
Extricating Meaning from Wikimedia Article Archives

Brian W. Curry, Andrew Trotman, and Michael Albert
Computer Science

University of Otago
Otago 9010 New Zealand

http://raiazome.com | (andrew | malbert)@cs.otago.ac.nz

Abstract Wikimedia article archives (Wikipedia,
Wiktionary, and so on) assemble open-access,
authoritative corpora for semantic-informed
datamining, machine learning, information retrieval,
and natural language processing. In this paper,
we show the MediaWiki wikitext grammar to be
context-sensitive, thus precluding application of simple
parsing techniques. We show there exists a worst-case
bound on time complexity for all fully compliant
parsers, and that this bound makes parsing intractable
as well as constituting denial-of-service (DoS) and
degradation-of-service (DegoS) attacks against all
MediaWiki wikis. We show there exists a worse-case
bound on storage complexity for fully compliant one-
pass parsing, and that contrary to expectation such
parsers are no more scalable than equivalent two-pass
parsers. We claim these problems to be the product of
deficiencies in the MediaWiki wikitext grammar and,
as evidence, comparatively review 10 contemporary
wikitext parsers for noncompliance with a partially
compliant Parsing Expression Grammar (PEG).

Keywords Document Standards, Information
Retrieval, Web Documents, Wikipedia

1 Introduction
Wikimedia article archives assemble open-access, au-
thoritative corpora for semantic-informed datamining,
machine learning, information retrieval, and natural
language processing. Unfortunately, these archives
are described by an ad hoc document standard for
which there exist no formal grammars for producing
conformant parsers or conformant parsers beyond the
de facto reference implementation, Pywikipedia [2].

In this paper, we show deficiencies in this
standard to cause widespread non-compliance in
third-party wikitext parsers, intractable storage and
time complexity for all wikitext parsers (including
MediaWiki itself) and viable denial-of-service (DoS)
and degradation-of-service (DegoS) attacks against the
most recent official release of MediaWiki as of this
writing, MediaWiki 1.16.0.

Proceedings of the 16th Australasian Document Comput-
ing Symposium, Melbourne, Australia, 10 December 2010.
Copyright for this article remains with the authors.

As evidence of noncompliance, we comparatively
review 10 contemporary wikitext parsers (including
MediaWiki itself) against a partially compliant Parsing
Expression Grammar (PEG) [6]. This review suggests
there exists no fully compliant offline wikitext parser
and only one fully compliant online wikitext parser
and it is not MediaWiki itself : Pywikipedia [2].
Furthermore, the least compliantly parsed semantics
are those we show induce worst-case intractability and
insecurity in wikitext parsers.

As evidence of intractability, we present worst-case
article archive input generally applicable to third party
wikitext parsers. Analysis shows this input makes
storage complexity prohibitive in disambiguation-
compliant parsers and time complexity intractable in
transclusion-compliant parsers.

As evidence of insecurity, we present worst-
case article archive input specifically applicable to
MediaWiki itself. Injecting this input into a local
“clean-room” installation of the most recent official
release of MediaWiki [1] shows this input makes all
MediaWiki wikis susceptible to currently unresolved
DoS and DegoS attacks, a compelling security flaw.

Finally, we present a partially compliant PEG. Con-
structed from exhaustive inspection of the MediaWiki
codebase and real-world tests against local and remote
MediaWiki wikis, this grammar matches and consumes
most inter-article syntax (i.e., syntax conveying seman-
tics between rather than in articles).

Due to its topical diversity, this paper’s intended
audience is threefold:

1. Security consultants, system administrators and
MediaWiki -invested policymakers, given our
exposure of prevailing vulnerabilities in the
MediaWiki codebase (in Section 4).

2. Information retrieval (IR) and natural language
processing (NLP) specialists as well as
MediaWiki -reliant dataminers, given our
findings of extensive noncompliance in official
and third-party wikitext parsers (in Section 2)
and appended publication of a partially compliant
PEG (in the Appendix).

3. The Wikimedia Foundation, given our remedies
of existing deficiencies in the Wikimedia article
archive document standard (in Section 3).

categorizations disambiguations occlusions redirects transclusions wikilinks interwikilinks

JWPL 0.453.4 [16] partial no no partial partial partial partial

MediaWiki 1.16.0 [1] full no full full full full full

mwlib (7dbed545c6cd) [11] full no no partial full partial full

Parse::MediaWikiDump 1.0.6_01 [12] partial no no partial no no no

Pywikipedia (8616)→ offline [2] partial partial full partial partial partial partial

Pywikipedia (8616)→ online [2] full full full full full full full

Yppy 0.0.8 [5] full partial full full no full partial

Wiki2XML (56074) [9] partial no partial partial partial partial partial

Wikipedia Miner (92) [10] no no no no no partial no

Wikiprep 3.04 [7] full partial partial partial partial partial partial

WWW:Wikipedia 1.97 [13] no no no no no partial no

Table 1: Prevalence of fully compliant wikitext parsing

fully parsed

semantics

partially parsed

semantics

Pywikipedia→ online 7 0

MediaWiki 6 0

Yppy 4 2

mwlib 3 2

Pywikipedia→ offline 1 6

Wikiprep 1 6

Wiki2XML 0 6

JWPL 0 5

Parse::MediaWikiDump 0 2

Wikipedia Miner 0 1

WWW:Wikipedia 0 1

Table 2: Parser compliance from Table 1

fully compliant

parsers

partially compliant

parsers

disambiguations 1 2

occlusions 3 2

transclusions 3 3

interwikilinks 3 4

redirects 3 5

wikilinks 3 6

categorizations 5 3

Table 3: Semantic compliance from Table 1,
ignoring offline Pywikipedia

2 Comparison
Comparative review of 10 contemporary wikitext
parsers against our Appendix-presented grammar
reveals common non-compliance. There exists no fully
compliant offline parser and only one fully compliant
online parser: Pywikipedia. Partially compliant
parsers parsing most semantics include (in descending
order of compliance): MediaWiki, Yppy and mwlib.

