
Id - Dynamic Views on Static and Dynamic Disassembly Listings

Nicholas Sherlock
Computer Science

University of Otago
Otago 9010 New Zealand

n.sherlock@gmail.com

Andrew Trotman
Computer Science

University of Otago
Otago 9010 New Zealand
andrew@cs.otago.ac.nz

Abstract Disassemblers are tools which allow
software developers and researchers to analyse
the machine code of computer programs. Typical
disassemblers convert a compiled program into a
static disassembly document which lists the machine
instructions of the program. Information which would
indicate the purpose of routines, such as comments and
symbol names, are not present in the compiled program.
Researchers must hand-annotate the disassembly in a
text editor to record their findings about the purpose of
the code.

Although running programs can change their layout
dynamically, the disassembly can only show a snapshot
of a program’s layout. If a different view of a program is
required, the document must be recreated from scratch,
making it difficult to preserve user annotations.

In this paper we demonstrate a system which al-
lows a disassembly listing to be refined by user input
while retaining user annotations. Users are able to
dynamically change the interpretation of the layout of
the program in order to effectively analyse programs
which can alter their own memory layout. We allow
users to combine the independent analysis of several
program modules in order to examine the interaction
between modules.

By exploring the obsolete “Poly” computer system,
we demonstrate that our disassembler can be used to
reconstruct and document entire software distributions.

Keywords Digital Libraries, Cognitive Aspects of
Documents, Document Workflow

1 Introduction
The rate of computer hardware and software
development is increasing exponentially. Five
years ago, our desktop computers were all powered by
single-core CPUs. Two years ago, they had dual-core
CPUs. And today, they are likely to have four or eight
cores. The Macintosh series of computers have seen
large architectural changes, switching from Motorola
CPUs to PowerPCs and finally to Intel x86 CPUs.
In successive steps, we have changed our removable

Proceedings of the 14th Australasian Document Comput-
ing Symposium, Sydney, Australia, 4 December 2009.
Copyright for this article remains with the authors.

storage media from tapes, to 8, 51/4 and 31/2 inch floppy
disks, to CD-ROMs, DVDs, Blu-ray, and increasingly,
removable flash-memory based storage. With each
new hardware generation, our old software becomes
obsolete and is either rebuilt or abandoned.

This creates a problem for researchers and
historians. While design manuals can be scanned
and stored accessibly in a digital library, and data
can be retrieved from old media with somewhat
more effort and expense, storing the software from
these old machines in a useful format is an entirely
different problem. Performing analysis on software
which is stored in the library becomes increasingly
difficult with time. This is because a piece of software
cannot be used, examined, or understood in isolation.
Its behaviour is defined by its interaction with the
hardware it was built for. Obsolete hardware becomes
progressively more scarce with time. Preserving old
hardware by building modern replicas requires an
increasingly infeasible amount of effort and resources
as microelectronics become more complex.

If an accurate description of the hardware is pro-
vided or can be discovered, it can be replaced by a
software-based “emulator”. An emulator in this context
is a program which simulates the action of an old hard-
ware platform on (typically many) modern platforms.
In this way, researchers can examine the runtime be-
haviour of old software without having to perform a
costly hardware reconstruction of an old platform.

A second problem is the difficulty of examining the
algorithms and implementation details of obsolete soft-
ware when human-readable source code has been lost
or was never provided. It is also a problem for mod-
ern software. For example, in order to build a new
program which interoperates with an existing program,
some knowledge of the original program’s internal op-
eration is required. Even if the source code for a pro-
gram is available, you may still want to examine the
machine instructions that the compiler generates to en-
sure that the generated instruction sequences are correct
or efficient. Machine code is a more primitive level
of abstraction which can reveal surprising negative per-
formance implications of innocuous-looking high-level
code.

If only the machine code that makes up the com-
piled program is available, it must first be translated

into a more abstract form that humans can understand
so that it can be analysed. A program which performs
this translation is called a “disassembler”. Much of the
information found in the high-level source code of a
program, including comments and the names of vari-
ables and routines, is lost in the compilation process.
To understand a compiled program, a researcher must
recover this lost information. They can achieve this by
inspecting the disassembly listing with reference to the
behaviour of the running program. They can then share
their findings with other researchers by annotating the
disassembly.

