
University of Otago at INEX 2010

Xiang-Fei Jia, David Alexander, Vaughn Wood and Andrew Trotman

Computer Science, University of Otago, Dunedin, New Zealand

Abstract. In this paper, we describe University of Otago’s participation
in Ad Hoc, Link-the-Wiki Tracks, Efficiency and Data Centric Tracks of
INEX 2010. In the Link-the-Wiki Track, we show that the simpler rele-
vance summation method works better for producing Best Entry Points
(BEP). In the Ad Hoc Track, we discusses the effect of various stemming
algorithms. In the Efficiency Track, we compare three query pruning al-
gorithms and discusses other efficiency related issues. Finally in the Data
Centric Track, we compare the BM25 and Divergence ranking functions.

1 Introduction

In INEX 2010, University of Otago participated in the Ah Hoc, Link-the-Wiki
Tracks, the Efficiency and Data Centric Tracks. In the Link-the-Wiki Track, we
talk about how our linking algorithm works using the Te Ara collection and the
newly developed assessment tool. In the Ad Hoc Track, we show the performance
of our stemming algorithm using Genetic Algorithms and how it performs against
other stemming algorithms. In the Efficiency Track, we discusses the performance
of our three pruning algorithms; The first is the original topk (originally described
in INEX 2009), an improved version of the topk and the heapk. Finally in the
Data Centric Track, we compare the BM25 and Divergence ranking functions.

In Section 2, related work is discussed. Section 3 explains how our search
engine works. Section 4, 5, 6 and 7 talk about how we performed in the corre-
sponding Tracks. The last section provides the conclusion and future work.

2 Related Work

2.1 The Link-the-Wiki Track

The aim of the INEX Link-the-Wiki track is to develop and evaluate link rec-
ommendation algorithms for large hypertext corpora.

Before 2009, Wikipedia was the only corpus used in the Link-the-Wiki track;
the task was to link related Wikipedia documents to each other, with or without
providing specific anchor locations in the source documents. In 2009, the Te Ara
Encyclopedia of New Zealand was used alongside Wikipedia, and tasks included
producing links within each of the two corpora, and linking articles in one corpus
to articles in the other.

Work has been done on the topic of hypertext link recommendation by a
number of people both within the INEX Link-the-Wiki track and outside of



it. It is difficult to compare INEX-assessed algorithms with non-INEX-assessed
algorithms because the assessment methodology plays a large part in the results,
so this section will focus on algorithms from within INEX.

For Wikipedia, the two most successful link-recommendation algorithms are
due to Kelly Itakura [1] and Shlomo Geva [2].

Itakura’s algorithm chooses anchors in a new document by calculating the
probability (γ) that each phrase, if found in the already-linked part of the corpus,
would be an anchor. If γ exceeds a certain threshold (which may be based on the
length of the document), the phrase is used as an anchor. The target for the link
is chosen to be the most common target for that anchor among existing links.
The formula for γ for a given phrase P is:

γ =
number of occurrences of P in the corpus as a link
number of occurrences of P in the corpus altogether

Geva’s algorithm simply searches for occurrences of document titles in the
text of the orphan document. If such an occurrence is found, it is used as an
anchor. The target of the link is the document whose title was found.

2.2 The Ad Hoc Track

In the Ad Hoc Track, we compare the performance of our stemming algorithm
using Genetic Algorithms with other stemming algorithms.

The S Stripper consists of three rules. These rules are given in Table 1. It uses
only the first matching rule. It has improved MAP on previous INEX Ad Hoc
collections, from 2006-2009. This serves as a baseline for stemmer performance,
and is an example of a weak stemmer (It does not conflate many terms).

ies → y
es →
s →

Table 1: S Stripper rules. The first suffix matched on the left is replaced by the
suffix on the right.

The Porter stemmer [3] has improved some runs for our search engine on
previous INEX collections. It serves as an example of a strong stemmer. We use
it here as a baseline for comparing stemmer performance.

People have found ways to learn to expand queries using thesauruses gen-
eration or statistical methods. Jones [4] used clustering methods for query ex-
pansion. We have been unable to find any mention of symbolic learning used for
stemming.

A similar method for improving stemming by using term similarity informa-
tion from the corpus was used by Xu and Croft [5]. Their work uses the Expected



Mutual Information Measure. Instead we have used Pointwise Mutual Informa-
tion and the Jaccard Index. These were chosen as the best out of a larger group
of measures.