Table 1 summarizes this review. Rows signify
reviewed parsers, columns reviewed semantics and
row-column entries each parser’s degree of compliance
in parsing each semantic. Parser names are suffixed
with the version or version control revision in
parentheses we reviewed, preferring the latter for
parsers whose most recent official release (as of this
writing) was several months outdated or for which
there was no official release (e.g., Pywikipedia).

We now discuss semantics, compliance issues as-
sociated with each and notable parsers compliantly ad-
dressing these issues.

2.1 Semantic compliance
Our review ignored all semantics other than those
listed in the Table 1 header. Table 3 orders these

semantics by ascending count of fully and partially
compliantly parsed semantics in the first and second
columns. Two of the three least compliantly parsed
semantics produce worst-case bounds on wikitext
parsing: disambiguations (producing prohibitive
storage complexity for fully compliant one-pass
parsing in Section 3.4) and transclusions (producing
intractable time complexity for all fully compliant
parsing in Sections 3.2 and 3.3). The remaining least
compliantly parsed semantic, occlusions, is implicated
in grammatical context-sensitivity (generating 75% of
all context-sensitive productions in Section 3.1).

We first discuss canonicalization, a prerequisite
for fully compliant parsing of 6 of our 7 reviewed
semantics. Canonicalization reduces article titles in
non-canonical to canonical form, enabling meaningful
comparison between article titles regardless of form
(e.g., a canonical article title “Talk:Hastur” refers
to the same article as a non-canonical article title
“TaLK__: hastur”). There exist countably infinite
non-canonical forms of each article title, so non-
canonicalizing parsers return false negatives and
positives by improperly matching non-canonical
forms of the same article title as different articles.
Canonicalizing parsers substitute, in article titles:

1. Embedded transclusions with their expansions.
2. Runs of space and underscore characters with a

single space (e.g., “_ __” with “ ”).
3. Namespace aliases with the corresponding names-

pace name (e.g., “w:”, “WP:”, and “Project:”
with “Wikipedia:”).

4. Named-, decimal-, and hexadecimal-style HTML
entities with the corresponding character (e.g.,
“æ” and “æ” with “æ”).

5. Subpage prefix “/” with the current article title
within namespaces enabling the subpage feature
(e.g., “/” with “Talk:Yuggoth” for all wikilinks
in that article).

6. Autoformats with one or more canonical wikilinks
to actual articles. This includes the month
day/month name date autoformat, reformatted
to read the opposite (e.g., [[15 March]] with
[[March 15]]), and ISO 8601 date autoformat,
reformatted to read as two wikilinks (e.g.,
[[1890-08-20]] with “[[August 20]]
[[1890]]”).

We now discuss specific semantics.
Categorizations classify one article under

another, denoted by double square brackets and
language-specific Category namespace name (e.g.,
a string [[Category:Mythos]] classifies the
current article under that category). Categorization
compliance implies language-specific matching and
canonicalization. Parsers disregarding categorizations
confuse categorizations for wikilinks, since the two
share the same notation.

Disambiguations are articles transcluding (see
below) at least one language-specific disambiguation
template (e.g., a string {{Disambig}} classifies
the current article as a disambiguation). Dis-
ambiguation compliance implies preparsing the
“MediaWiki:Disambiguationspage” article or
equivalent metadata for the set of all disambiguation
template names, matching those names and
canonicalization. Parsers disregarding disambiguations
assume redirects and wikilinks to disambiguations to
be semantically meaningful, but they are not (e.g., a
non-ambiguous wikilink [[Dagon]] to that article
is semantically meaningful while an ambiguous
wikilink [[Dagon (disambiguation)]] to that
disambiguation is not).

Occlusions hide content from end users,
denoted by XML 1.1-conformant (a) opening
tag consisting of the ‘<’ character, tag name,
optional attributes and ‘>’ character, (b) tag-specific
text, and (c) closing tag consisting of the “</”
string, same tag name and ‘>’ character (e.g.,
“<pre>[[Shoggoth]]</pre>”, which MediaWiki
renders as the raw text [[Shoggoth]] rather than
a wikilink to that article). Occlusion compliance
implies matching this syntax and context-sensitively
not matching any wikitext syntax in this syntax, as such
tags occlude their content from conventional parsing.

Parsers disregarding occlusions return false positives
by improperly matching occluded wikitext.

Redirects symbolically link one article to another,
denoted by #REDIRECT followed by a wikilink as the
first wikitext for an article (e.g., a string “#REDIRECT
[[Azathoth]]” redirects the current article to that).
Redirect compliance implies matching and canonical-
ization. Parsers disregarding redirects confuse redirects
for wikilinks, since the two share the same notation.

Transclusions dynamically expand one template’s
wikitext into the current article, denoted by double
curly braces (e.g., a string {{Arkham}} expands that
template’s wikitext into the current article). Templates
are articles under the Template namespace, so a
transclusion {{Template_name}} actually transcludes
an article named Template:Template_name.
Transclusion compliance implies matching, canon-
icalization and fully recursive expansion. Parsers
disregarding transclusions return false negatives by
failing to expand transcluded wikitext. However, we
show in Sections 3.2, 3.3 and 4 that the computational
intractability of worst-case expansion makes such
parsing inherently unsafe. Counter-intuitively, this
implies that no transclusion compliance in a parser
may be preferable to partial or full compliance.

Wikilinks link from one article to another on the
same wiki, denoted by double square brackets (e.g.,
[[Yog-Sothoth]]). Wikilink compliance implies
matching and canonicalization.

Interwikilinks link from one article to another
on another wiki, denoted by double square brackets
and a MediaWiki-recognized wiki name (e.g.,
[[craftywiki:Horror]]). Interwikilink compliance
implies preparsing the “List of Wikipedias”
and “Meta:Interwiki map” articles or equivalent
metadata, matching and canonicalization – meriting
distinction from mere wikilink compliance. Parsers
disregarding interwikilinks confuse interwikilinks
for wikilinks, since the two share the same notation.
However, interwikilinks convey no meaningful
semantics for most third-party parsers.