Several factors make this process difficult. The
disassembler’s interpretation of the program must be
dynamically altered to analyse programs which can
change their layout at runtime. In order to change
the interpretation of the program, the disassembler
must be re-run. This creates a new, independent
disassembly document, which makes it difficult to
preserve annotations that the researcher has already
made.

Even if a program does not change its layout dy-
namically, the researcher must still frequently change
the disassembler’s interpretation of the program. This is
because the disassembler cannot distinguish code from
data in the compiled program with perfect accuracy.
Human judgements are required to correct the disas-
sembler’s mistakes.

In order to allow researchers to effectively
document entire programs, software support is required
to assist the user in navigating and imposing structure
on large disassembly documents, but this is not
provided with a traditional disassembler. Although
programs being analysed are often composed of several
related modules which can be examined independently,
disassemblers typically do not provide any way
of linking disassemblies together in order to share
information about interacting modules.

In this paper, we will present our disassembly, de-
bugging and emulation system which we used to re-
construct and document the software and hardware of
the “Poly” computer system. We will show that our
disassembler can solve the problems inherent in docu-
menting the software of the Poly by using it to create a
digital Poly software library which researchers will be
able to examine long into the future.

2 The Poly computer system
The Poly was a computer system developed in New
Zealand in the early 1980s. It was comprised of a server
computer called the “Proteus” with a series of fat-client
“Poly” machines attached by a token ring network. It
was designed to be used in a classroom setting where
a teacher would set work on the server computer to
be distributed to each student’s computer. When the
students finished their work, their results would be sent
back to the server computer to be saved to disk. The
server and the client machines had similar architectures.

In one prototype, a client could be turned into a Proteus
server with the addition of a disk drive. The computers
can be seen in Figure 1.

The Poly never gained much ground in the computer
market and few machines were produced. Although the
Poly demonstrated innovative technologies and ideas,
and is an important part of New Zealand’s computing
history, little is now known about it. In particular, the
Poly’s networking capabilities were far ahead of con-
temporary computers, and it was provided with inno-
vative classroom software to take advantage of those
features. But with only a couple of working Polys in
existence and little surviving documentation, the exact
functionality of the software is largely a mystery.

In order to make the Poly’s software available to re-
searchers, we would have to document it in a form that
would be useful long after the last Poly stops operating.

3 Disassembly
48A6 34 14 PSHS X,B ;Ref from $CD39
48A8 8E 5B 19 LDX #$5B19
48AB C6 05 LDB #$5
48AD E7 80 STB ,X+
48AF 35 04 PULS B
48B1 E7 80 STB ,X+
48B3 35 20 PULS Y
48B5 EC A4 LDD ,Y
48B7 ED 84 STD ,X
48B9 8E 5B 19 LDX #$5B19
48BC 10 8E 00 04 LDY #$04

Figure 2: A fragment of a disassembly listing

A tool called a “disassembler” examines a program
binary (that is, the machine code that the computer will
execute, not the source code which is used to generate
it) and creates a text file called a disassembly listing.
A disassembly listing shows the machine code instruc-
tion that appears at each memory address within the
program as a human-readable mnemonic code. It also
shows the data stored inside the program, such as the
text of string literals or numeric literals from the source
code.

Figure 2 shows a fragment of a program disassem-
bly for the Poly’s Motorola 6809 CPU[8]. The left-
most element is the memory address of the disassem-
bled instruction. Next is a hexadecimal representation
of the machine code that the CPU will execute. Fi-
nally, a human-readable interpretation of the machine
code is displayed. The first part of the instruction is a
mnemonic which represents the instruction being per-
formed (for example, PSHS is an instruction to push a
value onto the stack). Any arguments to the instruc-
tion follow the mnemonic. X, B and other symbols
refer to registers on the CPU and values starting with
a hash symbol are numeric literals. There is effectively
a one-to-one mapping between the machine code and
the mnemonic representation shown to the researcher.

(a) Two Poly client machines sit side-by-side (b) A Proteus server and its CPU and memory board (inset)

Figure 1: The key components of the Poly system

There are two major difficulties in building a useful
disassembler program. The primary difficulty is that it
is impossible in general to automatically decide which
parts of the program binary are data and which parts are
code which will be executed. This problem is equiva-
lent to the halting problem[5]. Because of this, disas-
semblers must sometimes guess where a machine in-
struction begins in memory and so will make some in-
correct guesses. Wrong guesses might identify the be-
ginning of a sequence of instructions at the wrong off-
set (so that the interpretation of the sequence begins
halfway through a machine instruction, generating in-
correct output,) or incorrectly identify data as code or
vice versa, which hampers correct interpretation of the
program. Some code locations can not be identified
because their addresses are computed at runtime by the
program in a way that the disassembler cannot predict.
For example, a program may read the address of the
routine to execute from an external file.