2.3 The Efficiency Track

The following discussion of the related work is taken from our published paper
in ADCS 2010 [6].

Disk I/O involves reading query terms from a dictionary (a vocabulary of all
terms in the collection) and the corresponding postings lists for the terms. The
dictionary has a small size and can be loaded into memory at start-up. However,
due to their large size, postings are usually compressed and stored on disk.
A number of compression algorithms have been developed and compared [7,8].
Another way of reducing disk I/O is caching, either at application level or system
level [9,10]. Since the advent of 64-bit machines with vast amounts of memory,
it has become feasible to load both the dictionary and the compressed postings
into main memory, thus eliminating all disk I/O. Reading both dictionary and
postings lists into memory is the approach taken in our search engine.

The processing (decompression and similarity ranking) of postings and sub-
sequent sorting of accumulators can be computationally expensive, especially
when queries contain frequent terms. Processing of these frequent terms not
only takes time, but also has little impact on the final ranking results. Post-
ings pruning at query time is a method to eliminate unnecessary processing of
postings and thus reduce the number of non-zero accumulators to be sorted. A
number of pruning methods have been developed and proved to be efficient and
effective [11,12,13,14,15,16]. In our previous work [16], the topk pruning algo-
rithm partially sorts the static array of accumulators using an optimised version
of quick sort [17] and statically prunes postings. In this paper, we present an
improved topk pruning algorithm and an new pruning algorithm based on heap
data structure.

Traditionally, term postings are stored in pairs of <document number, term
frequency> pairs. However, postings should be impact ordered so that most
important postings can be processed first and the less important ones can be
pruned using pruning methods [18,14,15]. One approach is to store postings
in order of term frequency and documents with the same term frequency are
grouped together [18,14]. Each group stores the term frequency at the beginning
of the group followed by the compressed differences of the document numbers.
The format of a postings list for a term is a list of the groups in descending
order of term frequencies. Another approach is to pre-compute similarity val-
ues and use these pre-computed impact values to group documents instead of
term frequencies [15]. Pre-computed impact values are positive real numbers.
In order to better compress these numbers, they are quantised into whole num-
bers [19,15]. Three forms of quantisation method have been proposed (Left.Geom,
Uniform.Geom, Right.Geom) and each of the methods can better preserve certain
range of the original numbers [15]. In our search engine, we use pre-computed



BM25 impact values to group documents and the differences of document num-
bers in each group are compressed using Variable Byte Coding by default. We
choose to use the Uniform.Geom quantisation method for transformation of the
impact values, because the Uniform.Geom quantisation method preserves the
original distribution of the numbers, thus no decoding is required at query time.
Each impact value is quantised into an 8-bit whole number.

Since only partial postings are processed in query pruning, there is no need to
decompress the whole postings lists. Skipping [12] and blocking [20] allow pseudo-
random access into encoded postings lists and only decompress the needed parts.
Further research work [21,22] represent postings in fixed number of bits, thus
allowing full random access. Our search engine partially decompress postings
list based on the worst case of the static pruning. Since we know the parameter
value of the static pruning and the biggest size of an uncompressed impact value
(1 byte), we can add these together to find the cut point for decompression.
We can simply hold decompression after that number of postings have been
decompressed.

3 System Overview

3.1 Indexer

Memory management is a challenge for fast indexing. Efficient management of
memory can substantially reduce indexing time. Our search engine has a memory
management layer above the operating system. The layer pre-allocates large
chunks of memory. When the search engine requires memory, the requests are
served from the pre-allocated pool, instead of calling system memory allocation
functions. The sacrifice is that some portion of pre-allocated memory might be
wasted. The memory layer is used both in indexing and in query evaluation. As
shown previously in [16], only a very small portion of memory is actually wasted.

The indexer uses hashing with a collision binary tree for maintaining terms.
We tried several hashing functions including Hsieh’s super fast hashing function.
By default, the indexer uses a very simple hashing function, which only hashes
the first four characters of a term and its length by referencing a pre-defined
look-up table. A simple hashing function has less computational cost, but causes
more collisions. Collisions are handled by a simple unbalanced binary tree. We
will examine the advantages of various hashing and chaining algorithms in future
work.

Postings lists can vary substantially in length. The indexer uses various sizes
of memory blocks chained together. The initial block size is 8 bytes and the
re-size factor is 1.5 for the subsequent blocks.