2.2 Parser compliance
Table 2 orders parsers by descending count of fully
compliant (first) and partially compliant (second)
semantics parsed. Three of the four most compliant
parsers are PYTHON-implemented. All four of
the least compliant parsers are JAVA- and PERL-
implemented. We failed to find a working non-
interpreted implementation, though non-working
non-interpreted implementations do exist (e.g.,
FlexBisonParse [14]). This suggests multi-
paradigmal, dynamically typed, interpreted languages
to be ideal mediums for wikitext parsing.

Pywikipedia’s full compliance is the collaborative
result of its real-world use on MediaWiki-hosted
wikis, the Wikimedia Toolserver and offline Wikimedia
article archives. Our comparison is not entirely

fair, therefore: Pywikipedia queries remote
MediaWiki APIs for language-specific metadata
retrieval, transclusion expansion and article validation.
Denying Pywikipedia network access reduces its
compliance to beneath that of mwlib – a more judicious
comparison, perhaps.

Offline parsers have no access to comparable
APIs, necessitating they statically populate data
structures with a priori site-specific metadata as well
as independently implement template preprocessors,
article validators, etc. To accommodate this, we split
Pywikipedia into “Pywikipedia → offline” (i.e.,
when offline) and “Pywikipedia → online” (i.e.,
when online).

MediaWiki’s lack of full compliance is a result
of its inability to distinguish disambiguation from
non-disambiguation articles, as has been noted at
English Wikipedia itself [4].

3 Parser analysis

We expose deficiencies in the wikitext grammar and,
for each deficiency, recommend amendments to exist-
ing Wikimedia policy.

3.1 Grammatical context-sensitivity

We now show the wikitext grammar to be context-
sensitive, principally due to the presence of occlusions.

Suppose the wikitext grammar to be context-
free. Then the production “wikilink ← wik-
ilink_begin wikilink_type wikilink_end” context-
freely matches wikilink [[R’lyeh]] in wikitext
“<nowiki>[[R’lyeh]] </nowiki>”. However,
MediaWiki parses wikilink syntax in nowiki tags as
raw text rather than a wikilink. Then this production
must match context-sensitively, a contradiction.

The nowiki tag occludes its wikitext content
from conventional parsing. There exist 8 occluding
tags: <!–. . .–!>, includeonly, nowiki, timeline,
math, pre, source and syntaxhighlight. The
latter 4 accept optional attributes; the remainder do
not. Additionally, the closing tag corresponding to
an opening occluding tag matches non-greedily (and
hence context-sensitively).

This and the number of occluding tags complicate
occlusion matching, as evidenced by the ratio of the
number of occlusion productions to total number
of productions κ . Of the 91 total productions, 30
involve occlusions. Of the 12 total context-sensitive
productions, 9 involve occlusions. Then κ ' 1/3 in the
set of all productions and κ = 3/4 in the set of context-
sensitive productions, indicating occlusions dominate
both. However, occlusions convey no meaningful
semantics apart from their disabling of meaningful
semantics!

As solution, we recommend Wikimedia distribute
article archives encoding all occluded English
punctuation as HTML entities (e.g., encoding
“<nowiki>[[Cyaegha]]</nowiki>” as
“<nowiki>[[Cyaegha]]</nowiki>”).
This encoding is bijective and thus losslessly decodable
on article archive deserialization. Since non-occlusion
productions do not decode HTML entities, non-occlusion
productions cannot match in HTML entity-encoded occlusion
wikitext. Then given such an archive such productions are
context-free. The resulting wikitext grammar may omit
occlusion productions without concomitant loss of semantic
compliance, and our PEG reduces to 61 total productions of
which only 3 remain context-sensitive. It can be shown that
these are also convertable to context-free productions, but only
by breaking backward compatibility in the wikitext grammar.

3.2 Worst-case time complexity

We now show fully compliant parsers to suffer
intractable worst-case time complexity O

(
|M|c|T|

)
,

|M| the number of non-template articles, |T| the
number of templates and c the maximum number of
template transclusions per non-template article.

Consider the article archive consisting of at
least two articles, all residing in the Main and
Template namespaces and no others. The article set
is partitionable into set M on the Main non-templates
and poset T on the Template templates. Suppose
non-templates have arbitrary titles and templates
have minimal length titles, such that lexicographic
comparison defines a well-ordering on T (e.g., the first
template is entitled “a”, the second “b”). Suppose
non-template wikitext maximally transcludes the
first template (i.e., maximally many repetitions of
“{{a}}”), template wikitext maximally transcludes
the next template in T for all templates except the
last (e.g., template “a” wikitext is maximally many
repetitions of “{{b}}”), and the last template in T
terminally expands to binomially distributed single
digit ‘0’ or ‘1’. Then all wikitext reduces to stochastic
strings of ‘0’ and ‘1’ in the final expansion, and
no transclusion expansion is losslessly memoizable.
(Such expansions are memoizable if one does not mind
the loss, as MediaWiki’s lossy memoization shows in
Section 4.) Figure 1 depicts these assumptions with
arrows signifying transclusion.

As wikitext length is bounded, the number of tran-
sclusions per article is bounded. Let c be this bound.
Then each article comprises one node in the rooted tree
of transclusions with fanout c where: (a) the first tem-
plate in T roots each such tree, (b) the last template in
T serves as the leaf nodes and (c) all other templates
serve as internal nodes. All such trees are identical, so
consider any tree r. By assumption r is complete of
height h = |T|−1. So r is size s(c, |T|) given by

Article 1

{{a}}{{a}}⋯{{a}}

⋮

⋮ ⋮
Template:a

{{b}}{{b}}⋯{{b}}

⋮
Article n

{{a}}{{a}}⋯{{a}}

Template:b

{{c}}{{c}}⋯{{c}}

Template:z

⋯ ⋮ {{#expr:{{#time:U}}mod2}}

Figure 1: Article archive exhibiting worst-case time complexity

s(c, |T|) = c|T|−1
c−1

.