The second difficulty is encountered when
analysing software that was built for small systems
like the Poly. Like many computers of its time, the
Poly had more physical memory available than it could
simultaneously address. Its CPU’s memory address bus
is 16-bits wide, allowing it to address 64kB of virtual
memory at any one time. The Poly has 128kB of
physical RAM plus 8kB of BIOS and memory-mapped
peripherals. Software on the Poly dynamically changes
the mapping of the 8kB virtual memory pages to the
128 + 8kB physical address space by changing the
entries in a memory map.

In Figure 3, a 16-bit virtual memory address is
translated into a 17-bit address in physical memory in a
series of steps. In “protected” mode (operating system
mode), some addresses are directed to hardware and
the BIOS. Otherwise, the three most-significant bits of
the virtual address are combined with a bank-select bit
and used as an index into the programmable memory
map. The memory map replaces the three higher bits
of the virtual address with four bits of its own, creating
a 17-bit address in physical memory.

Figure 3: A virtual memory address is translated using
the memory map into a physical address

With a traditional disassembler, the researcher
would have to disassemble the program once for
every memory mapping they wanted to examine,
and maintain the different disassembly listings
independently, even when information should be
shared between them. The same physical memory page
can even appear in virtual memory in more than one
place simultaneously, making it difficult to manually
keep annotations consistent and up to date.

Many small-CPU based systems, including systems
of about the Poly’s age, use dynamic memory maps to
overcome the limitations of restrictively small address
spaces. For example, the Apple //e[9], ZX Spectrum
128[1] and Commodore 128[6], which, like the Poly,
have 16-bit address busses and can support 128kB or
more of memory. Software written for 16-bit operating
systems such as MS-DOS on more modern PCs or soft-
ware for embedded systems also use this technique. To
effectively analyse these systems, a new kind of disas-
sembler is required.

4 Background
Disassemblers are available for nearly every platform.
Disassembly tools are available in two main contexts:
As a static disassembler tool to examine stored pro-
grams on disk, or dynamic disassemblers which exam-
ine snapshots of running programs.

4.1 Static analysis
The tool “objdump”[2] typifies static disassembly
tools. A binary program on disk is provided as input
to objdump, and the output is a disassembly listing
document.

The generated listing may be explored and anno-
tated with a simple text editor, but this approach has
two serious disadvantages. Firstly, a text editor treats
the disassembly as unstructured text and so can offer
very little software support for common annotation op-
erations. It will not offer cross-referencing support, so
any references that the code makes to other parts of
the program must be followed manually. If the analyst
gives a descriptive label to a block of code, that label
will not be propagated to the places where the code is
called. The analyst cannot effectively experiment with
different interpretations for data stored in the program.
For example, to reinterpret a number as signed or un-
signed will require the researcher to manually convert
the number using some other tool, or re-run the disas-
sembler to create an entirely new disassembly. These
problems dramatically slow down analysis and make
understanding the program much more difficult.

Secondly, a static disassembler cannot always cor-
rectly distinguish code from data in the analysed pro-
gram. For example, the code may include a jump whose
target is an address which is computed at runtime. This
is common in object-oriented code, where the address
of a virtual method must be looked up in an object’s
virtual address table. In procedural code, this technique
is more likely to be used with a jump table—a table of
routine addresses that selected from at runtime, often by
an equivalent of the “switch” statement in C. Data-flow
analysis techniques could be used to discover the targets
for some of these computed jumps[4]. For instance, the
instruction sequence LDX #0x5B19 / JMP X (storing
the value 0x5B19 into the register X, followed by a jump
to the value stored in X) is clearly a jump to the location
0x5B19. Even so, some jumps are computed in a way
that no disassembler could possibly understand (e.g. by
using data available at runtime which is not present in
the image being disassembled, such as data contained
in a message received on the network.)

The disassembler might identify a jump with a
known target which in fact points to data, not code. If
the Poly jumped to that location, it would likely have
unexpected results, perhaps crashing. If we assume
that the the Poly code does not crash, it is reasonable
to assume that it does not take bad jumps. There are at
least two possible causes of this situation.

