
Fast and Effective Focused Retrieval

Andrew Trotman1, Xiang-Fei Jia1 and Shlomo Geva2

1Computer Science, University of Otago, Dunedin, New Zealand
2Queensland University of Technology, Brisbane, Australia

Abstract. Building an efficient and an effective search engine is a very
challenging task. In this paper, we present the efficiency and effectiveness
of our search engine at the INEX 2009 Efficiency and Ad Hoc Tracks.
We have developed a simple and effective pruning method for fast query
evaluation, and used a two-step process for Ad Hoc retrieval. The over-
all results from both tracks show that our search engine performs very
competitively in terms of both efficiency and effectiveness.

1 Introduction

There are two main performance issues in Information Retrieval (IR); effective-
ness and efficiency. In the past, the research was mainly focused on effectiveness.
Only until recent years, efficiency is getting more research focus under the trend
of larger document collection sizes. In this paper, we present our approaches
towards efficient and effective IR and show our submitted results at the INEX
2009 Efficiency and Ad Hoc Tracks. We have developed a simple and effective
pruning method for fast query evaluation, and used a two-step process for Ad
Hoc retrieval. The overall results from both tracks show that our search engine
performs very competitively in terms of both efficiency and effectiveness.

In Section 2, IR efficiency issues are discussed. Section 3 explains how we
achieve fast indexing and searching for large document collections. Experiments
and results are shown in Section 4 and 5. Section 6 discusses our runs in the Ad
Hoc Track. The last section provides the conclusion and future work.

2 Background

Inverted files [1,2] are the most widely used index structures in IR. The index
has two parts: a dictionary of unique terms extracted from a document collection
and a list of postings (a pair of <document number, term frequency>) for each
of the dictionary terms.

When considering efficiency issues, IR search engines are very interesting be-
cause search engines are neither purely I/O-intensive nor solely CPU-intensive.
To serve a query, I/O is needed in order to read dictionary terms as well as post-
ings lists from disk. Then postings lists are processed using a ranking function
and intermediate results are stored in accumulators. At the end, the accumula-
tors are sorted and the top results are returned. There are two obvious questions;

(1) How do we reduce the I/O required for reading dictionary terms and posting
lists, and (2) how do we minimise the processing and sorting.

When considering effectiveness of Focused Retrieval, it is necessary to con-
sider whether to index documents, elements or passages. This leads to the ques-
tion of how effectiveness is affected by these index types — we have experimented
using document index and post processing to focus.

2.1 Disk I/O

The dictionary has a small size and can be loaded into memory at start-up. Due
to their large size, postings must be compressed and stored on disk. Various com-
pression algorithms have been developed, including Variable Byte, Elias gamma,
Elias delta, Golomb and Binary Interpolative. Trotman [3] concludes that Vari-
able Byte coding provides the best balance between the compression ratio and
the CPU cost for decompression. Anh & Moffat [4,5] construct word-aligned bi-
nary codes, which are effective at compression and fast at decompression. We
are experimenting with these compression algorithms.

Caching can also be used to reduce disk I/O. There are two levels of caching;
system-level and application-level. At the system-level, operating systems pro-
vide general purpose I/O caching algorithms. For example, the Linux kernel
provides several I/O caching algorithms [6]. At the application-level, caching is
more effective since the application can deploy specialised caching algorithms [7].
We are experimenting with caching approaches.

For IR search engines, there are two ways of caching at the application-level.
The first solution is to cache query results, which not only reduces disk I/O but
also avoids re-evaluation of queries. However, queries tend to have low frequency
of repetition [8]. The second is to cache raw postings lists. The challenge is to
implement a efficient replacement algorithm in order to keep the postings in
memory. We are also experimenting with caching algorithms.

Since the advent of 64-bit machine with vast amount of memory, is has be-
come feasible to load both the dictionary and the compressed postings of a
whole-document inverted file into main memory, thus eliminating all disk I/O.
For Focused Retrieval a post process of the documents can be a second step. If
the documents also fit into memory, then no I/O is needed for Focused Retrieval.
This is the approach we are taking, however our experiments in this paper were
performed without caching.