As each non-template recursively transcludes each
such tree c times, the total number of transclusions
t(|M|, |T|) is given by

t(|M|, |T|) = c|M|s(c, |T|)

∈ O
(

c
c−1

|M|
(

c|T|−1
))

∈ O
(
|M|c|T|

)
.

As example, let |M| = 6 and |T| = 26 such that
template titles iterate the alphabet for the worst-case
article archive of 32 articles. Clearly, each template title
consumes 1 byte and each transclusion 5 bytes. Back-
ward compatibility requires wikitext length be practica-
bly bounded to 32KB [3]. Then c = b32KB/5Bc= 6553,
and

t(|M|, |T|) ∈ O
(

6 ·655326
)

∈ O
(
10100) .

Parsing the worst-case article archive of only 32 ar-
ticles expands on the order of a googol transclusions.

As solution, we recommend precaution in the MediaWiki
codebase against pathological template abuse. Given the im-
probability of third-party reimplementations of fully compliant
and precautionary transclusion preprocessors, we recommend
Wikimedia distribute one additional article archive for each site

1. comprising all articles except those residing in the
Template namespace, and

2. expanding transclusions in all article wikitext “in place”
at archive creation time.

3.3 Worst-case time complexity (revisited)
We established a template-dependent worst-case time
complexity for fully compliant wikitext parsing in the
previous Section. Now we revisit the issue with a
worst-case grammar establishing a grammar-dependent
worst-case time complexity and showing the latter to
aggravate constant costs associated with the former,
producing an aggregate worst-case time complexity.

As the Appendix discusses, disambiguation-
compliant grammars are archive-specific. They
remain incomplete until parsing the “MediaWiki:

Disambiguationspage” article, after which the
DISAMBIGUATION production may be specified to
match all archive-specific disambiguation template
names and thereby complete the grammar. The size of
this production and thus this grammar is a function of
the number of such names.

As wikitext length is bounded, the number
of disambiguation template names referenced in
“MediaWiki:Disambiguationspage” wikitext is
bounded. Let d be this bound. Then identifying
disambiguation articles requires eligible transclusions
(i.e., transclusions in wikitext residing in the Main
namespace) be iteratively tested against d alternatives.

Recall that each non-template in the worst-case
article archive of the previous Section consisted
of maximally many such transclusions. Append
a “MediaWiki:Disambiguationspage” article
referencing maximally many disambiguation template
names to this archive. Then the total cost of parsing
transclusions T (|M|, |T|) is given by

T (|M|, |T|) = d · t(|M|, |T|)

∈ O
(

dc
c−1

|M|
(

c|T|−1
))

∈ O(t(|M|, |T|)) .

Parsing this article archive expands the same order
of transclusions as the prior, but amplifies the constant
cost associated with doing so. We now show these con-
stants to be non-negligible.

As stated wikitext length is bounded to 32KB.
Suppose disambiguation template names are 2 bytes
in length. In “MediaWiki:Disambiguationspage”
wikitext, the itemization of each such name requires
a 12 byte prefix “*[[Template:” and 3 byte suffix
“]]\n” for automated bot discovery. Then each such
item consumes 17 bytes and d = b32KB/17Bc = 1927,
certainly within the range of 2 byte template names.
Incorporating non-negligible constants, aggregate
worst-case time complexity T (|M|, |T|), |M| the
number of Main namespace articles and |T| the number
of Template namespace articles, is

T (|M|, |T|) = 1927 ·O
(
|M|6553|T|

)
.

As solution, we recommend Wikimedia eliminate article-
specific circular dependencies in the wikitext grammar. To
do so for disambiguations, we propose the #DISAMBIG
pragma explicitly declaring an article to be a disambigua-
tion page. This pragma maintains backward compatibility
with MediaWiki syntax, third-party parsers and the article
corpus itself by requiring this “magic word” prefix be suf-
fixed with a disambiguation transclusion (e.g., by supplant-
ing all instances of “{{Disambig}}” in English Wikipedia
with “#DISAMBIG {{Disambig}}”). This pragma also adds
explicit invariance to the existing wikitext grammar: namely,
that each disambiguation page be associate with one and
only one disambiguation template. In the existing wikitext
grammar, disambiguation pages may be associate with no
such template (by explicitly categorizing themselves under
[[Category:Disambiguation]] rather than transcluding
such a template) or more than one (by transcluding more
than one, in which case the resulting disambiguation is in-
consistent). This has the beneficial by-product of eliminat-
ing additional context-sensitivity from the wikitext grammar,
which when coupled with the recommendation of Section 3.1
reduces the number of context-sensitive productions to 2. For
alternative solution, see English Wikipedia’s “Wikipedia:
Disambiguation pages aren’t articles”.

3.4 Worst-case one-pass complexity
We now show fully compliant one-pass parsers to suffer
prohibitive worst-case storage O(|N|), |N| the num-
ber of articles, and scale no better than equivalent two-
parse parsers in this case. To exhibit these inefficiencies,
this Section presents worst-case article archive input
orthogonal to that of Section 3.3. While the two could
be profitably composited into another aggregate worst
case, that does not substantially revise the conclusion
of this Section.

Consider the article archive consisting of poset
N= (A1, A2, . . . , A|A|,G1,G2, . . . ,G|G|), G the non-
empty set of grammar-generative articles comprising at
least “MediaWiki:Disambiguationspage”, “List
of Wikipedias” and “Meta:Interwiki map” and
A the non-empty set of all remaining articles. Since
the number of grammar-generative articles (3 under
our PEG) is substantially smaller than the number
of non-grammar-generative articles (3,447,220 for
English Wikipedia as of this writing), |G| � |A| ' |N|.

