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ABSTRACT 
Compression of term frequency lists and very long document-id 
lists within an inverted file search engine are examined. Several 
compression schemes are compared including Elias γ and δ codes, 
Golomb Encoding, Variable Byte Encoding, and a class of word-
based encoding schemes including Simple-9, Relative-10 and 
Carryover-12. It is shown that these compression methods are not 
well suited to compressing these kinds of lists of numbers. Of 
those tested, Carryover-12 is preferred because it is both effective 
at compression and fast at decompression. 

A novel technique, Sigma Encoding prior to compression, is 
proposed and tested. Sigma Encoding utilizes a parameterized 
dictionary to reduce the number of bits necessary to store an 
integer. This method shows an about 0.3 bit per integer 
improvement over Carryover-12 while costing only about 3 extra 
clock cycles per integer to decompress. 

Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval]: Content Analysis and 
Indexing - Indexing methods 

General Terms 
Algorithms, Performance 

Keywords 
Inverted Files, Compression  

1. INTRODUCTION 
Inverted file search engines are thought to be I/O bound. The 
amount of time it takes to process the index and produce the list 
of results is more a function of the time it takes to read the 
postings from disk than the time to process the postings. For this 
reason, Zobel & Moffat [7] and Williams & Zobel [6] recommend 
adding compression in order to increase throughput.  

Scholer et al. [4] and Trotman [5] examine two fundamentally 
different forms of index compression: bit-based and byte-based. 

Trotman [5] compares the effectiveness and decompression speed 
of Elias-γ Elias-δ, Golomb, Binary Interpolative Coding, and 
Variable Byte Encoding and shows that Variable Byte Encoding 
requires more storage, but can be decompressed more efficiently 
than others. Scholer et al. [4] showed that a search engine using 
Variable Byte Encoding is more efficient that one based on bit-
wise compression schemes. 

Variable Byte Encoding is preferred because the rate of 
decompression easily compensates for the loss in compression 
effectiveness. Decompression can be performed in as little as 10% 
of the time taken for bit-based schemes such as Golomb. The loss 
in storage space, however, can be as much as 300%. 

Anh and Moffat [2] propose several word-based compression 
schemes. These schemes pack many integers into a fixed-sized 
word by carving that word into a number of fixed bit-length 
pieces. Doing this allows many integers to be packed into a word, 
whereas Variable Byte Encoding packs at most one integer into a 
byte. 

Several schemes have been proposed including Simple-9. Simple-
9 compression uses a 32-bit word divided into two parts, a 4-bit 
selector and a 28-bit body. This 28-bit body can be divided into 9 
different fixed-sized chunks (1, 2, 3, 4, 5, 7, 9, 14, and 28 bits). 
The 4-bit selector is used to describe which division is being used. 
Decompression is fast and compression effectiveness is high. 

Relative-10 compression shrinks the selector to just 2 bits (using 
30 bits for storage). Instead of directly representing the division, it 
represents the division relative to the previous word. That is, the 
next word might be divided the same way, one worse, or one 
better then the current word (or it might be reset to one integer 
only). 

When the division of 30 bits into 7-bits each (or 4-bits each) is 
performed, there are 2 wasted bits in a word. These might be used 
as the selector bits for the next word (consequently 32 bits are 
available in the latter). Exactly this is the case in Carryover-12 
compression. 

The algorithms of Anh and Moffat [2] result in compression 
almost as effective as bit-wise schemes while being almost as 
efficient as Variable Byte Encoding at decompression. 

Common to these prior studies is the desire to increase throughput 
and decrease the storage space necessary to store the document-
ids in an inverted file search engine. We, instead, examine 
compression of the term frequencies. We show that the nature of 
the term frequencies is different from that of document-ids and 
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propose a dictionary-based encoding (Sigma Encoding) followed 
by integer compression. When used with Carryover-12, a space 
saving of about 0.3 bits per integer for an extra about 3 cycles per 
integer to decompress is shown as compared to Carryover-12 
without Sigma Encoding. 