2.2 Query Pruning

The processing of postings and subsequent sorting of the accumulators can be
computationally expensive, especially when queries contain frequent terms. Fre-
quent terms appear in many documents in a collection and have low similarity
scores due to having a low Inverse Document Frequency (IDF). Processing the
postings for these terms not only takes time, but also has little impact on the
final ranking results.

The purpose of query pruning is to eliminating any unnecessary evaluation
while still maintaining good precision. In order to best approximate original
results, query pruning requires that (1) every term is assigned a weight [9,10],
(2) query terms are sorted in decreasing order of their weights (such as IDF), (3)
the postings are sorted in decreasing order of their weights (such as TF). Partial
similarity scores are obtained when some stop condition is met. Either partial
or the whole postings list of a query term might be pruned.

Harman & Candeka [11] experimented with a static pruning algorithm in
which complete similarity scores are calculated by processing all query terms
and postings of the terms. But only a limited number of accumulators, those
above a given threshold, are sorted and returned. A dynamic pruning algorithm
developed by Buckley and Lewit [12] keeps track of the top k+1 partial similarity
scores in the set of accumulators, and stops the query evaluation when it is
impossible to alter the top-k documents. The algorithm tries to approximate the
upper-bound of the top k candidates.

Moffat & Zobel [13] developed two pruning algorithms; the quit algorithm is
similar to the top-k algorithm and stops processing query terms when a none-zero
number of accumulators exceeds a constant value. While the continue algorithm
continues to process query terms when the stopping condition is met, but only
updates documents already in the set of accumulators.

Persin et al. [14,15] argue that a single stopping condition is not efficient
enough to maintain fair partial similarity scores. They introduced both a global
and a local threshold. The global threshold determines if a new document should
be inserted into the set of accumulators, while the local threshold checks if ex-
isting accumulators should be updated. The global threshold is similar to the
quit algorithm, while the combination of the global and local thresholds is like
the continue algorithm. However, there are two differences; (1) the quit algo-
rithm keeps adding new documents into the set of accumulators until reaching a
stopping condition, while the global threshold algorithm adds a new document
into the set of accumulators only if the partial similarity score of the document
is above the predefined global threshold. (2) The local threshold algorithm only
updates the set of accumulators when a partial similarity score is above the
local threshold, while the continue algorithm has no condition to update the
accumulators.

Anh et al. [16] introduced impact ordering, in which the postings for a term
are ordered according to their overall contribution to the similarity scores. They
state that Persin et al. [14,15] defined term-weighting as a form of TF-IDF (the
global threshold is the IDF and the local threshold is the TF), while Anh et al.
used normalised TF-IDF. The term impact is defined as wd,t/Wd where wd,t is
the document term weight and Wd is the length of the document vector.

In this paper, we present a simple but effective static pruning method, which
is similar to the continue algorithm.

3 Efficiency

3.1 Indexer

Memory management is a challenge for fast indexing. Efficient management of
memory can substantially reduce indexing time. Our search engine has a memory
management layer above the operating system. The layer pre-allocates large
chunks of memory. When the search engine requires memory, the requests are
served from the pre-allocated pool, instead of calling system memory allocation
functions. The sacrifice is that some portion of pre-allocated memory might be
wasted. The memory layer is used both in indexing and in query evaluation. As
we show in our results, only a very small portion of memory is actually wasted.

The indexer uses hashing with a collision binary tree for maintaining terms.
We tried several hashing functions including Hsieh’s super fast hashing function.
By default, the indexer uses a very simple hashing function, which only hashes
the first four characters of a term and its length by referencing a pre-defined
look-up table. A simple hashing function has less computational cost, but causes
more collisions. Collisions are handled by a simple unbalanced binary tree. We
will examine the advantages of various hashing and chaining algorithms in future
work.

Postings lists can vary substantially in length. The indexer uses various sizes
of memory blocks chained together. The initial block size is 8 bytes and the
resize factor is 1.5 for the subsequent blocks.