Suppose all wikitext in A consists of maximally
many transclusions and/or wikilinks containing a
colon. Then each such transclusion ambiguously
signifies a possible disambiguation and each such
wikilink a possible interwikilink or interlanguagelink.
Since no parser may certify which is which until having
parsed all wikitext in G, the resulting article archive
exhibits maximal semantic ambiguity.

As example, the wikilink [[Yog: Sothoth]]
ambiguously signifies either (a) a wikilink to that
article, (b) an interwikilink to article “Sothoth” on
the external wiki identified by interwiki prefix “yog” or

(c) an interlanguagelink to the same article on the exter-
nal Wikimedia wiki identified by language code “yog”
(e.g., http://yog.wikipedia.org/wiki/Sothoth).

Suppose we implement a two-pass parser naïvely
resolving these ambiguities as follows:

1. In the first pass, linearly search the article archive
for all articles in G ignoring all wikitext except
that in G. These are the last articles in |N|,
incurring storage cost O(|G|) and time cost
O(|N|). Then generate the archive-specific
grammar required for fully compliant parsing.

2. In the second pass, linearly parse all wikitext given
this grammar, incurring time cost O(|N|).

Then the naïve two-pass parser suffers worst-case
storage O(|G|) and time 2O(|N|) = O(|N|). Suppose
we optimize this into a one-pass parser as follows:

1. Linearly parse wikitext until parsing all wikitext
in G, caching all semantically ambiguous wikitext
for subsequent reparsing. Since all wikitext in A
exhibits maximal semantic ambiguity, this incurs
storage and time cost O(|N|− |G|).

2. Parse all wikitext in G to generate the archive-
specific grammar, incurring storage and time cost
O(|G|).

3. Reparse all cached wikitext given this grammar,
incurring time cost O(|N|− |G|).

Then the optimized one-pass parser suffers
worst-case storage O(|N|− |G|) + O(|G|) = O(|N|),
substantially worse than that of naïve two-pass parsing,
and time O(|N|− |G|) + O(|G|) + O(|N|− |G|) '
O(|N|), equivalent to that of naïve two-pass parsing.

Both parsers assume no prior indexing of
compressed article archive input. We note in passing
that pseudo-indexing is technically feasible: present-
day Wikimedia article archives are bzip2-compressed
files internally partitioned into blocks of default size
900KB, which while disallowing random access to
exact byte offsets do allow random access to exact
block offsets [8]. Indexing article title to 2-element
tuple (b, y), b the offset to the compressed block in
which that article begins and y the offset to that article’s
first uncompressed byte in that block, during one-pass
parsing could reduce the real-world storage cost (by
avoiding caching) at some additional time cost (by
forcing re-decompressed seeking of on-disk blocks).
Further research required.

Consider English Wikipedia, whose 12GB archive
enwiki-20101011-pages-meta-current.xml.bz2
uncompresses to approximately 160− 230GB. Then
worst-case storage O(|N|) is prohibitive on high-
volume archives and there exist compelling incentives
not to implement one-pass parsers without also
implementing pseudo-indexing.

⋮

Template:a

{{b|0}}{{b|1}}{{b|2}}…
{{b|255}}

⋮

Template:b

{{c|0}}{{c|1}}{{c|2}}…
{{c|255}}

Template:c

Figure 2: Article archive exhibiting our Denial-of-Service (DoS) exploit

As solution, see our solution to the problem of Section 3.3.

4 Worst-case exploitation

Denial-of-service (DoS) attacks render computing
services unavailable to end users by exploiting
hardware-, protocol- and application-level insecurities.
Degradation-of-service (DegoS) attacks render such
services non-performant by brute-force consumption
of scarce computing resources (e.g., bandwidth, CPU
load). As a practical demonstration, we now improve
the worst-case article archive input of Section 3.2 into
viable DoS and DegoS attacks on MediaWiki itself.

We tested these attacks against clean-room
installation of the most recent official releases of
MediaWiki (1.16.0), MySQL (5.1.50), PHP (5.3.3), the
Apache HTTP Server (2.2.16) and Linux (2.6.36) as
of this writing, where “clean-room” means:

1. No optional MediaWiki extensions and only those
PHP extensions required by MediaWiki.

2. Default MediaWiki, MySQL and PHP settings.
3. Stock Apache HTTP Server and Linux kernel

modules and settings.

We expect these attacks retroactively apply to all
MediaWiki wikis regardless of version, configuration
or system. However, we verified this neither locally
or remotely against publicly accessible wikis. (In the
latter case, doing so violates ISP and University accept-
able use policies as well as constituting imprisonable
offenses under domestic and international law).

4.1 DoS attack

While worst-case article archive input of Section 3.2
makes third-party parsing of article archives intractable,
its memoization by the MediaWiki preprocessor makes
this input inadequate for attacks on MediaWiki itself.

MediaWiki memoizes all transclusions of the same
template and same template parameters in the same
article to the first expansion of the transclusion, even
with transclusions expanding differently! As example,
a Template:Yog with wikitext {{CURRENTTIME}}
should expand differently in an article with wikitext
“{{Yog}}{{Yog}}{{Yog}}” when the current time
in seconds changes between the first and second or
second and third expansion of that template. Of course,
this is not what happens; MediaWiki forcefully sets
the second and third expansion to the first regardless.

MediaWiki memoization negates the usefulness of
our prior worst-case input. However by the above in-
variant, MediaWiki memoizes no transclusions of the
same template and different template parameters in the
same article. Then altering this input so the last tem-
plate in |T| is empty and all transclusions in all other
templates in |T| are uniquely parametrized within their
templates prevents memoization.

PHP prematurely terminates scripts exceeding
its max_execution_time, defaulting to 30s. So there
exists some least total number of transclusions t1
for which MediaWiki exceeds this setting. Testing
shows t1 ∈

(
215, 216

]
for our local installation, so

assume t1 = 216 for convenience. But 2562 = 216, so
2 templates of 256 transclusions each induces PHP to
prematurely terminate MediaWiki. Figure 2 depicts
these assumptions with arrows signifying transclusion.