The indexer supports either storing term frequencies or pre-computed impact
values. A modified BM25 is used for pre-computing the impact values. This
variant does not result in negative IDF values and is defined thus:

RSVd =
∑
t∈q

log

(
N

dft

)
· (k1 + 1) tftd

k1

(
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))
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here, N is the total number of documents, and dft and tftd are the number of
documents containing the term t and the frequency of the term in document
d, and Ld and Lavg are the length of document d and the average length of
all documents. The empirical parameters k1 and b have been set to 0.9 and 0.4
respectively by training on the previous INEX Wikipedia collection.

In order to reduce the size of the inverted file, we always use 1 byte to store
term frequencies and pre-computed impact values. This limits to a maximum
value of 255. Term frequencies which have values larger than 255 are simply
truncated. Truncating term frequencies could have an impact on long documents.
But we assume long documents are rare in a collection and terms with high
frequencies in a document are more likely to be common words. Pre-computed
impact values are transformed using the Uniform.Geom quantisation method.

As shown in Figure 1, the index file has five levels of structure. In the top
level, original documents in compressed format can be stored. Storing original
documents is optional, but is required for focused retrieval.

docid docid 0 TF docidTF docid docid docid

docid docid 0 ... ... ... ... ... ...

term-prefix, pos

term-suffix ...

CF, DF, offset, length, impact length, local_max, term_pos

...

terms

term-suffix ...

... ...

..., ..., ..., ..., ..., ..., ...

...

...

... ...

Compressed original documents

 First-level

dictionary

 Second-level

dictionary

Postings lists

Term block

with the same

prefix

Term block

with the same

prefix

footer

terms term-prefix, pos term-prefix, pos

… ... … ... … ...

... ... ... ... ... ... ... ... ...

Fig. 1: The index structures.

Instead of using the pair of <document number, term frequency> for post-
ings, we group documents with the same term frequency (or the impact value)
together and store the term frequency (or the impact value) at the beginning
of each group. By grouping and impacting order documents according to term
frequencies (or impact values), during query evaluation we can easily process
documents with potential high impacts first and prune the less important doc-



uments at the end of the postings list. The difference of document ids in each
group are then stored in increasing order and each group ends with a zero.
Postings are compressed with Variable Byte coding.

The dictionary of terms is split into two parts. Terms with the same prefix
are grouped together in a term block. The common prefix (only the first four
characters) is stored in the first level of the dictionary and the remaining are
stored in the term block in the second level. The number of terms in the block is
stored at the beginning of the block. The term block also stores the statistics for
the terms, including collection frequency, document frequency, offset to locate
the postings list, the length of the postings list stored on disk, the uncompressed
length of the postings list, and the position to locate the term suffix which is
stored at the end of the term block.

At the very end of the index file, the small footer stores the location of the
first level dictionary and other values for the management of the index.

3.2 Query Evaluation

At start-up, only the the first-level dictionary is loaded into memory by de-
fault. To process a query term, two disk reads have to be issued; The first reads
the second-level dictionary. Then the offset in that structure is used to locate
postings. The search engine also supports a command line option which allows
loading the whole index into memory, thus totally eliminating I/O at query time.

An array is used to store the accumulators. We used fixed point arithmetic
on the accumulators because it is faster than the floating point.

For last year INEX, we developed the topk algorithm for fast sorting of the
accumulators. It uses a special version of quick sort [17] which partially sorts
the accumulators. A command line option (lower-k) is used to specify how many
top documents to return.

Instead of explicit sorting of all the accumulators, we have developed an im-
proved version of topk. During query evaluation, it keeps track of the current top
documents and the minimum partial similarity score among the top documents.
The improved topk uses an array of pointers to keep track of top documents.
Two operations are required to maintain the top documents, i.e. update and in-
sert. If a document is in the top documents and gets updated to a new score,
the improved topk simply does nothing. If a document is not in the top k and
gets updated to a new score which is larger than the minimum score, the docu-
ment needs to be inserted into the topk. The insert operation is accomplished by
two linear scans of the array of pointers; (1) the first scan locates the document
which has the minimum score and swap the minimum document with the newly
updated document, (2) the second finds the current minimum similarity score.

Based on the topk algorithm, we have further developed a new algorithm
called heapk. It uses a minimum heap to keep track of the top documents. In-
stead of using the minimum similarity score, heapk uses bit strings to define if
a document is among the top k. The heap structure is only built once which is
when the number of top slots are fully filled. If a document is in the heap and
gets updated to a new score, heapk first linearly scans the array to locate the



document in the heap and then partially updates the structure. If a document is
not in the heap and the newly updated score is larger than the minimum score
(the first pointer) in the heap, heapk partially inserts the document into the
heap.