In order to reduce the size of the inverted file, we always use 1 byte to
store term frequencies. This limits term frequencies to a maximum value of 255.
Truncating term frequencies could have an impact on long documents. But we
assume long documents are rare in a collection and terms with high frequencies
in a document are more likely to be common words.

As shown in Figure 1, the index file has four levels of structure. Instead of
using the pair of <document number, term frequency> for postings, we group
documents with the same term frequency together and store the term frequency
at the beginning of each group. By grouping and impacting order documents
according to term frequency, during query evaluation we can easily process doc-
uments with potential high impacts first and prune the less important documents
at the end of the postings list. The difference of document ids in each group are
then stored in increasing order and each group ends with a zero. Postings are
compressed with Variable Byte coding.

The dictionary of terms is split into two parts. The first level stores the
first four bytes of a term string, the length of the term string and the position
to locate the second level structure. Terms with the same prefix (the first four
bytes) are stored in a term block in the second level. The term block stores
the statistics for the terms, including collection frequency, document frequency,
offset to locate the postings list, the length of the postings list stored on disk,
the uncompressed length of the postings list, and the position to locate the term
suffix which is stored at the end of the term block.

At the very end of the index file, the small footer stores the location of the
first level dictionary and other values for the management of the index.

Postings list

docid

docid

dociddocid

0

TF

docid

docid

docid

TF 0

docid dociddocid

.........

term, len, pos term, len, pos

footer

Second-level
dictionary

First-level
dictionary

CF, DF, offset, length, impact length, term pos

...

term-suffix term-suffix

...

...

term, len, pos

...

term block

term block

Fig. 1. The index structures

3.2 Query Evaluation

At start-up, only the the first-level dictionary is loaded into memory. To process
a query term, two disk reads have to be issued; The first reads the second-level
dictionary. Then the offset in that structure is used to locate postings, since we
do not use caching in these experiments. The current implementation has no
disk I/O caching. We simply deploy the general purpose caching provided by
the underlying operating system.

An array is used to store the accumulators. We used fixed point arithmetic
on the accumulators because it is faster than the floating point.

We have implemented a special version of quick sort algorithm [17] for fast
sorting of the accumulators. One of the features of the algorithm is partial sort-
ing; It will return the top-k documents by partitioning and then only sorting the
top partition. Pruning accumulators using partial sorting is similar to that of
Harman & Candeka [11]. A command line option (lower-k) to our search engine
is used to specify how many top documents to return.

We have also developed a method for static pruning of postings. A command
line option (upper-K) is used to specify a value, which is the number of document
ids (in the postings list of a term) to be processed. The upper-K value is only a
hint. The search engine will always finish processing all postings with the same

TF at the Kth postings. The combined use of both the lower-k and upper-K
methods is similar to the continue algorithm.

When upper-K is specified at the command line, the whole postings list of a
term is decompressed, even though only partial postings will be processed (this is
left for future work). Moffat and Anh [13,18] have developed methods for partial
decompression for Variable Byte compressed lists. However, these methods do
not come without a cost; Extra housekeeping data must be inserted into the
postings lists, thus increasing the size of the index. Further more, there is also a
computational cost in keeping track of the housekeeping data.

A modified BM25 is used for ranking. This variant does not result in negative
IDF values and is defined thus:

RSVd =
∑

t∈q

log

(
N

dft

)
· (k1 + 1) tftd

k1

(
(1− b) + b×

(
Ld

Lavg

))
+ tftd

Here, N is the total number of documents, and dft and tftd are the number
of documents containing the term t and the frequency of the term in document
d, and Ld and Lavg are the length of document d and the average length of
all documents. The empirical parameters k1 and b have been set to 0.9 and 0.4
respectively by training on the previous INEX Wikipedia collection.

4 Experiments

We conducted our experiments on a system with dual quad-core Intel Xeon
E5410 2.3 GHz, DDR2 PC5300 8 GB main memory, Seagate 7200 RPM 500 GB
hard drive, and running Linux with kernel version 2.6.30.