Submitting templates “b” and “c” to the target
MediaWiki wiki does not trigger the attack; submitting
template “a” does. Then the attack consists of first
submitting the former two templates once each, then
repetitively resubmitting the latter template. Each
resubmission starves the target MediaWiki wiki with
near 100% CPU load for exactly 30s, after which
PHP interrupts the submission, MySQL rolls back the
transaction and MediaWiki resumes receiving queries
at normal CPU load. Then the attacker resubmits
template “a” and the attack resumes.

Each resubmission enjoys a payload of only 2.2KB.
So the attack is inherently asymmetric: a milliseconds
worth of effort on the attacking machine generates 30s
of high CPU load on the attacked machine. But 16
articles of 2 transclusions each also induces MediaWiki
to exceed PHP’s max_execution_time setting, so the
payload is reducible to 15B. The simplicity of this
asymmetry lends itself to anonymous distribution via
decentralized botnets [15], thus extending its scope to
(largely) non-targetable resilient attack networks.

4.2 DegoS attack
However, a subversive alternative suggests itself: in-
duce the target MediaWiki wiki to spin-wait itself.

There exists some greatest total number of transclu-
sions t0 for which MediaWiki does not exceed PHP’s
max_execution_time. Then t0 = t1−1 when t1 is known
or the greatest number t1 is known to be strictly greater
than when t1 is not known. Larger values induce longer
downtime, so the former is preferable. t1 > 215 in our
case, so let t0 = 214 = 1282.

We measured 2 templates of 128 transclusions each
to consume 28−30s of wall clock time per submission

of template “a”, allowing MySQL to successfully com-
plete submission transactions. Then submitting tem-
plate “a” of 128 transactions of “b”, template “b” of
128 transactions of “c” and template “c” empty as be-
fore initiates this attack. The attacker identifies high-
edit articles, then injects one malicious transclusion of
template “a” into each article – preferably adjacent to
or embedded in existing transclusions in each article
and/or accompanied by one or more seemingly benign
edits to each article as a cloaking measure. Since each
transclusion expands to nothing, search engines show
no evidence of the attack. Since each transclusion con-
sists of only 5B in high-edit articles consisting of up
to 32KB, each article shows little evidence of the at-
tack. Since each transclusion expansion in each arti-
cle consumes the maximal amount of wall clock time
without triggering MediaWiki, PHP, Apache, or kernel
defenses, all subsequent edits on each article suffer the
same spin-wait, and the DegoS attack is described.

As solution, we recommend Wikimedia implement safeguards
against transclusion fanout in the MediaWiki codebase and

that all third-party parsers immediately follow suite.

5 Conclusion

Parsing Wikimedia article archives has been shown
to be non-trivial. Worst-case article archive input
of maximal recursive transclusion renders parsing
computationally intractable. Worst-case article
archive input of maximal semantic ambiguity renders
one-pass parsing storage prohibitive. Average-case
input of context-sensitive occlusions, non-expanded
transclusions, non-canonical wikilinks and ambiguous
disambiguations and interwikilinks complicates parser
compliance irrespective of worst case complexity.

Susceptibility of MediaWiki wikis to transclusion-
enabled DoS and DegoS attacks suggests transclusion-
ignoring parsers to be fundamentally more secure than
transclusion-compliant parsers. For safety, third-party
parsers attempting to recursively expand tranclusions
must duplicate existing provisions against transclusion
abuse in the MediaWiki codebase as well as devise new
provisions against these novel attacks.

Comparative reviewal of 10 contemporary wikitext
parsers reveals widespread syntactic and semantic non-
compliance. As expected, the least compliantly parsed
semantics match those responsible for aforementioned
worst-case bounds. We recommend a parser-focused
redress of Wikimedia article archive policies and
of the MediaWiki wikitext grammar, as follows:
(a) encode in-occlusion punctuation as HTML
entities; (b) declare disambiguations via #DISAMBIG
pragmas; (c) recursively expand transclusions in-place;
(d) publicize safeguards against transclusion abuse.

References

[1] Various authors. MediaWiki 1.16.0. http://www.
mediawiki.org, July 2010.

[2] Various authors. Pywikipedia (svn revision 8616).
http://pywikipediabot.sourceforge.net, Octo-
ber 2010.

[3] Various authors. Wikipedia article size.
http://en.wikipedia.org/wiki/Wikipedia:
Article_size, September 2010.

[4] Various authors. Wikipedia disambiguation pages
aren’t articles. http://en.wikipedia.org/wiki/
Wikipedia:Disambiguation_pages_aren’t_
articles, May 2010.

[5] Brian W. Curry. Yppy 0.0.8. http://bitbucket.
org/leycec/yppy, October 2010.

[6] Bryan Ford. Parsing expression grammars: a
recognition-based syntactic foundation. ACM SIGPLAN
Notices, Volume 39, Number 1, pages 111–122, 2004.

[7] Evgeniy Gabrilovich and Shaul Markovitch. Comput-
ing semantic relatedness using Wikipedia-based explicit
semantic analysis. In Proceedings of The 20th In-
ternational Joint Conference on Artificial Intelligence,
Hyderabad, India, January 2007.

[8] Interiot. Random access [on] bzip2[-compressed arti-
cle archives]. http://meta.wikimedia.org/wiki/
User:Interiot/Random_access_bzip2, May 2007.

[9] Magnus Manske. Wiki2XML (svn revision 56074).
http://toolserver.org/~magnus/wiki2xml/
w2x.php, September 2009.

[10] David Milne. An open-source toolkit for mining
Wikipedia. In New Zealand Computer Science Re-
search Student Conference (NZCSRSC) 2009 Proceed-
ings, Auckland, New Zealand, April 2009.

[11] PediaPress. mwlib (git revision 7dbed545c6cd). http:
//code.pediapress.com/wiki/wiki/mwlib, Octo-
ber 2010.

[12] Tyler Riddle. Parse::MediaWikiDump
1.0.6_01. http://search.cpan.org/dist/
Parse-MediaWikiDump, June 2010.