It may be impossible for the flow of execution
to ever reach the jump, so the bad jump is never
executed in practice. For instance, a program might
check the state of a “debugging mode flag”, and, based
on the value it finds, jump to some logging routine
which ended up being cut from the final binary. The
debugging mode flag is never set in delivered software
so the bad jump is never taken.

The jump may have a definite target, and be taken
at runtime, but the target of the jump which is stored in
the instruction is overwritten at runtime before the jump
is ever called. This is seen on modern architectures.
A module of code (such as a Windows dynamic-link
library or a Unix shared object) which a program uses
may be dynamically loaded at an unpredictable position
in its address space. To be able to call routines from the
module, the program needs to know their addresses. To
achieve this, an “import table” is generated in the ap-
plication. The import table consists of a series of stubs.
The stubs are small routines which contain a jump to
an address which is initially some default value (NULL).
When the library is loaded, the memory locations of
its routines are discovered and used to rewrite the code
in the import table. To call an imported routine from
within the program, a call to the stub is made some time
after the library is loaded. Calling the routine before the
library is loaded results in undefined behaviour.

In order to correct code which has been misidenti-
fied as data, or vice-versa, the user must run the disas-
sembler again with that new information. This produces
an entirely independent disassembly listing which must
then be manually merged with the listing the user has
annotated. This is an error-prone and tedious process.
The user is unlikely to want to experiment with differ-
ent interpretations of a memory address, because each
experiment is so costly to run in terms of user effort.

4.2 Dynamic analysis
A debugger like the free tool “gdb”[7] is designed to
allow the user to inspect and interact with running pro-
grams. If no debugging information or source code is
provided which would allow it to show the high-level
code that corresponds to the running machine code, it
uses an embedded disassembler to show the disassem-
bly of the code that is currently executing.

This approach has several advantages. Code can be
distinguished from data with certainty, since the debug-
ger only needs to show the disassembly for instructions
which are currently executing or have previously exe-
cuted. The user can have the debugger interpret any
memory location in multiple ways. For example, they
could view one location as both an array of integers and
an array of characters, and discover that the data only
makes sense when interpreted as an array of integers.

The analyst can interact with the running program
to see what inputs a piece of code receives, or precisely
what action it takes as a result. The running program
may be modified by the analyst to explore areas of code
that would not normally execute. For example, they
can force the code to follow an error-handling branch
in order to examine that mechanism, even if they do not
know what inputs to the program are needed to cause
the error to be triggered in normal execution.

The main disadvantage of this approach is that the
user is typically unable to add any annotations to the
disassembly. If they discover the purpose of a routine,

they cannot give it a human-readable label which would
allow it to be understood the next time it is encountered.
Even if annotations are supported, the debugger will not
provide any way to save them and load them again later,
since it has no expectation that the memory layout of the
program will be similar the second time the program is
run. Analysis with a debugger is ephemeral, it cannot
be effectively used to produce a document which could
record the user’s findings to be shared with other re-
searchers.

4.3 Interactive disassembly
Traditional disassemblers are frequently used in situa-
tions where the disassembly is only useful for a short
amount of time, like a single session, and saving an-
notations is less important. For example, a common
task for a traditional disassembler is examining the ma-
chine code generated by a procedure in a high-level
language to diagnose performance or code generation
issues. Since they are typically used to examine a pro-
gram which is currently in development (and therefore
changing dramatically from a machine code perspec-
tive), the ability to save annotations is not valuable.

If a disassembly listing is to be modified and ex-
amined over an extended period of time (i.e. several
analysis sessions), or shared with other people, it must
be able to change dynamically as more information is
discovered by a human researcher. The researcher will
work with the disassembler to analyse a program. This
is the approach that we decided to take with our own
disassembler.

The only interactive disassembler that we are aware
of in common usage is IDA[3]. But IDA does not sup-
port the dynamic memory model of the Poly. While it
supports debugging live code for some targets, it does
not integrate with our Poly emulator.

5 Id, the interactive disassembler
To assist our reconstruction of the Poly platform, we
developed “Id”, an interactive disassembler which sup-
ports the Poly’s CPU and binary layouts. Id is an ap-
plication for Windows with a Graphical User Interface.
The main pane of Id is the disassembly listing. Sur-
rounding the listing are panels that give extra informa-
tion about the binary being disassembled. For instance,
one panel is a list of all of the symbol names created so
far in the image. Id can be seen in Figure 4.