2. INVERTED FILE INDEXING 
The postings for a single term in an inverted file search engine are 
often represented as: <dft: <dt1,tft1>, <dt2,tft2>, …, <dtn,tftn>> 
where dft is the number of documents containing term t (the 
document frequency) and tftn is the number of times the term 
occurs in document dtn (the term frequency). The dft component is 
often stored in the vocabulary and the <dtn,tftn> (posting) pairs in 
the postings file. 

Investigations into ways of storing postings suggest the 
document-ids and the frequencies should be encoded separately 
and stored sequentially [3]. This allows the loading of only 
document-ids for Boolean searching, or additionally the 
frequencies for ranking. 

The document-ids are a monotonic sequence and delta coding is 
often applied. The sequence <d1, d2, d3,…, dtn> for example <3, 
10, 16, …, 123> is stored as <d1-0, d2-d1, d3-d2, …, dtn – dtn-1> for 
example <3, 7, 6, …, 1>. The deltas (or differences) are, by 
necessity, smaller than the ids and hence compress more 
effectively with adaptive compression. As the frequency of a term 
increases, the average delta must decrease in size. The deltas for a 
term occurring in every document form the sequence <1, 1, 1, 
…>, with a mean of 1. For a term occurring in half the 
documents, the mean delta will be 2. 

Term frequencies, the tftn component of the postings, unlike 
document-ids, do not form a monotonic sequence. Further, as 
document frequency (dft) increases, we expect the average term 
frequency (tftn) to increase as well, and so we expect the sequence 
to compress less effectively. The grammatical conjunctions (but, 
when, etc.), for example, are expected to occur in a large number 
of documents and to occur many times in those documents. The 
consequence of this observation is that as document frequency 
increases, the document-ids will compress more effectively, but 
the term frequencies will compress less effectively. 

2.1 Impact ordering 
Impact ordered inverted files [1] are represented <i1:di1-1, di1-2, di1-

3,…, di1-tn, i2:di2-1, di2-2, di2-3,…, di2-tn> where ij is the impact factor 
of the given set of documents. The impact factor is, essentially, a 
coarse-grained bucketing of term frequency. With respect to 
compression, documents with the same impact factor form a 
monotonic sequence. 

Using impact factors does not fundamentally change the nature of 
inverted file compression; however it does (essentially) remove 
the necessity of compressing term frequencies. Section 4 
demonstrates that Sigma Encoding is effective for very long lists 
of document-ids. These continue to be seen even with impact 
ordering; however, we leave for further work the demonstration of 
the effectiveness of Sigma Encoding in impact ordered inverted 
files.  

3. SIGMA ENCODING 
Each term frequency list is compressed separately and there are 
no dependencies between the lists. Given a single list, a dictionary 
is constructed for that list; it is a dictionary of the unique values 
seen in the list. The dictionary is then sorted by decreasing 
frequency of occurrence of value in the list. For example, for <5, 
3, 12, 5, 3, 5, 5, 3, 12, 4>, the most frequent value is 5, then 3, 
then 12 and finally 4, so the dictionary is <5, 3, 12, 4>. Integers in 
the original list are then renumbered with the ordinal value from 
the dictionary (the sigma). In the example, this results in the 
sequence <0, 1, 2, 0, 1, 0, 0, 1, 2, 3>, when counting from 0. This 
is standard dictionary-based compression. 

To encode each term frequency list, it is necessary to encode the 
dictionary length, the dictionary, and the sigmas. In the example, 
it is necessary to store <<3><5, 3, 12, 4><0, 1, 2, 0, 1, 0, 0, 1, 2, 
3>>. This new sequence is longer than the original list. But if an 
adaptive compression scheme such as Carryover-12 is used to 
further compress the whole sequence, gains can be seen because 
the most frequent terms are represented by the smallest sigmas, 
which in turn compress well. 

3.1 Dictionary Compression 
Carryover-12 encodes integer i in log2(i) bits (at best). It is, 
consequently, possible to swap two entries in the dictionary with 
no effect on the number of bits used to compress a sequence 
containing the two, as long as their sigmas are of the same 
magnitude. That is, if a dictionary entry is in position 14 and 
another in position 15, each takes 4 bits to store, so the order of 
the two does not matter when considering how many bits are 
necessary to store the sigma (because both sigmas are 4 bits in 
length). Reordering the dictionary is effective if, consequently, 
the dictionary can be stored more efficiently. 