The collection used in the INEX 2009 Efficiency Track is the INEX 2009
Wikipedia collection [19]. The collection was indexed using the default param-
eters as discussed in Section 3. No words were stopped and stemming was not
used. The indexing took about 1 hour and 16 minutes. The memory layer al-
located a total memory of 5.3 GB with a utilisation of 97%. Only 160 MB of
memory was allocated but never used. Table 1 show s a summary of the docu-
ment collection.

The INEX 2009 Efficiency Track used two types of topics, with both types
having 115 queries. Type A Topics are short queries and the same as the INEX
2009 Ad Hoc topics. Type B Topics are expansions of topics in Type A and in-
tended as long queries. Both topics allow focused, thorough and article query eval-
uations. Our search engine does not natively support focused retrieval yet, but
we instead use a post-process. We only evaluated the topics for article Content-
Only. We used the BM25 ranking model as discussed in previous section. The
k1 and b values were 0.9 and 0.4 respectively.

We experimented only sorting the top-k documents using the lower-k param-
eter with k = 15, 150 and 1500 as required by the Efficiency Track. Query terms
do not have to be sorted in descending order of term frequency since our pruning
method does not prune query terms. We also experimented pruning of postings

using the upper-K parameter. For each iteration of the lower-k, we specified the
upper-K of 1, 15, 150, 1500, 15000, 150000, 1500000. In total we submitted 21
runs.

The disk cache was flushed before each run. No caching mechanism was
deployed except that provided by the Linux operating system.

Collection Size 50.7 GB
Documents 2666190

Average Document Length 881 words
Unique Words 11393924
Total Worlds 2348343176
Postings Size 1.2 GB

Dictionary Size 369 MB
Table 1. Summary of INEX 2009 Wikipedia Collection

5 Results

This section talks about the evaluation and performance of our 21 submitted
runs, obtained from the official Efficiency Track.

Table 2 shows a summary of the runs evaluated on the Type A topics. The
first column shows the run-id. The interpolated Precision (iP) reflects the evalu-
ations of top-k documents at points of 0%, 1%, 5% and 10%. The overall perfor-
mance is shown as Mean Average interpolated Precision (MAiP). The average
run time, consisting of the CPU and I/O, is the total time taken for the runs.
The last two columns show the lower-k and upper-K parameters. In terms of
MAiP, the best runs are Eff-21, Eff-20 and Eff-19 with a value of 0.3, 0.3 and
0.29 respectively.

Figure 2(a) shows the Precision-Recall graph of our 21 runs for Type A
topics. Except the Eff-1, Eff-8 and Eff-15 runs, all other runs achieved a very
good early precision. Bad performance of the three runs was caused by pruning
too many postings (a too small value for upper-K) regardless the number of
top-k documents retrieved.

The relationship between the MAiP measures and the lower-k and upper-K
parameters is plotted in Figure 3(a) using data from Table 2. When upper-K
has values of 150 and 1500, MAiP measures are much better than the upper-K
15. In terms of lower-k, MAiP measures approach constant at a value of 15000.

To have a better picture of the total time cost, we plotted the time costs of
all runs in Figure 4(a) using data from Table 2. Regardless of the values used
for lower-k and upper-K, the same number of postings were retrieved from disk,
thus causing all runs to have the same amount of disk I/O. The figure also shows
that the CPU usage is high when upper-K has a value greater than 1500.

We used the same measures for Type B topics. Table 3 shows the summary
of averaged measures for Type B topics. The best runs are Eff-20, Eff-21, Eff-
13 with an MAiP measure of 0.18, 0.17 and 0.17 respectively. An interesting
observation is that the best run (Eff-20) does not has the highest upper-k value.
Processing fewer postings not only saves time, but also improves precision. The
best MAiP in Type A is 0.3 while only 0.18 in Type B. We are investigating
why.

