigmas are of the same
base-2 magnitude (take the same number of bits to represent) are
sorted into increasing order. To compress the dictionary, delta
coding is applied to each base-2 range, and then compression
using another compression scheme (such as Carryover-12).

13 74 01 013 11 0 3 23

DictionaryLength Σ-encoded tftn-list

35 412 Frequency Ordered Dictionary
53 124 Re-ordered Dictionary
13 74 Delta-encoded Dictionary

35 3512 55 3 12 4 tftn-list

01 013 11 0 3 2 Σ tftn-list
13 74 01 013 11 0 3 23 13 74 01 013 11 0 3 23

DictionaryLength Σ-encoded tftn-listDictionaryDictionaryLengthLength Σ-encoded tftn-listΣ-encoded tftn-list

35 41235 412 Frequency Ordered Dictionary
53 12453 124 Re-ordered Dictionary
13 7413 74 Delta-encoded Dictionary

35 3512 55 3 12 435 3512 55 3 12 4 tftn-list

01 013 11 0 3 201 013 11 0 3 2 Σ tftn-list

Figure 1: Sigma Encoding. First, a frequency-ordered

dictionary is created, which is then ordered and delta-coded.
The dictionary length, the dictionary and the sigmas are
combined. This list is later compressed with an adaptive

compression scheme such as Caryover-12

Figure 1 illustrates the compression process for a single term
frequency list. First, the frequency ordered dictionary is
constructed, then those entries that take 1-bit to store (0-1), and
then 2-bits to store (2-3) are sorted into increasing order. To each
of these ranges delta encoding is applied. The tftn-list is
renumbered with the sigmas. Finally, the entire sequence is
composed of the dictionary length (|D|), the delta-encoded
dictionary, and sigma-encoded term frequency values. Of course,
lengths, deltas and sigmas count from 0 (sigma=0 is the first
dictionary entry).

There exists the possibility that every term in the original list is
unique. In this case the dictionary doubles the length of the
sequence. This can result in Sigma Encoding adding an overhead.
Such a problem is likely to occur when the lists are short, which is
frequently in an inverted file index.

To alleviate this, we parameterize the scheme. Only terms
occurring more than threshold T times are added to the dictionary,
the others are stored as |D| + tftn where |D| is the dictionary length.
Throughout this investigation, we set T=1, which means that a
value must occur two or more times to enter the dictionary.

When indexing very large document collections, the postings for
a single term could become very large and contain many distinct
values. If this is the case, the dictionary could also become very
large. The size of the dictionary might be controlled either by
only taking terms that occur more than some T number of times,
or else by imposing a strict limit on the length.

4. EXPERIMENTS
4.1 Experimental Environment
Experiments were conducted on an Intel Celeron processor at
1.06GHz. The document collection was the TREC Wall Street
Journal (WSJ) Collection. Further experiments used the TREC
Wt10g web collection and a Pentium 4 2.8GHz processor. Results
for Sigma Encoding include the cost of storing and
decompressing the dictionary (one for each list).

0

2

4

6

8

0 50000 100000 150000
List Length

Bi
ts

Pe
r I

nt
eg

er

Figure 2: The effectiveness of Carryover-12 compression on

term frequency lists (in bits per integer) decreases as the
length of the list (document frequency) increases

4.2 Experiment 1
We tested the hypothesis that the compression effectiveness of
term frequency lists decreases as document frequency increases.

The postings lists were generated for each unique term in the Wall
Street Journal collection. They were then compressed using
Carryover-12. In Figure 2 the mean number of bits per integer

(BPI) needed to store the term frequency lists is plotted against
increasing document frequency (the mean is shown dotted).

Although unstable at the beginning, a general upward trend is
seen suggesting that, indeed, compression effectiveness of term
frequency lists decreases as the number of documents in which
the term is seen increases.

Table 1: Compress effectiveness and decompress efficiency of
bit-wise, byte-wise, word-wise compression schemes and for

Sigma Encoded Carryover-12. Values are shown for the
TREC Wall Street Journal Collection

BPI δ γ Gol Byte S-9 R-10 C-12 ΣT=1

tftn 4.5 3.4 2.7 8.0 3.1 3.1 3.1 2.8

dtn 8.7 8.5 6.2 9.4 7.6 7.2 7.0 7.3

CPI

tftn 65.1 44.7 42.6 9.0 13.2 13.9 14.4 17.0

dtn 113.8 102.5 99.5 11.5 15.0 16.9 16.7 20.7

Table 2: Compression effectiveness and decompression

efficiency of Carryover-12 and Sigma Encoded Carryover-12.
Values are shown for the TREC Wt10g

 BPI C-12 BPI ΣT=1 CPI C-12 CPI ΣT=1

tftn 3.7 3.5 21.2 25.2

dtn 8.3 8.8 25.4 33.8

4.3 Experiment 2
Compression effectiveness and decompression efficiency for both
term frequencies and delta-encoded document-ids were compared
to several other schemes. Table 1 shows (left to right)
effectiveness in bits per integer (BPI), of Elias-δ, Elias-γ,
Golomb, Variable Byte Encoding, Simple-9, Relative-10,
Carryover-12, and Sigma Encoded Carryover-12. For term
frequency lists Sigma Encoding shows an improvement on
Carryover-12 of 0.3 bits per integer. The additional cost of
decompression in clock-cycles per integer (CPI) is about 3.