The upper-K command line option is used for static pruning of postings. It
specifies a value, which is the number of postings to be processed. Since only
part of the postings lists is processed, there is no need to decompress the whole
list. Our search engine partially decompress postings lists based on the worst
cast. Since we know the parameter value of upper-K and the biggest size of an
uncompressed impact value (1 byte), we can add these together to find the cut
point for decompression.

4 The Link-The-Wiki Track

In this year’s Link-the-Wiki track, the only corpus used was the Te Ara Ency-
clopedia of New Zealand. Wikipedia was abandoned as a corpus because it had
become too easy for algorithms to score highly according to the metrics used by
INEX. This is believed to be because of characteristics of Wikipedia that Te Ara
does not possess. Te Ara is therefore of interest because it presents challenges
that Wikipedia does not.

It is also of interest because its maintainers (New Zealand’s Ministry of Cul-
ture and Heritage) have asked for links to be incorporated into the official, public
version of their encyclopedia. This is an opportunity for these linking algorithms
to be tested in a real-world application.

Our participation in the Link-the-Wiki track is detailed in the rest of this
section. First, the differences between Wikipedia and Te Ara are outlined, as
well as the possible ways to develop linking algorithms for Te Ara. Then, our
own linking algorithm is explained, and its assessment results given. Finally, our
contribution to the Link-the-Wiki assessment process is explained.

4.1 Differences between Wikipedia and Te Ara

The most important difference between Wikipedia and Te Ara is that Te Ara
has no existing links. The Link-the-Wiki Track has always been to take a single
“orphan” (a document whose incoming and outgoing links have been removed)
and produce appropriate links to and from it, using the remainder of the corpus
(including any links that do not involve the orphan) as input if desired. This
meant that algorithms could statistically analyse the anchors and targets of the
existing links in the corpus, using that information to decide what kind of links
would be appropriate for the orphan document. Itakura’s algorithm (described
in Section 2) is an example of one that does so, and it has been consistently
successful on Wikipedia.

In Te Ara this is not possible. The problem is not merely the lack of links,
but that the encyclopedia was not written with links in mind. In any body of
writing there are a number of different ways to refer to a given topic, but in a



hypertext corpus such as Wikipedia, writers tend to use existing article titles as
“canonical names” to refer to the topics of those articles. The absence of this in
Te Ara renders an approach such as Geva’s algorithm less effective.

Wikipedia and Te Ara are also organised in very different ways. Te Ara is
primarily a record of New Zealand history, and the discussion of any given topic
may be spread among several articles, each of which may discuss other topics as
well. This is especially true of topics that are relevant to both the indigenous and
colonial inhabitants of New Zealand; and also topics that have been relevant over
a long period of time. In Wikipedia, even such wide-ranging topics are typically
centred around a single article.

4.2 Adapting to the differences in Te Ara

Without the possibility of using previous years’ best-performing algorithms di-
rectly on Te Ara, we were left with two options: we could either find a way
to “map” Wikipedia documents to their closest Te Ara counterparts, and then
translate Wikipedia links into Te Ara links; or we could devise a new linking
algorithm that did not rely on existing links at all.

We chose the latter option because, as discussed above, Te Ara is organised
very differently from Wikipedia, and finding a suitable mapping would have been
difficult. The algorithm we used is described below.

4.3 Algorithm

The main premise behind our linking algorithm is that Te Ara documents are
less “to-the-point” than Wikipedia documents (that is, a single Te Ara article
tends to touch on numerous related topics in order to “tell a story” of some sort),
and therefore it is important to take into account the immediate context of a
candidate anchor or entry-point, as well as the more general content of the two
documents being linked.

Three sets of files were created and indexed using our search engine (described
in Section 3). In the first, each document was contained within a separate file.
In the second, each section of each document was contained within a separate
file. The third was the same, but only included the section headings rather
than the body text of each section. In this way, we were able to vary the level of
target-document context that was taken into account when searching for possible
entry-points for a given link.

Within each source document, candidate anchors were generated. Every max-
imal sequence of consecutive words containing no stopwords or punctuation
marks was considered as a candidate anchor. The purpose of this was to avoid
using large portions of sentences as anchors merely because all the words appear
in the target document.