[13] Ed Summers and Brian Cassidy. WWW::Wikipedia
1.97. http://search.cpan.org/dist/
WWW-Wikipedia/, June 2010.

[14] Timwi and Magnus Manske. FlexBisonParse (svn revi-
sion 71620). http://svn.wikimedia.org/viewvc/
mediawiki/trunk/parsers/flexbisonparse, Au-
gust 2010.

[15] Ryan Vogt, John Aycock and Michael J. Jacobson, Jr.
Army of botnets. In Network and Distributed System
Security Symposium. Internet Society, 2007.

[16] Torsten Zesch, Christof Müller and Iryna Gurevych.
Extracting lexical semantic knowledge from Wikipedia
and Wiktionary. In Proceedings of the Conference
on Language Resources and Evaluation, Marrakech,
Morocco, May 2008.

Appendix
This Appendix presents a partially compliant wikitext
grammar for programmatically generating article
archive parsers. We showed this grammar to be
context-sensitive in Section 3.1, so context-free
metalanguages such as Backus-Naur Form (BNF) do
not apply. Instead, we apply the recently developed
Parsing Expression Grammar (PEG) metalanguage to
context-sensitively describe this grammar [6].

Page constraints, readability concerns and initial ap-
plication to the production of wikilink graphs make this
PEG only partially compliant. It parses most inter-
article semantics (relating two or more articles) but no
intra-article semantics (relating the structure within an
article). This includes all categorization, disambigua-
tion, redirect, wikilink, and interwikilink semantics as
well as some transclusion semantics, and none else.

Productions in boldface are language-specific.
They remain unset until after parsing revelant
metadata relevant from the archive preamble. When
the article archive preamble fails to provide such
metadata (e.g., for the wikilink_day_month_month
production), a parser either requires a priori knowledge
of the language under inspection or must delete all
such productions and productions requiring these
productions (e.g., the wikilink_day_month production).
By default, language-specific productions in the
grammar below assume English Wikipedia.

Productions in SMALL CAPS are archive-specific.
They remain unset until after parsing relevant articles
from the archive body. Such articles are grammar-
generative, in that their wikitext assists the parser to
generate itself. Prior to parsing the set of all grammar-
generative articles, the grammar is incompletely
generated. In this incomplete state, wikitext potentially
matching one or more unset productions cannot be
reliably consumed and must either be discarded or
cached for subsequent reparsing. Parsers performing
the former are necessarily two-pass; parsers performing
the latter are one-pass. In either case, compliant parsers
must iteratively bootstrap themselves in a language-
specific manner to eventual completion.

Productions split by “←” are directly context-free.
Productions split by “←↩” are directly context-sensitive.
Conveniently, most productions are the former.

We invite the interested reader to review Yppy[5],
open-source graph theoretic software implementing this
formalism as Python-compatible regular expressions.

wikitext ←↩ redirect? (occlusion | transclusion | wikilink | .)
redirect ← redirect_prefix redirect_begin wikilink wikilink_end

redirect_prefix ← whitespace* redirect_magic_word whitespace* ":"? whitespace*
redirect_magic_word ← "#" [Rr] [Ee] [Dd] [Ii] [Rr] [Ee] [Cc] [Tt]

redirect_begin ←↩ wikilink_begin | . redirect_begin
occlusion ← includeonly_tag | nowiki_tag | timeline_tag | comment_tag |

math_tag | pre_tag | source_tag | syntaxhighlight_tag
includeonly_tag ← includeonly_tag_open includeonly_tag_body

includeonly_tag_open ← tag_begin "includeonly" tag_end
includeonly_tag_body ←↩ tag_begin "/includeonly" tag_end | . includeonly_tag_body

nowiki_tag ← nowiki_tag_open nowiki_tag_body
nowiki_tag_open ← tag_begin "nowiki" tag_end
nowiki_tag_body ←↩ tag_begin "/nowiki" tag_end | . nowiki_tag_body

timeline_tag ← timeline_tag_open timeline_tag_body
timeline_tag_open ← tag_begin "timeline" tag_end
timeline_tag_body ←↩ tag_begin "/timeline" tag_end | . timeline_tag_body

comment_tag ← comment_tag_open comment_tag_body
comment_tag_open ← html_entity_less_than "!–"
comment_tag_body ←↩ "–" html_entity_greater_than | . comment_tag_body

math_tag ← math_tag_open math_tag_body
math_tag_open ← tag_begin "math" tag_end_attributes
math_tag_body ←↩ tag_begin "/math" tag_end | . math_tag_body

pre_tag ← pre_tag_open pre_tag_body
pre_tag_open ← tag_begin "pre" tag_end_attributes
pre_tag_body ←↩ tag_begin "/pre" tag_end | . pre_tag_body

source_tag ← source_tag_open source_tag_body
source_tag_open ← tag_begin "source" tag_end_attributes
source_tag_body ←↩ tag_begin "/source" tag_end | . source_tag_body

syntaxhighlight_tag ← syntaxhighlight_tag_open syntaxhighlight_tag_body
syntaxhighlight_tag_open ← tag_begin "syntaxhighlight" tag_end_attributes
syntaxhighlight_tag_body ←↩ tag_begin "/syntaxhighlight" tag_end | . syntaxhighlight_tag_body

tag_begin ← html_entity_less_than
tag_end ← whitespace* html_entity_greater_than

tag_end_attributes ← tag_end_attribute* whitespace* html_entity_greater_than
tag_end_attribute ← whitespace+

[a-zA-Z] ([a-zA-Z0-9] | "-" | "_" | ".")* ’="’ (!’"’ .)* ’"’
transclusion ← transclusion_begin transclusion_body transclusion_end

transclusion_begin ← "{{" wikilink_whitespace* transclusion_begin_subst?
transclusion_begin_subst ← [Ss] [Uu] [Bb] [Ss] [Tt] ":"

transclusion_end ← wikilink_whitespace* "}}"
transclusion_body ←↩ disambiguation | transclusion | . transclusion_body