To support the changing layout of programs on the
Poly, all of the items that Id identifies in its disassem-
bly are tagged with the physical address that they are
stored at, not the virtual memory addresses that they
appear at with one possible memory mapping. This
allows the user to change the virtual memory map while
they are examining the disassembly, and have the dis-
assembly listing change dynamically to reflect the new
interpretation of the program’s layout. This approach
works well with the Poly because code and resources on
this platform typically have a fixed location in physical

memory. On systems with address spaces larger than
the amount of physical memory available, like modern
32- and 64-bit computers, the reverse tends to be true.
Programs move around in physical memory but stay in
a fixed position in virtual memory.

Initially, no code has been identified in the image
(it is all considered to be data). To begin the disassem-
bly process, you must identify the start of a machine
instruction in the image. The CPU has to perform the
exact same task when the Poly boots. The CPU begins
by reading an address from an interrupt table at a fixed
location in memory, which is called the “reset vector”.
This is the location where execution begins after boot.
Id begins disassembly at this point. If the instruction at
the reset vector is a jump to a different location, Id can
follow the jump and recursively identify code there. If
the instruction is not a jump, execution will continue
to the next location in memory, so Id identifies an in-
struction there. Following jumps from the entry points
defined in the interrupt table identifies much of the code
in the image—around 60% for the Poly’s BIOS. The
remainder of the code is often interrupt handlers whose
address is determined at runtime in a fashion that is
currently too difficult for Id to discover.

To assist Id, the user can create new entry points
(the beginnings of instruction sequences) at any time.
Id automatically adds disassembly for those previously-
unidentified locations to the disassembly listing. If the
disassembler has wrongly identified data as code, the
user can convert it back to data.

While the physical representation of the data in the
program is known from the disassembly, the informa-
tion that the data encodes cannot always be inferred au-
tomatically. For example, Id knows that the operands of
instructions which specify the targets of read or writes
to memory locations are memory addresses. It can use
syntax colouring to distinguish these addresses from
other numeric literals found in the program. When pos-
sible, the symbolic name that the user has given to the
target address is shown in place of the raw address.

However, operands to instructions which are merely
stored into registers or into memory locations have no
special meaning defined by the instruction set. Id al-
lows the user to experiment with different interpreta-
tions of the data in order to discover what information
the data is encoding. For example, Id can interpret data
as strings, arrays, addresses, or numeric types of vari-
ous sizes and formats. As even simple operations such
as adding a constant to a number stored in a register can
have multiple reasonable meanings, this user-directed
assistance is crucial to documenting the purpose of the
program. For example, the machine code and effect
of subtracting 16 from a number stored in a register is
identical to that of adding 65520 (0xFFF0 in hexadec-
imal notation). But these two operations suggest very
different purposes for the code being disassembled. In
the first case, the program may be accessing data that
appears immediately before a previously-computed ad-

Figure 4: Id’s main GUI with the Proteus operating system loaded for disassembly. Andrew Trotman’s comments
appear after semicolons. All names in the disassembly are user-entered.

dress. This is the pattern expected if the program is
iterating over an array of elements whose size is 16-
bytes in reverse order. In the second case, the code may
be calculating the location of a dynamically-determined
field of a structure which is located at the fixed address
0xFFF0. This is the pattern expected if the program is
looking up the current location of one of the installed
interrupt routines (as the interrupt-vector table is lo-
cated at 0xFFF0). By specifying the signedness of the
operand, the user can disambiguate these two cases.

5.1 Annotation
Id is a hypertext document system. The start of each
routine or piece of data can be given a title by the user.
Id then provides a “names” pane, which lists every ti-
tle in the program, sorted by module. This structured
outline allows the document to be navigated rapidly.

References to memory locations found in the code,
such as the targets of jumps or the targets of memory
reading instructions, are shown as hyperlinks. The user
can double click on the hyperlink to jump directly to
its target. If there is a user-supplied title at the target
location, it is shown as the anchor text in the disas-
sembly in preference to the target’s raw memory ad-
dress. The user can further describe the purpose of a
location by adding an extended comment to the title.
This extended comment becomes the default comment
which appears automatically at all referral sites. The
user can edit the comment at a referral site in order to
record the exact way that the target is being used. For
example, the researcher might label a memory location

as “num clients”, and provide the extended comment
“number of Poly clients currently connected” to clar-
ify the meaning of the location. A comment at a re-
ferring site which increments this value might then be
customised: “record newly-attached client”.