Figure 2(b) shows the Precision-Recall graph for Type B topics. The Eff-1,
Eff-8 and Eff-15 runs also achieved low precision at the early stage. All other
runs received good early precision. Figure 3(b) shows the MAiP measures using
various lower-k and upper-K values. It shows a similar pattern to that of Fig-
ure 3(a). However, good performance is seen when upper-K has a value of 150,
rather than the 15000 for Type A topics.

The time cost for Type B queries is plotted in Figure 4(b). All runs used the
same amount of time for I/O, and have different CPU cost due to various values
used for the lower-k and upper-K parameters. The lower-k again has no effect
on the CPU cost, and values of 1500 or above for upper-K causes more CPU
usage. It took a much longer time for I/O, due to more terms, when compared
with I/O cost in Type A.

As shown in both Figure 4(a) and 4(b), the runtime is dominated by the I/O.
This leads use to consider that storing the whole index in memory is important.

The submitted runs used small values for the lower-k parameter. In order to
see the impact of lower-k, we evaluated both topic sets using only lower-k with
a value of 1, 15, 150, 1500, 15000, 150000, 1500000 and 2666190. The number
2666190 is the total number of documents in the collection. As shown in Figure 5,
the time taken for sorting the accumulators increases when lower-k has a value
above 15000. The sorting times increase from 13.72 ms and 25.57 for Type A
and B topics (when lower-k is 15000) to 50.81 ms and 159.39 ms (when lower-k
is 2666190) respectively.

6 Ad Hoc

We also used our search engine in the ad hoc track. The whole-document re-
sults were extracted and submitted as the REFERENCE run. We then took the
reference run and ran a post-process to focus the top 50 results. Our rationale
is that document retrieval should rank document from mostly about a topic is
mostly not about a topic. If this is the case then focusing should be a fast and
relatively simple post process.

6.1 Query Evaluation

Three sets of runs were submitted: Those starting BM25 were based on the
reference run and generated from the topic title field (CO) using the BM25 search
engine. Those starting ANTbigram were an experiment into phrase searching
(and are not discussed here).

run-id iP[0.00] iP[0.01] iP[0.05] iP[0.01] MAiP Total time CPU I/O Lower-k Upper-K
Eff-01 0.22 0.22 0.18 0.14 0.06 77.8 20.4 57.3 15 1
Eff-02 0.35 0.35 0.32 0.29 0.13 77.1 20.4 56.7 15 15
Eff-03 0.48 0.48 0.43 0.36 0.15 77.2 20.0 57.2 15 150
Eff-04 0.55 0.54 0.5 0.44 0.18 78.1 21.0 57.1 15 1500
Eff-05 0.6 0.58 0.53 0.47 0.21 84.5 26.9 57.6 15 15000
Eff-06 0.6 0.59 0.53 0.48 0.21 101.3 43.0 58.2 15 150000
Eff-07 0.6 0.59 0.53 0.48 0.2 122.2 64.9 57.3 15 1500000
Eff-08 0.22 0.22 0.18 0.14 0.06 77.7 20.4 57.3 150 1
Eff-09 0.36 0.36 0.33 0.31 0.14 76.9 19.9 57.0 150 15
Eff-10 0.48 0.48 0.44 0.38 0.19 77.4 20.3 57.2 150 150
Eff-11 0.55 0.54 0.51 0.47 0.23 78.3 21.3 57.0 150 1500
Eff-12 0.6 0.59 0.55 0.51 0.27 83.8 26.9 56.9 150 15000
Eff-13 0.6 0.59 0.55 0.52 0.28 100.0 42.7 57.3 150 150000
Eff-14 0.6 0.59 0.55 0.52 0.28 122.2 64.9 57.3 150 1500000
Eff-15 0.22 0.22 0.18 0.14 0.06 76.9 20.3 56.6 1500 1
Eff-16 0.36 0.36 0.33 0.31 0.14 77.1 20.2 56.9 1500 15
Eff-17 0.48 0.48 0.44 0.38 0.19 77.4 20.1 57.3 1500 150
Eff-18 0.55 0.54 0.51 0.47 0.24 78.5 20.9 57.6 1500 1500
Eff-19 0.6 0.59 0.55 0.51 0.29 83.6 26.8 56.9 1500 15000
Eff-20 0.6 0.59 0.55 0.52 0.3 100.3 42.7 57.6 1500 150000
Eff-21 0.6 0.59 0.55 0.52 0.3 121.7 64.3 57.4 1500 1500000