DISAMBIGUATION ← Unset prior to parsing the “MediaWiki:Disambiguationspage” article.
wikilink ← wikilink_begin wikilink_type wikilink_end

wikilink_begin ← wikilink_open wikilink_whitespace*
wikilink_end ← wikilink_whitespace* wikilink_close

wikilink_open ← "[["
wikilink_close ← "]]"

wikilink_whitespace ← " " | "_"
wikilink_type ←↩ wikilink_category | wikilink_day_month | wikilink_iso_8601 | wikilink_normal

wikilink_category ← wikilink_namespace_category wikilink_qualifier_end wikilink_body
wikilink_day_month ← wikilink_day_month_day wikilink_whitespace* wikilink_day_month_month

wikilink_day_month_day ← [0-9] [0-9]?
wikilink_day_month_month ← [Jj] "anuary" | [Ff] "ebruary" | [Mm] "arch" | [Aa] "pril" |

[Mm] "ay" | [Jj] "une" | [Jj] "uly" | [Aa] "ugust" |
[Ss] "eptember" | [Oo] "ctober" | [Nn] "ovember" |
[Dd] "ecember"

wikilink_iso_8601 ← wikilink_iso_8601_year "-"
wikilink_iso_8601_month "-" wikilink_iso_8601_day

wikilink_iso_8601_year ← [0-9] [0-9] [0-9] [0-9]

wikilink_iso_8601_month ← [0-9] [0-9]
wikilink_iso_8601_day ← [0-9] [0-9]

wikilink_normal ← (wikilink_subpage_prefix | wikilink_qualifier)? wikilink_body
wikilink_subpage_prefix ← "/" wikilink_whitespace*

wikilink_qualifier ← wikilink_qualifier_prefix? wikilink_qualifier_body wikilink_qualifier_end
wikilink_qualifier_prefix ← ":" wikilink_whitespace*
wikilink_qualifier_body ← wikilink_namespace | wikilink_interlanguage | wikilink_interwiki
wikilink_qualifier_end ← wikilink_whitespace* ":" wikilink_whitespace*

wikilink_namespace ← wikilink_namespace_main | wikilink_namespace_talk |
wikilink_namespace_user | wikilink_namespace_user_talk |
wikilink_namespace_wikipedia | wikilink_namespace_wikipedia_talk |
wikilink_namespace_file | wikilink_namespace_file_talk |
wikilink_namespace_mediawiki | wikilink_namespace_mediawiki_talk |
wikilink_namespace_template | wikilink_namespace_template_talk |
wikilink_namespace_help | wikilink_namespace_help_talk |
wikilink_namespace_category | wikilink_namespace_category_talk |
wikilink_namespace_special | wikilink_namespace_media

wikilink_namespace_main ← [Mm] [Aa] [Ii] [Nn]
wikilink_namespace_talk ← [Tt] [Aa] [Ll] [Kk]
wikilink_namespace_user ← [Uu] [Ss] [Ee] [Rr]

wikipedia_namespace_user_talk ← wikilink_namespace_user wikilink_namespace_talk_end
wikilink_namespace_wikipedia ← [Ww] [Ii] [Kk] [Ii] [Pp] [Ee] [Dd] [Ii] [Aa] |

[Pp] [Rr] [Oo] [Jj] [Ee] [Cc] [Tt] |
[Ww] [Pp] | [Ww]

wikilink_namespace_wikipedia_talk ← ([Ww] [Ii] [Kk] [Ii] [Pp] [Ee] [Dd] [Ii] [Aa] |
[Pp] [Rr] [Oo] [Jj] [Ee] [Cc] [Tt]) wikilink_namespace_talk_end |
[Ww] [Tt]

wikilink_namespace_file ← [Ff] [Ii] [Ll] [Ee] | [Ii] [Mm] [Aa] [Gg] [Ee]
wikilink_namespace_file_talk ← wikilink_namespace_file wikilink_namespace_talk_end

wikilink_namespace_mediawiki ← [Mm] [Ee] [Dd] [Ii] [Aa] [Ww] [Ii] [Kk] [Ii]
wikilink_namespace_mediawiki_talk ← wikilink_namespace_mediawiki wikilink_namespace_talk_end

wikilink_namespace_template ← [Tt] [Ee] [Mm] [Pp] [Ll] [Aa] [Tt] [Ee]
wikilink_namespace_template_talk ← wikilink_namespace_template wikilink_namespace_talk_end

wikilink_namespace_help ← [Hh] [Ee] [Ll] [Pp]
wikilink_namespace_help_talk ← wikilink_namespace_help wikilink_namespace_talk_end

wikilink_namespace_category ← [Cc] [Aa] [Tt] [Ee] [Gg] [Oo] [Rr] [Yy]
wikilink_namespace_category_talk ← wikilink_namespace_category wikilink_namespace_talk_end

wikilink_namespace_special ← [Ss] [Pp] [Ee] [Cc] [Ii] [Aa] [Ll]
wikilink_namespace_media ← [Mm] [Ee] [Dd] [Ii] [Aa]

wikilink_namespace_talk_end ← wikilink_whitespace+ wikilink_namespace_talk
WIKILINK_INTERLANGUAGE ← Unset prior to parsing the “List of Wikipedias” article.

WIKILINK_INTERWIKI ← Unset prior to parsing the “Meta:Interwiki map” article.
wikilink_body ← (!wikilink_invalid_char .)+ wikilink_anchor? wikilink_label?

wikilink_anchor ← wikilink_whitespace* "#" (!wikilink_invalid_char .)*
wikilink_label ← wikilink_whitespace* "|" (!wikilink_label_invalid_char .)*

wikilink_invalid_char ← "#" | "<" | ">" | "[" | "]" | "|" | "{" | "}" | "\t" | "\n"
wikilink_label_invalid_char ← wikilink_close | "\t" | "\n"

html_entity_less_than ← "<"
html_entity_greater_than ← ">"

whitespace ← " " | "\t" | "\n"