For each candidate anchor, various levels of context around the anchor (doc-
ument, paragraph, sentence, and clause) were extracted from the source docu-
ment. Each anchor context, as well as the anchor text itself, was used to query



for possible targets against whichever one of the three target file-sets provided
the level of context closest in size to the source context. If a particular document
(or section) appeared in the query results for the anchor text itself, and for at
least one of the chosen contexts, it was used as a target for that anchor. The
target was given a relevance score, which was a weighted average of the relevance
scores given by BM25 for each of the different contexts’ queries, based on our
estimate of their importance.

24 runs were produced by varying the following 4 parameters:

– Full-document anchor context Whether or not the entire source document of
an anchor was used as one of its contexts. If not, the largest level of context
was the paragraph containing the anchor.

– Relevance summation method How the total relevance score for a link was
added up. In one method, the relevance scores for a target, queried from all
levels of context and from the anchor itself, were simply averaged using the
predetermined weights. In the other method, the values averaged were the
squared differences between the relevance scores for each context and from
the anchor. The rationale for the second method was that if a target was
much more relevant to the anchor context than the anchor, then a nearby
anchor would probably be better than the current one.

– Relevance score contribution Whether all of the weights for the anchor con-
texts were non-zero, or just the weight for the largest context. When a con-
text has a weight of zero, it still contributes to the choice of targets for an
anchor, but not to their scores.

– Target contexts Which target contexts the anchor texts themselves were di-
rectly queried against (headings, sections or both).

4.4 Results

This section details the results of assessing the 24 runs described in Section 4.3.
Table 2 shows the mean average precisions for the BEPs produced by each

run. Precision/Recall graphs are included in the track overview paper.
All the full document contexts runs outperformed the paragraph context

runs. This result suggests that context is important when predicting links for Te
Ara, and a generalisation of the result that context matters in Focused Retrieval
in general.

The difference squared method for summation always worked better than the
sum method, and the single relevance context worked best (in that order). This
suggests that although context is important in identifying links, the best link to
use is determined by using just one context.

The best target context to use is the heading, followed by heading and sec-
tion, then just section. This results suggests that headings are important for
identifying targets – something that was show to be the case with the Wikipedia
link-the-wiki.



Run Context Summation Contribution Element MAP
1 Article Diff Single Heading 0.0906
2 Article Diff Single Both 0.0906
3 Article Diff Single Section 0.0868
4 Article Diff Average Heading 0.0868
5 Article Diff Average Both 0.0863
6 Article Diff Average Section 0.0768
7 Article Sum Single Heading 0.0767
8 Article Sum Single Both 0.0703
9 Article Sum Single Section 0.0700
10 Article Sum Average Heading 0.0481
11 Article Sum Average Both 0.0481
12 Article Sum Average Section 0.0136
13 Paragraph Diff Single Heading 0.0136
14 Paragraph Diff Single Both 0.0102
15 Paragraph Diff Single Section 0.0102
16 Paragraph Diff Average Heading 0.0102
17 Paragraph Diff Average Both 0.0102
18 Paragraph Sum Average Section 0.0102
19 Paragraph Sum Single Heading 0.0102
20 Paragraph Sum Single Both 0.0102
21 Paragraph Sum Single Section 0.0102
22 Paragraph Sum Average Heading 0.0102
23 Paragraph Sum Average Both 0.0102
24 Paragraph Sum Average Section 0.0102

Fig. 2: Results of the Otago runs in INEX 2010 Link-the-Wiki.

Fig. 3: An annotated screenshot of the 2010 assessment tool.



4.5 Assessment Tool

Apart from submitting runs to Link-the-Wiki, we also took over the task of
maintaining the assessment tool.

Improvements have been made to the assessment tool every year. However,
it is crucial to the quality of our results that the manual assessment process is
made as easy as possible — it is difficult for assessors to produce reliable results
if they cannot understand what they are being asked, if they do not have readily
available all the information that they need to make an assessment, if they need
to perform unnecessarily repetitive tasks to make assessments, or if the tool
responds too slowly. Therefore, we decided to make further improvements.

We rewrote the assessment tool from scratch in C++ using the cross-platform
GUI library GTK+, with SQLite databases for storing assessment information.
This has resulted in a tool that responds to the user’s requests quickly, even for
large documents containing many links to be assessed.

We also made some changes to the layout of the GUI. The previous GUI
only showed information about one target document at a time, whereas the new
one shows a list of the titles of all target documents to be assessed, and shows
the contents of the selected target document. Rather than having every link
assessed, as was done previously, we only ask the assessor to assess links whose
BEPs they have deemed relevant (the assumption being that an anchor cannot
be relevant if its BEP is not). Figure 3 shows a screenshot of the new GUI.