As the user adds labels to locations in the mem-
ory map, the propogation of these labels to referring
sites makes the meaning of previously unexplored code
clearer. The analysis process shows a “jigsaw-like” ef-
fect. As with a jigsaw, a series of interlinked pieces
meet at common interfaces. As the jigsaw is completed,
the possible shape and location of the unplaced pieces
is futher and further constrained. This implies that the
initial analysis—discovering the large-scale structure of
the program—is the most difficult phase, with analysis
becoming more rapid as the final “pieces” are placed.

Id’s hyperlinks are bidirectional. The user can select
a title and discover all of the links which point to it
by using Id’s “cross-references” window. Id helps the
user choose interesting referrers for further analysis by
showing some context from each incoming link (the
closest few instructions and comments). By examining
a routine’s referrers, the researcher can determine (by
trial and error) what kind of inputs will be provided to
the routine and what sort of return value is expected in
response. Examining referrers is critical to discovering
the purpose of a target routine or memory address.

If the memory map changes, the names of the
targets of links in the code are updated accordingly.
In protected mode, a call to a routine at the address
0xF030 might send instructions to hardware to print

text to the display. But in unprotected mode, a different
routine will reside at that address. It could also be a
line-printing routine, but it might first copy the user’s
text to a buffer area before switching to protected mode
to call the BIOS’s line-printing routine. Id allows calls
to these two routines to be distinguished by allowing
them to have different names.

Broken hyperlinks, which are links that point to lo-
cations which do not currently exist in the disassem-
bly, are highlighted for the user. The presence of a
broken link could indicate that the target has not yet
been loaded from disk, or that the memory map is ex-
pected to change before the link will be accessed by the
program. This highlighting is particularly valuable for
discovering the connections between loadable modules
of code.

While the user can instruct Id to reinterpret a lo-
cation of the disassembly, the text of the disassembly
listing itself cannot be directly edited by the user. This
allows Id to ensure that the disassembly listing always
corresponds precisely to the machine code. In fact, the
listing could be used to reconstruct the original binary
program. Id does allow comments to be added to any
line of the disassembly as the purpose of routines are
discovered. Once a piece of code has been understood,
adding a comment allows the purpose of the sometimes
confusing assembly to be shared with other researchers.

5.2 Modules
Disassembly will typically be performed on a “mod-
ule”. A module is a set of code and data which is
tightly bound together. For instance, one module might
be the Poly’s BIOS, which is the code that controls
the interaction between the hardware and the software.
This code is stored in permanent memory chips on the
motherboard and appears in the Poly’s virtual address
space when it enters “protected mode”. Another mod-
ule might be a boot sector read from a floppy disk. Id
understands the format of the Poly’s file system and
programs, so it can simulate the action of the Poly’s pro-
gram loader and load a program from disk as a module
into the correct physical memory locations for analysis.

There are substantial cross-references between
modules, so the analysis of one module can be used
to understand a different module. For example, the
BIOS is responsible for loading the boot sector from a
floppy disk, then it transfers control to the boot sector
program. By disassembling the BIOS, the entry-point
of the boot sector’s code can be discovered. In a
traditional system, the disassembly document of each
module is independent so there is no inter-module
linking.

To support the analysis of large systems, Id’s
module system allows multiple disassemblies which
were created independently to be composed to
appear as one coherent document. For instance,
one disassembly might be the Proteus’s operating
system and BIOS. Another disassembly might be the

Poly’s operating system and BIOS. If you created a
disassembly of a text editor program, you could choose
to either link to the disassembly of the Poly’s operating
system (to examine the program’s effect on the Poly),
or link with the Proteus’s operating system (to examine
the program’s effect on the Proteus.) This linking
can be easily changed while you are disassembling.
The gutter of the disassembly pane is colour-coded to
show the module that a line of code belongs to. Cross-
module references are dynamically resolved based on
the current selection of modules. New information
identified about linked modules is automatically used
to update those documents when the parent document
is saved. This system allows reuse of disassembly
information—the information you discover about the
operating system while analysing a text editor program
is made available when examining the interaction
between a database program and the operating system.

The module system allows the user to document an
entire operating system and its attendant application
suite as a set of linked disassemblies.