Table 2. A summary of the runs for Type A topics

For structure searching (CO+S/CAS) we indexed all those tags in a docu-
ment as special terms. If the path /A/B/C were present in the document then we
indexed the document as containing tags A, B, and C. Searching for these tags
did not take into consideration the path, only the presence of the tag; that is,
/C/B/A would match /A/B/C. Ranking of tags was done with BM25 because
the special terms were treated as ordinary terms during ranking. We call this
technique Bag-Of-Tags.

Runs containing BOT in their name were generated from the CAS title using
the Bag-Of-Tags approach. All search terms and tag names from the paths were
included and the queries were ranked using BM25.

The post processing step was not done by the search engine — we leave that
for future work. Several different techniques were used:

1. No Focusing (ARTICLE)
2. Deepest enclosing ancestor of all search terms (ANCESTOR)
3. Enclosing element range between first and last occurrence of a search term

(RANGE/BEP)
4. All non-overlapping elements containing a search term
5. All overlapping elements containing a search term (THOROUGH)

Runs were submitted to the BIC task (1 & 2), RIC (1-4), Focused (1-4) and
thorough (1-5) tasks.

run-id iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP Total time CPU I/O Lower-k Upper-K
Eff-01 0.24 0.24 0.17 0.14 0.05 380.22 31.97 348.25 15 1
Eff-02 0.34 0.33 0.32 0.29 0.1 367.53 32.07 335.46 15 15
Eff-03 0.35 0.34 0.33 0.29 0.12 367.44 33.41 334.03 15 150
Eff-04 0.38 0.38 0.34 0.32 0.12 373.95 41.72 332.23 15 1500
Eff-05 0.38 0.37 0.33 0.31 0.11 418.02 89.73 328.29 15 15000
Eff-06 0.39 0.39 0.34 0.3 0.11 511.56 184.9 326.66 15 150000
Eff-07 0.39 0.38 0.33 0.3 0.11 542.98 216.97 326.02 15 1500000
Eff-08 0.24 0.24 0.18 0.15 0.05 367.21 32.08 335.13 150 1
Eff-09 0.34 0.34 0.33 0.3 0.13 367.51 32.14 335.37 150 15
Eff-10 0.36 0.35 0.34 0.32 0.16 370.12 33.43 336.69 150 150
Eff-11 0.39 0.39 0.35 0.34 0.16 387.61 41.98 345.63 150 1500
Eff-12 0.39 0.38 0.35 0.34 0.16 419.43 90.03 329.39 150 15000
Eff-13 0.4 0.4 0.36 0.33 0.17 512.54 185.07 327.47 150 150000
Eff-14 0.4 0.4 0.36 0.33 0.16 543.53 216.59 326.94 150 1500000
Eff-15 0.24 0.24 0.18 0.15 0.05 368.33 31.84 336.49 1500 1
Eff-16 0.34 0.34 0.33 0.3 0.14 369.46 32.33 337.13 1500 15
Eff-17 0.36 0.35 0.34 0.32 0.17 378.73 33.23 345.5 1500 150
Eff-18 0.39 0.39 0.35 0.34 0.17 378.19 41.77 336.42 1500 1500
Eff-19 0.39 0.38 0.35 0.34 0.17 421.83 90.11 331.72 1500 15000
Eff-20 0.4 0.4 0.36 0.33 0.18 533.32 184.88 348.44 1500 150000
Eff-21 0.4 0.4 0.36 0.33 0.17 551.8 217.52 334.28 1500 1500000

Table 3. A summary of the runs for Type B topics

6.2 Results

In the BIC task our run BM25bepBIC placed first. It used BM25 to rank docu-
ments and then placed the Best Entry Point at the start of the first element that
contained the first occurrence of any search term. Our second best run placed
third (RMIT placed second) and it used the ancestor approach.