As well as improving the quality of assessments in 2010, we hope that our
changes to the assessment tool will reveal further areas for improvement in 2011.
Our assessment tool collects usage statistics, the analysis of which should help
us improve the tool.

Even before analysing these statistics we have been able to identify one pos-
sible area for improvement. It became clear while doing the assessment that the
process would have been greatly sped up if “hints” had been provided to the
assessor about whether a target was likely to be relevant. As the assessment for
a particular topic progressed, the assessor could build up a list of “relevant” and
“non-relevant” words for that topic, which would be highlighted whenever they
appeared in a candidate target document, just as the Ah Hoc tool does. The as-
sessor could ignore this if necessary, but it would help in many cases. However,
it would be very important to use such a feature carefully so as not to bias the
assessment process.

5 The Ad Hoc Track

5.1 Learning Stemmers

We previously learnt suffix rewriting stemmers using Genetic Algorithms. The
stemmer referred to as the Otago Stemmer is one created part way through this
work. Here we use it to address one problem with using assessments to learn
recall enhancing methods like stemming. Pooled collections rely on the result
lists of the participants to restrict the list of documents to assess. When we later



try to learn a recall enhancing method, finding documents which were not found
by any participant cannot be rewarded by increases in Mean Average Precision.
The goal of submitting runs with the Otago stemmer is to compare performance
with the baselines where we can add documents to the pool.

Measure Match this Replace with this
0 shi
2 ej
4 ngen
1 i dops
4 nes sy
0 ics e
0 ii sr
0 ito ng
4 rs tie
0 q
4 al
3 in ar
0 ice s
3 ic
4 rs tie
1 s
1 f uow
0 f uow
0 q
1 s
2 que sy
0 sl anu
2 e
1 f
3 ague dz
0 ean

Table 2: The Otago Stemmer. Rule sections are separated by lines.

The rules of the Otago stemmer are shown in Table 2. Each rule of the
stemmer uses a measure condition to ensure the length of the word is sufficient
for a suffix to exist. This is taken from the Porter stemmer, and is an attempt to
count the number of syllables. The measure of the word must be greater than or
equal to the value for the rule. As an efficiency measure, any word to be stemmed
must be longer than 3 characters. It also partitions the rules into sections. Only
the first successful rule in a section is used. This was learnt on the INEX 2008
Wikipedia collection.



5.2 Refining Stemmers

We sought to improve the sets of terms that stemmers conflate. Additional terms
found by the stemmer are only conflated if they are similar enough to the query
term. We found a threshold value for several measures using an adaptive grid
search on the INEX 2008 Wikipedia collection. Pointwise Mutual Information
(PMI) and the Jaccard Index were found to aid performance, and we submitted
runs using them to improve the Otago stemmer.

For both measures we used the term occurrences in documents as the prob-
ability distributions or sets to compare. For PMI, a threshold of 1.43 was found
to give the best improvement. Only terms with similarity scores greater or equal
to this were conflated. The PMI for two distributions x and y:

PMI(x, y) = log
P (x, y)

P (x)P (y)

The Jaccard Index used a parameter of 0.00023 and is given between two
sets of documents A and B by:

J(A,B) =
A ∩B
A ∪B

5.3 Experimental Results

For the INEX 2010 Ad Hoc track we submitted 7 runs. Their performance is given
in Table 3. These runs are combinations of stemmers and stemmer refinement.

The best run uses just the S Stripper. We find the Otago stemmer provides
decent performance, and Porter to hurt performance a lot. Our baseline of no
stemming occurs between the Otago and Porter stemmers.

Using PMI to improve the Otago stemmer proved successful. The Jaccard
index on the same was less so. On the S stripper the Jaccard Index was found
to harm performance excessively.

We forgot to submit one run, the PMI used on the S stripper. This run has
been performed locally and gives a slight decrease in performance to just using
the S stripper.

Rank MAP Run Name Features
47 0.3012 v_sstem S Stripper
54 0.2935 v_otago_w_pmi Otago Stemmer with PMI refinement
58 0.2898 v_ostem_w_jts Otago Stemmer with Jaccard Index refinement
59 0.2894 v_otago_stem_1 Otago Stemmer
61 0.2789 v_no_stem No Stemming
74 0.2556 v_porter Porter Stemmer

105 0.1102 v_sstem_w_jts S Stripper with Jaccard Index refinement
Table 3: Stemming runs.