5.3 Debugging
A goal of Id was to unify the capabilities of static and
dynamic disassemblers. Id includes a debugger which
can attach to a running instance of our Poly emulator.
This allows the runtime behaviour of a disassembled
program to be examined. It also allows the creation
of new disassemblies based on code which is loaded
in memory at runtime from unknown sources. For ex-
ample, the applications on the client Poly machine are
loaded from the server across the network. Using the
debugger, a copy of a network-loaded application can
be dumped from the client for later analysis.

The debugger integrates with the disassembler
tightly. For example, the debugger observes the
instructions which are executed at runtime in order to
discover the location of code in the image which it
could not have discovered with a static analysis of the
program on disk. The identified code is automatically
merged into the document that the user has already
created. The user is notified if the newly-identified
code is inconsistent with previous disassembly. For
example, if a newly-identified instruction lies within
a previously-defined instruction (which is vanishingly
rare in valid code), the user is asked to decide which
interpretation to accept.

By using the debugger, the user can discover cross-
references at runtime which cannot be discovered with
static analysis. For example, the user can set break-
points which pause execution when a certain memory
location is read to or written from. When the break-
point is triggered, the user has identified a link which
references their memory address. This is particularly
useful in debugging the behaviour of hardware devices
(which appear at virtual memory addresses in the Poly’s
memory map).

(a) Emulated text-mode battleships game on the Poly client (b) Emulated graphics-mode on the Poly client

Figure 5: Emulated Poly machines

In Figure 4, the debugger has been attached to an
emulator which is simulating the Proteus server. A
breakpoint has been placed in part of a network routine.
Execution will automatically pause at that point if the
Proteus executes that instruction, allowing the user to
inspect the contents of memory and the CPU registers.
In Figure 5, two Poly clients with attached debuggers
are executing programs delivered by the Proteus server.

6 Conclusions
We used the dynamic document features of our interac-
tive disassembler system, Id, in our analysis and reverse
engineering of the Poly. By using it, we were able
to investigate the Poly’s networking code in order to
to solve timing and hardware issues in our emulator.
Our Poly emulator is now able to successfully emulate
a Poly client attached to an emulated Proteus server.

The disassemblies that we created with Id will form
the basis of a online library of information about the
Poly’s software and hardware. Because Id allows re-
searchers to link and share information between their
new disassemblies and our existing disassemblies of the
operating system, BIOS, and other system utilities in
our library, analysis of the Poly system can be achieved
more rapidly and easily than with any other competing
disassembly system.

The documents produced all contribute to a
long-lasting store of knowledge about the Poly.
The disassemblies are in a format that is readable
even without using Id. They consist of plain-text,
human-readable disassembly listings similar to what
Id displays in its main pane, stored inside “zip”
compressed archives. This ensures that the information
discovered with Id will be accessible long into the
future.

Our disassembler’s Poly-specific knowledge is seg-
mented from its dynamic document engine, so it is rel-
atively easy to add support for more processors and
architectures. This makes Id a very flexible tool for the
disassembly and documentation of small systems.

References
[1] Various authors. 128K ZX Spectrum Technical

Information. World Of Spectrum, http:

//www.worldofspectrum.org/faq/reference/

128kreference.htm, 2009. Accessed 17th September,
2009.

[2] Inc. Free Software Foundation. GNU Binutils. http://
www.gnu.org/software/binutils/, 2008. Accessed
9 October, 2008.

[3] Ilfak Guilfanov. IDA Pro Disassembler—multi-processor,
windows hosted disassembler and debugger. Hex-Rays,
http://www.hex-rays.com/idapro/, 2009. Ac-
cessed 17th September, 2009.

[4] Matthew S. Hecht. Flow Analysis of Computer Programs.
Elsevier Science Inc., New York, NY, USA, 1977.

[5] R. N. Horspool and N. Marovac. An approach to the
problem of detranslation of computer programs. The
Computer Journal, Volume 23, Number 3, pages 223–
229, 1980.

[6] Lance Lyon. Commodore 128 Alive! Commodore
128, http://www.commodore128.org, 2009. Ac-
cessed 17th September, 2009.

[7] The GNU Project. GDB: The GNU project debugger.
http://www.gnu.org/software/gdb/, 2009. Ac-
cessed 15 September, 2009.

[8] T. Ritter and Boney J. The 6809. Byte Magazine, 1979.

[9] Steven Weyhrich. Apple][History Chap 7. Apple
2 History, http://apple2history.org/history/

ah07.html, 2009. Accessed 17th September, 2009.