In the RIC task our runs placed first through to ninth. Our best run was
BM25RangeRIC which simply trimmed all those elements from the start and end
of the document that did not contain any occurrences of the search terms. The
next most effective run was BM25AncestorRIC which chose the lowest common
ancestor of the range (and consequently more non-relevant material). Of note,
the REFERENCE run placed third – that is, whole document retrieval was very
effective.

In the Focused task all our Bag-Of-Tags (CAS) runs placed better than our
CO runs. Our best run placed ninth and used ranges, the ancestor run placed
tenth and the article run placed eleventh.

In the thorough task our best run, BM25thorough, placed sixth with the
Bag-of-Tags placing seventh. We have not concentrated on the focused track.

0 0.2 0.4 0.6 0.8 1

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(a)

Recall

Pr
ec
isi
on

Eff−1
Eff−2
Eff−3
Eff−4
Eff−5
Eff−6
Eff−7
Eff−8
Eff−9
Eff−10
Eff−11
Eff−12
Eff−13
Eff−14
Eff−15
Eff−16
Eff−17
Eff−18
Eff−19
Eff−20
Eff−21

0 0.2 0.4 0.6 0.8 1

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(b)

Recall

Pr
ec
isi
on

Eff−1
Eff−2
Eff−3
Eff−4
Eff−5
Eff−6
Eff−7
Eff−8
Eff−9
Eff−10
Eff−11
Eff−12
Eff−13
Eff−14
Eff−15
Eff−16
Eff−17
Eff−18
Eff−19
Eff−20
Eff−21

Fig. 2. Precision-Recall plot for (a) Type A and (b) Type B topics

●

●

●

●

● ●
●

1 15 150 1500 15000 150000 1500000

0
0.

05
0.

1
0.

15
0.

2
0.

25
0.

3

(a)

upper−K

M
Ai

P

● lower−k 15
lower−k 150
lower−k 1500

●

●

● ●
● ● ●

1 15 150 1500 15000 150000 1500000

0
0.

05
0.

1
0.

15
0.

2
0.

25
0.

3
(b)

upper−K

M
Ai

P

● lower−k 15
lower−k 150
lower−k 1500

Fig. 3. MAiP measures for (a) Type A and (b) Type B topics

0
10

0
20

0
30

0
40

0
50

0
60

0

(a)

M
illi

se
co

nd
s

Eff−
1
Eff−

2
Eff−

3
Eff−

4
Eff−

5
Eff−

6
Eff−

7
Eff−

8
Eff−

9
Eff−

10
Eff−

11
Eff−

12
Eff−

13
Eff−

14
Eff−

15
Eff−

16
Eff−

17
Eff−

18
Eff−

19
Eff−

20
Eff−

21

CPU time
IO time

0
10

0
20

0
30

0
40

0
50

0
60

0

(b)

M
illi

se
co

nd
s

Eff−
1
Eff−

2
Eff−

3
Eff−

4
Eff−

5
Eff−

6
Eff−

7
Eff−

8
Eff−

9
Eff−

10
Eff−

11
Eff−

12
Eff−

13
Eff−

14
Eff−

15
Eff−

16
Eff−

17
Eff−

18
Eff−

19
Eff−

20
Eff−

21

CPU time
IO time

Fig. 4. Total runtime for (a) Type A and (b) Type B topics

● ● ● ● ●

●

● ●

1 15 150 1500 15000 150000 1500000 2666190

0
20

40
60

80
10

0
12

0
14

0
16

0

Lower−K

M
illi

se
co

nd
s

● Type A
Type B

Fig. 5. Times taken for sorting accumulators

7 Conclusion and Future Work

In this paper, we introduced our search engine, discussed our design and im-
plementation. We also demonstrated the initial evaluation on the INEX 2009
Efficiency and Ad Hoc Tracks. Our best runs for Type A topics have an MAiP
measure of 0.3 and runtime of 100 milliseconds, an MAiP measure of 0.18 and
runtime of 533 milliseconds for Type B topics. Compared with the overall results
from the Efficiency Track, we believe that our results are very competitive.