6 The Efficiency Track

6.1 Experiments

We conducted our experiments on a system with dual quad-core Intel Xeon
E5410 2.3 GHz, DDR2 PC5300 8 GB main memory, Seagate 7200 RPM 500 GB
hard drive, and running Linux with kernel version 2.6.30.

We conducted three sets of experiments, one for each of the topk, improved
topk, and heapk algorithms. For the sets of experiments on the original topk, we
used the same settings as our experiments conduced in INEX 2009. We want to
compare the performance of the original topk with our improved topk and heapk
algorithms.

The collection used in the INEX 2010 Efficiency Track is the INEX 2009
Wikipedia collection [23].

Collection Size 50.7 GB
Documents 2666190

Avg Document Length 880 words
Unique Words 11437080
Total Worlds 2347132312
Postings Size 1.2 GB
Dictionary Size 399 MB

(a)

Collection Size 50.7 GB
Documents 2666190

Avg Document Length 880 words
Unique Words 11186163
Total Worlds 2347132312
Postings Size 1.5 GB
Dictionary Size 390 MB

(b)
Table 4: (a) Summary of INEX 2009 Wikipedia Collection using term frequencies
as impact values and without stemming. (b) Summary of INEX 2009 Wikipedia
Collection using pre-computed BM25 as impact values and S-Striping for stem-
ming.

The collection was indexed twice, one for the original topk and one for im-
proved topk and heapk. For the original topk, term frequencies were used as
impact values, no words were stopped and stemming was not used. For the im-
proved topk and heapk, pre-computed BM25 similarity scores were used as impact
values and S-String stemming was used. Table 4a and 4b show the summary of
the document collection and statistics for the index file.

The Efficiency Track used 107 topics in INEX Ad Hoc 2010. Only title was
used for each topic. All topics allow focused, thorough and article query evalua-
tions. For the Efficiency Track, we only evaluated the topics for article Content-
Only. During query evaluation, the terms for each topic were sorted in order of
the maximum impact values of the terms.

For the sets of experiments on the improved topk and heapk, the whole index
was loaded into memory, thus no I/O was involved at query evaluation time. For
the original topk, only first-level dictionary was loaded into memory at start-up.

For the three sets of experiments, we specified lower-k parameter with k =
15, 150 and 1500 as required by the Efficiency Track. For each iteration of the



lower-k, we specified the upper-K of 10, 100, 1 000, 10 000, 100 000, 1 000 000. In
total we submitted 54 runs. The lists of run IDs and the associated lower-k and
upper-K values are shown in Table 5. Officially we submitted the wrong runs
for the heapk. The runs has been corrected and are used in this paper and the
MAiP measures are generated using the official assessment tools.

Lower-k Upper-K Original Topk Improved Topk Heapk
15 10 09topk-1 10topk-1 10heapk-1
15 100 09topk-2 10topk-2 10heapk-2
15 1000 09topk-3 10topk-3 10heapk-3
15 10000 09topk-4 10topk-4 10heapk-4
15 100000 09topk-5 10topk-5 10heapk-5
15 1000000 09topk-6 10topk-6 10heapk-6
150 10 09topk-7 10topk-7 10heapk-7
150 100 09topk-8 10topk-8 10heapk-8
150 1000 09topk-9 10topk-9 10heapk-9
150 10000 09topk-10 10topk-10 10heapk-10
150 100000 09topk-11 10topk-11 10heapk-11
150 1000000 09topk-12 10topk-12 10heapk-12
1500 10 09topk-13 10topk-13 10heapk-13
1500 100 09topk-14 10topk-14 10heapk-14
1500 1000 09topk-15 10topk-15 10heapk-15
1500 10000 09topk-16 10topk-16 10heapk-16
1500 100000 09topk-17 10topk-17 10heapk-17
1500 1000000 09topk-18 10topk-18 10heapk-18

Table 5: The lists of run IDs and the associated lower-k and upper-K values.

6.2 Results

This section talks about the evaluation and performance of our three sets of the
runs, obtained from the official Efficiency Track (except for the heapk).

Figure 4 shows the MAiP measures for the original topk, improved topk and
heapk. When upper-K has values of 150 and 1500, MAiP measures are much
better than the upper-K 15. In terms of lower-k, MAiP measures approach con-
stant at a value of 10 000. The best runs are 09topk-18 with a value of 0.2151,
10topk-18 with a value of 0.2304 and 10heapk-18 with a value of 0.2267 for the
three algorithms respectively.