A comparison of Carryover-12 with Sigma Encoded Carryover-12
in the larger TREC Wt10g collection is presented in Table 2.
There an improvement of 0.2 bits per integer is shown for an
additional cost of 4 clock cycles per integer.

0

500

1000

1500

0 50000 100000 150000
List Length

Si
ze

 (K
b)

Figure 3: Comparison of Sigma Encoded Carryover-12

(dashed) to Carryover-12 compression on term frequency lists
as document frequency increases

4.4 Experiment 3
Using the Wall Street Journal collection, the performance of
Sigma Encoded Carryover-12 was compared to Carryover-12 as
document frequency increases. In Figure 3 the solid line shows
the size of the compressed list when Carryover-12 is used, the
dashed line shows the same for Sigma Encoded Carryover-12. It
can be seen that the improvements are small but consistent.

The same comparison was performed for document-id lists where
encoding proved ineffective when averaged over all lists (see
Table 1 and Table 2). The results are presented in Figure 4 where
it can be seen that Sigma Encoding is effective when document
frequency is large, but not so when small. For long lists, a more
ordered distribution around the mean is expected (due to the
standard error of the mean) and hence, the dictionary is more
effective.

0

100

200

300

400

0 50000 100000 150000
List Length

Si
ze

 (K
b)

Figure 4: Comparison of Sigma Encoded Carryover-12

(dashed) to Carryover-12 compression on document-id lists as
document frequency increases

5. CONCLUSIONS AND FUTURE WORK
Compression effectiveness for term frequencies was examined
and (at least in the Wall Street Journal collection) the
effectiveness in bits per integer was shown to decrease as the
document frequency increases. This is likely to be because terms
that occur in many documents are terms that are likely to be
frequent in a single document (such as the grammatical
conjunctions and articles). The larger term frequency values
compress less well than the smaller term frequency values seen
for uncommon terms.

A dictionary-based coding scheme called Sigma Encoding is
introduced as a preprocessing step before compression. This
coding scheme, when used in conjunction with Carryover-12
compression, is shown to be effective in compressing term
frequency lists.

When tested on document-id lists, Sigma Encoding followed by
Carryover-12 compression is shown to be ineffective in the

general case, but effective when document frequencies are large
(the lists are long).

In future work we plan to examine Sigma Encoding with impact
ordered indexes. We expect it to continue to be effective; perhaps
more so than on non-impact ordered lists. For the simple case of
two impacts, the monotonic document-id list is represented by
two shorter monotonic lists, one for each impact. The mean delta
in each list will necessarily be larger than the single list; therefore,
dictionary compression can be expected to be effective in
reducing the number of bits necessary to store each delta. With
more than two lists, the gaps will become larger and effectiveness
is expected to be increase.

We also plan to examine Sigma Encoding with phrase searching.
In this case, the gaps between term occurrences are expected to be
large, but may not form regular patterns.

The effectiveness of Sigma Encoding is dependant on how well
the dictionary can be stored. We are examining techniques to
store the dictionary more efficiently, especially when long
sequences of consecutive numbers are present. We are also
examining alternative threshold methods.

Sigma Encoding followed by Carryover-12 compression is an
effective method of storing term frequency lists and long
document-id lists in an inverted file search engine. An
improvement of about 0.3 bits per integer is seen at the cost of
about 3 clock cycles to decompress. Further improvements are
expected with an improved threshold method and better
compression of the dictionary.

6. REFERENCES
[1] Anh, V. N., & Moffat, A. (2002). Improved retrieval

effectiveness through impact transformation. Australian
Computer Science Communications, 24(2), 41-47.

[2] Anh, V. N., & Moffat, A. (2005). Inverted index compression
using word-aligned binary codes. Information Retrieval.

[3] Anh, V. N., & Moffat, A. (2006). Structured index
organizations for high-throughput text querying. In
Proceedings of the 13th Int. Symp. String Processing and
Information Retrieval, (pp. 304-315).

[4] Scholer, F., Williams, H. E., Yiannis, J., & Zobel, J. (2002).
Compression of inverted indexes for fast query evaluation. In
Proceedings of the 25th ACM SIGIR Conference on
Information Retrieval, (pp. 222-229).

[5] Trotman, A. (2003). Compressing inverted files. Information
Retrieval, 6(1), 5-19.

[6] Williams, H. E., & Zobel, J. (1999). Compressing integers for
fast file access. Computer Journal, 42(3), 193-201.

[7] Zobel, J., & Moffat, A. (1995). Adding compression to a full-
text retrieval system. Software - Practice and Experience,
25(8), 891-903.