Within the dictionary, all values whose sigmas are of the same 
base-2 magnitude (take the same number of bits to represent) are 
sorted into increasing order. To compress the dictionary, delta 
coding is applied to each base-2 range, and then compression 
using another compression scheme (such as Carryover-12). 
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Figure 1: Sigma Encoding. First, a frequency-ordered 

dictionary is created, which is then ordered and delta-coded. 
The dictionary length, the dictionary and the sigmas are 
combined. This list is later compressed with an adaptive 

compression scheme such as Caryover-12 
 



Figure 1 illustrates the compression process for a single term 
frequency list. First, the frequency ordered dictionary is 
constructed, then those entries that take 1-bit to store (0-1), and 
then 2-bits to store (2-3) are sorted into increasing order. To each 
of these ranges delta encoding is applied. The tftn-list is 
renumbered with the sigmas. Finally, the entire sequence is 
composed of the dictionary length (|D|), the delta-encoded 
dictionary, and sigma-encoded term frequency values. Of course, 
lengths, deltas and sigmas count from 0 (sigma=0 is the first 
dictionary entry). 

There exists the possibility that every term in the original list is 
unique. In this case the dictionary doubles the length of the 
sequence. This can result in Sigma Encoding adding an overhead. 
Such a problem is likely to occur when the lists are short, which is 
frequently in an inverted file index. 

To alleviate this, we parameterize the scheme. Only terms 
occurring more than threshold T times are added to the dictionary, 
the others are stored as |D| + tftn where |D| is the dictionary length. 
Throughout this investigation, we set T=1, which means that a 
value must occur two or more times to enter the dictionary. 

When indexing very large document collections, the postings for 
a single term could become very large and contain many distinct 
values. If this is the case, the dictionary could also become very 
large. The size of the dictionary might be controlled either by 
only taking terms that occur more than some T number of times, 
or else by imposing a strict limit on the length. 

4. EXPERIMENTS 
4.1 Experimental Environment 
Experiments were conducted on an Intel Celeron processor at 
1.06GHz. The document collection was the TREC Wall Street 
Journal (WSJ) Collection. Further experiments used the TREC 
Wt10g web collection and a Pentium 4 2.8GHz processor. Results 
for Sigma Encoding include the cost of storing and 
decompressing the dictionary (one for each list). 
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Figure 2: The effectiveness of Carryover-12 compression on 

term frequency lists (in bits per integer) decreases as the 
length of the list (document frequency) increases 

 

4.2 Experiment 1 
We tested the hypothesis that the compression effectiveness of 
term frequency lists decreases as document frequency increases. 

The postings lists were generated for each unique term in the Wall 
Street Journal collection. They were then compressed using 
Carryover-12. In Figure 2 the mean number of bits per integer 

(BPI) needed to store the term frequency lists is plotted against 
increasing document frequency (the mean is shown dotted). 

Although unstable at the beginning, a general upward trend is 
seen suggesting that, indeed, compression effectiveness of term 
frequency lists decreases as the number of documents in which 
the term is seen increases. 

 

Table 1: Compress effectiveness and decompress efficiency of 
bit-wise, byte-wise, word-wise compression schemes and for 

Sigma Encoded Carryover-12. Values are shown for the 
TREC Wall Street Journal Collection 

BPI δ γ Gol Byte S-9 R-10 C-12 ΣT=1 

tftn 4.5 3.4 2.7 8.0 3.1 3.1 3.1 2.8 

dtn 8.7 8.5 6.2 9.4 7.6 7.2 7.0 7.3 

CPI         

tftn 65.1 44.7 42.6 9.0 13.2 13.9 14.4 17.0 

dtn 113.8 102.5 99.5 11.5 15.0 16.9 16.7 20.7 

 
Table 2: Compression effectiveness and decompression 

efficiency of Carryover-12 and Sigma Encoded Carryover-12. 
Values are shown for the TREC Wt10g  