The MAiP measures are about the same for the improved topk and heapk.
The subtle differences are when documents have the same similarity scores and
the order of these documents can be different between the improved topk and
heapk.

The MAiP measures of the original topk are quite different from the other two
algorithms. Using term frequencies as impact values have better MAiP measures
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when the values of lower-k and upper-K are small while pre-computed BM25
impact values have better MAiP measures when upper-K has a value larger
than 10 000.

To have a better picture of the time cost for the three sets of the runs, we
plotted the total evaluation times (including both CPU and I/O times) of all
runs in Figure 5. The total times of both the improved topk and heapk are simply
the CPU costs since the index was load into memory.

For the original topk, the total times were dominated by the I/O times.
Regardless of the values used for lower-k and upper-K, the same number of
postings were retrieved from disk, thus causing all runs to have the same amount
of disk I/O.

We also plotted the CPU times of the original topk since we want to compare
it with the other algorithms in terms of CPU cost. The differences of the CPU
times between the original topk and the other two algorithms are the times taken
for decompression of the postings lists and sorting of the accumulators. First,
partial decompression was used in improved topk and heapk while the original
topk did not. Second, the original topk used a special version of quick sort to
partially sort all accumulators while the improved topk and heapk only keep
track of the top documents only the final top documents got sorted.

For the original topk, the value of lower-k has no effect on the CPU cost, and
values of 10 000 or above for upper-K causes more CPU usage.

For the improved topk, it performs the best when lower-k has a value of 15
and 150. However, for the set of the runs where the value of lower-k is 1500, the
performance of the improved topk grows exponentially. This is caused by the
linearly scans of the array of pointers to insert a new document into the top k.

For the runs when lower-k has a value of 15 and 150, the heapk has a small
overhead compared with the improved topk, especially when upper-K has a large
value. Well, the heapk performs the best when both lower-k and upper-K have
large values.

7 The Data Centric Track

The collection used in the INEX 2010 Efficiency Track is the 2010 IMDB collec-
tion. The collection was indexed twice. The first index used pre-computed BM25
similarity scores as the impact values and the second used pre-computer Diver-
gence similarity scores [24] as the impact values. For both indexes, no words
were stopped and S-String stemming was used. Table 6 shows the results. With
the ranking shown as (position / total runs), the results suggest that BM25 is a
better ranking function than Divergence from Randomness for this collection, it
consistently performed better regardless of the measure. They also suggest that
BM25 whole document ranking is effective with our best run consistently in the
top 6 regardless of how it is measured. We believe that, as is already the case
in the ad hoc track, BM25 document ranking should be used as a baseline in
future years in the document centric track.



Run ID MAgP MAiP MAP
DC-BM25 0.2491 (#1/14) 0.1550 (#6/29) 0.3397 (#5/29)

DC-DIVERGENCE 0.1561 (#5/14) 0.1011 (#3/29) 0.2103 (#14/29)
Table 6: Effectiveness measure for the Data Centric Track

8 Conclusion and Future Work

8.1 The Link-the-Wiki Track

We have generated a number of runs for Te Ara. Given the inapplicability of
Itakura and Geva’s algorithms to Te Ara (see Section 4.1), we believe that this
year’s results are a step in the right direction towards a successful solution of
what is still an unsolved problem: link recommendation in a corpus that has no
existing links.

8.2 The Ad Hoc Track

We find that the S stripper is hard to beat. However it is possible to use machine
learning to create a good stemmer. Furthermore such stemmers seem amenable
to improvement using collection statistics. Of those PMI is a good measure to
use. It was also found to be the best locally. This also confirms previous findings
that Porter can have a variable effect on performance. Improvement using term
similarity can also harm performance. We had seen this before when finding the
parameters to use, so perhaps that might have been the consequence for the
Jaccard Index. Of course, this refinement can only prevent terms from being
stemmed together, so using it on such a weak stemmer would be expected to not
do so well.

8.3 The Efficiency Track

We compared three of our query pruning algorithms. The original topk uses
a special version of quick sort to sort all accumulators and return the top k
documents. Instead of explicitly sorting all accumulators, the improved topk
keeps tracks of the current top k documents and finally the top k documents
are sorted and returned. Based on the improved topk, we have developed heapk
which essentially is a minimum heap structure. The heapk algorithm has small
overhead compared with the improved topk when the values of lower-k and
upper-K are small. However, the heapk outperforms the improve topk for large
values of lower-k and upper-K.
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