Our ad hoc experiments have shown that the approach of finding relevant
documents and then post-processing is an effective way of building a Focused
Retrieval search engine for the in-Context tasks (where we placed first). They
also show that ignoring the structural hints present in a query is reasonable.

Our Focused and Thorough results were not as good as our in-Context runs
(we placed respectively fifth and third institutionally). Our experiments here
suggest that the Bag-of-Tags approach is effective with our BOT runs performing
better than ignoring structural hints in the Focused task and comparably to
ignoring the hints in the Focused task. In the Focused task we found that ranges
are more effective than common ancestor and (because they are better excluders
of non-relevant material). In future work we will be concentrating on increasing
our performance in these two tasks.

Of particular interest to us, our runs did not perform best when measured
as whole-document retrieval. Our focusing were, however, effective. LIG, RMIT
University, and University of Amsterdam bettered our REFERENCE run and
we are particularly interested in their approaches and how they might be applied
to whole document retrieval (so that we may better our own runs).

In the future, we will continue to work on pruning for more efficient query
evaluation. We are also interested in other techniques for improving efficiency
without loss of effectiveness, including compression, caching and multi-threading
on multi-core architectures.

References

1. Zobel, J., Moffat, A., Ramamohanarao, K.: Inverted files versus signature files for
text indexing. ACM Trans. Database Syst. 23(4) (1998) 453–490

2. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv.
38(2) (2006) 6

3. Trotman, A.: Compressing inverted files. Inf. Retr. 6(1) (2003) 5–19
4. Anh, V.N., Moffat, A.: Inverted index compression using word-aligned binary

codes. Inf. Retr. 8(1) (2005) 151–166
5. Anh, V.N., Moffat, A.: Improved word-aligned binary compression for text index-

ing. IEEE Transactions on Knowledge and Data Engineering 18(6) (2006) 857–861
6. Bovet, D.P., Cesati, M.: Understanding the linux kernel, 3rd edition. (November

2005)
7. Jia, X., Trotman, A., O’Keefe, R., Huang, Z.: Application-specific disk I/O opti-

misation for a search engine. In: PDCAT ’08: Proceedings of the 2008 Ninth In-
ternational Conference on Parallel and Distributed Computing, Applications and
Technologies, Washington, DC, USA, IEEE Computer Society (2008) 399–404

8. Baeza-Yates, R., Gionis, A., Junqueira, F., Murdock, V., Plachouras, V., Silvestri,
F.: The impact of caching on search engines. In: SIGIR ’07: Proceedings of the
30th annual international ACM SIGIR conference on Research and development
in information retrieval, New York, NY, USA, ACM (2007) 183–190

9. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
(1988) 513–523

10. Lee, D.L., Chuang, H., Seamons, K.: Document ranking and the vector-space
model. IEEE Softw. 14(2) (1997) 67–75

11. Harman, D., Candela, G.: Retrieving records from a gigabyte of text on a minicom-
puter using statistical ranking. Journal of the American Society for Information
Science 41 (1990) 581–589

12. Buckley, C., Lewit, A.F.: Optimization of inverted vector searches. (1985) 97–110
13. Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM Trans.

Inf. Syst. 14(4) (1996) 349–379
14. Persin, M.: Document filtering for fast ranking. (1994) 339–348
15. Persin, M., Zobel, J., Sacks-Davis, R.: Filtered document retrieval with frequency-

sorted indexes. J. Am. Soc. Inf. Sci. 47(10) (1996) 749–764
16. Anh, V.N., de Kretser, O., Moffat, A.: Vector-space ranking with effective early

termination. (2001) 35–42
17. Bentley, J.L., Mcilroy, M.D.: Engineering a sort function (1993)
18. Anh, V.N., Moffat, A.: Compressed inverted files with reduced decoding overheads.

(1998) 290–297
19. Schenkel, R., Suchanek, F., Kasneci, G.: YAWN: A semantically annotated

wikipedia xml corpus. (March 2007)