 BPI C-12 BPI ΣT=1 CPI C-12 CPI ΣT=1 

tftn 3.7 3.5 21.2 25.2 

dtn 8.3 8.8 25.4 33.8 

 

4.3 Experiment 2 
Compression effectiveness and decompression efficiency for both 
term frequencies and delta-encoded document-ids were compared 
to several other schemes. Table 1 shows (left to right) 
effectiveness in bits per integer (BPI), of Elias-δ, Elias-γ, 
Golomb, Variable Byte Encoding, Simple-9, Relative-10, 
Carryover-12, and Sigma Encoded Carryover-12. For term 
frequency lists Sigma Encoding shows an improvement on 
Carryover-12 of 0.3 bits per integer. The additional cost of 
decompression in clock-cycles per integer (CPI) is about 3.  

A comparison of Carryover-12 with Sigma Encoded Carryover-12 
in the larger TREC Wt10g collection is presented in Table 2. 
There an improvement of 0.2 bits per integer is shown for an 
additional cost of 4 clock cycles per integer.  
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Figure 3: Comparison of Sigma Encoded Carryover-12 

(dashed) to Carryover-12 compression on term frequency lists 
as document frequency increases 



4.4 Experiment 3 
Using the Wall Street Journal collection, the performance of 
Sigma Encoded Carryover-12 was compared to Carryover-12 as 
document frequency increases. In Figure 3 the solid line shows 
the size of the compressed list when Carryover-12 is used, the 
dashed line shows the same for Sigma Encoded Carryover-12. It 
can be seen that the improvements are small but consistent. 

The same comparison was performed for document-id lists where 
encoding proved ineffective when averaged over all lists (see 
Table 1 and Table 2). The results are presented in Figure 4 where 
it can be seen that Sigma Encoding is effective when document 
frequency is large, but not so when small. For long lists, a more 
ordered distribution around the mean is expected (due to the 
standard error of the mean) and hence, the dictionary is more 
effective. 
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Figure 4: Comparison of Sigma Encoded Carryover-12 

(dashed) to Carryover-12 compression on document-id lists as 
document frequency increases 

 

5. CONCLUSIONS AND FUTURE WORK 
Compression effectiveness for term frequencies was examined 
and (at least in the Wall Street Journal collection) the 
effectiveness in bits per integer was shown to decrease as the 
document frequency increases. This is likely to be because terms 
that occur in many documents are terms that are likely to be 
frequent in a single document (such as the grammatical 
conjunctions and articles). The larger term frequency values 
compress less well than the smaller term frequency values seen 
for uncommon terms. 

A dictionary-based coding scheme called Sigma Encoding is 
introduced as a preprocessing step before compression. This 
coding scheme, when used in conjunction with Carryover-12 
compression, is shown to be effective in compressing term 
frequency lists. 

When tested on document-id lists, Sigma Encoding followed by 
Carryover-12 compression is shown to be ineffective in the 

general case, but effective when document frequencies are large 
(the lists are long). 

In future work we plan to examine Sigma Encoding with impact 
ordered indexes. We expect it to continue to be effective; perhaps 
more so than on non-impact ordered lists. For the simple case of 
two impacts, the monotonic document-id list is represented by 
two shorter monotonic lists, one for each impact. The mean delta 
in each list will necessarily be larger than the single list; therefore, 
dictionary compression can be expected to be effective in 
reducing the number of bits necessary to store each delta. With 
more than two lists, the gaps will become larger and effectiveness 
is expected to be increase. 

We also plan to examine Sigma Encoding with phrase searching. 
In this case, the gaps between term occurrences are expected to be 
large, but may not form regular patterns. 

The effectiveness of Sigma Encoding is dependant on how well 
the dictionary can be stored. We are examining techniques to 
store the dictionary more efficiently, especially when long 
sequences of consecutive numbers are present. We are also 
examining alternative threshold methods. 

Sigma Encoding followed by Carryover-12 compression is an 
effective method of storing term frequency lists and long 
document-id lists in an inverted file search engine. An 
improvement of about 0.3 bits per integer is seen at the cost of 
about 3 clock cycles to decompress. Further improvements are 
expected with an improved threshold method and better 
compression of the dictionary.  
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