Fast Search Engine Vocabulary Lookup

Xiang-Fei Jia Andrew Trotman Jason Holdsworth
Computer Science Computer Science Information Technology
University of Otago University of Otago James Cook University

Dunedin, New Zealand Dunedin, New Zealand Cairns, Australia

fei@cs.otago.ac.nz andrew@cs.otago.ac.nz jason.holdsworth@jcu.edu.au

Abstract The search engine vocabulary is normally There are three efficiency issues related to the 2-
stored in alphabetical order so that it can be searchedevel B-tree structure. First, disks are an order of mag-
with a binary search. If the vocabulary is large, it cannitude slower than main memory and it can take a long
be represented as a 2-level B-tree and only the root dfime to read the leaves. Second, The size of the leaves
the tree is held in memory. The leaves are retrievedas a big impact on the performance of disk I/O. If the
from disk only when required at runtime. In this papersize is large, it can take a long time to read. However,
we investigate and address issues associated with therge leaves might benefit from disk caching provided
2-level B-tree structure for vocabulary lookup. Severaby operating systems [4]. On the other hand, small
compression algorithms are proposed and comparedeaves are fast to read, but cannot benefit much from
the proposed algorithms not only performs well wherthe caching. The last issue is how the leaves should
the leaves are stored on disk, but also when the wholee compressed. Algorithms with better compression
vocabulary is stored in memory. ratios might be slow to decompress at runtime, due to
the complexity of the algorithms.

In this paper, we investigate and address issues as-
. sociated with the 2-level B-tree structure for vocabu-
1 Introduction lary lookup. A number of compression algorithms are
Inverted files [16, 15] are the most widely used indexproposed and compared. As shown in the results, the
structures in Information Retrieval (IR). An inverted proposed algorithms not only performs well when the
file typically contains two parts, a vocabulary of uniqudeaves are stored on disk, but also when the whole vo-
terms extracted from a document collection and a list gfabulary is stored in memory. Thembedfixedalgo-
postings (normally a pair ofdocument number, term rithm provided the best trade-off between compression
frequency) for each of the vocabulary terms. Due toratio and fast lookup.
the large size of the postings, various techniques have
been developed to improve the processing of them, irp In-memory Algorithms
cluding better compression algorithms [12], impact or-
dering [9, 2] and pruning [2, 13, 5]. With the applied!vI
techniques, the postings can be efficiently loaded arl
processed. What becomes of interest is the time tak
to search through the vocabulary in order to locate th
postings for the terms. .

The vocabulary is normally stored in alphabeticalC

Keywords Inverted Files, Vocabulary Compression.

anning et al. [8] discuss storage efficiency for
-memoryvocabulary compression and provide three
ta structures. This section gives a brief discussion of
ose structures.

In fixed vocabulary terms are sorted in alphabet-
al order and stored in fixed-width blocks as shown

order so that it can be searched with a binary searcl. Fitgur<;41£a)t. Tfhe exarr:]tple sth\I/:/n in dt?)e figu8reba:-
If the vocabulary is large, it can be represented as geates ytes for each term, foflowed Dy an G-byte

2-level B-tree and only the root of the tree is held inpostings pointer (the location of the postings for the

memory. The leaves are retrieved from disk only wheﬁerm)' Terms are null-terminated (shown as “g") for

required at runtime. Three steps are required to locaf@st String comparnson. Th|s fixed structure is clearly
the postings for the terms; (1) A binary search of th&ot very space efficient, since the average length of a

root gives the disk location of the leaf. (2) One disk-tirmh's extpectﬁd totb% srtnall. '?‘IZO Itermj Iotn gelrl th.art1
seek and one disk-read load the leaf into memory. (characters have fo be truncated. in orderto alleviate

A search through the leaf gives the location of the posf— ese problems it is beter 1o store terms in variable-
ings. width strU(_:tures.
Thestring structure stores the vocabulary terms as a
Proceedings of the 16th Australasian Document Comput- long string of characters as shown in Figure 1(b). The
ing Symposium, Canberra, Australia, 2 December 2011. vocab pointers are used to identify the beginning of
Copyright for this article remains with the authors. each term and the end of each term is specified by the
next vocab pointer. As strings are not null-terminated

(a) fixed (b) string (c) blocked-k

term@ postings ptr vocab ptr | postings ptr vocab ptr | postings ptr | postings ptr
(24 bytes) (8 bytes) (4 bytes) (8 bytes) (4 bytes) (8 bytes) (8 bytes)
termsd postings ptr vocab ptr | postings ptr vocab ptr | postings ptr | postings ptr
(24 bytes) (8 bytes) (4 bytes) (8 bytes) (4 bytes) (8 bytes) (8 bytes)
termstrd | postings ptr vocab ptr | postings ptr vocab ptr | postings ptr
(24 bytes) (8 bytes) (4 bytes) (8 bytes) (4 bytes) (8 bytes)
termstrs@ | postings ptr vocab ptr | postings ptr
(24 bytes) (8 bytes) (4 bytes) (8 bytes)
them@ postings ptr vocab ptr | postings ptr
(24 bytes) (8 bytes) (4 bytes) (8 bytes)

e ————
‘ *4term5terms7termstr8termstrs4them

tormStermetrermstfs
\termte?nzterms rtermstrsthem@ ‘

Figure 1: The in-memory vocabulary structures from Manrahgl. [8]. Inblocked-k £ has a value of 2.

special string comparison using string length has to baverage, it take®(log>(ic)) to locate the leaf in the
used. header, wherée is the number of leaves.

The blocked-kstructure further extendstring by In order to optimise disk 1/O, a leaf should be a
grouping terms into blocks of size and assigning a whole number of physical disk sectors. The sector is
vocab pointer to each group. An examplebdbcked the smallest unit a disk can read/write. If leaves are
with & = 2 is shown in Figure 1(c). An exception is sector aligned, the time taken to read a leaf should be
that the last block has only one term since there are ontyinimised. During construction of the leaf, as many
five terms in the illustrated example. terms as possible are inserted into the leaf and the re-

The blocked-kstructure provides better compres-maining bytes padded with zeros.
sion ratio by reducing the number of vocab pointers In order to convert the origindixed structure into
required. However it take@(log2(n/k) + k) to search a 2-level B-tree, each entry in the structure should be
instead ofO(logan) for fixedanddictionary-as-string given a specific size so that terms do not cross sector
wherek is the blocking factor and is the total number boundaries. As shown in Figure 1(a) in our experi-

of terms in the vocabulary. ments, each entry is assigned 32 bytes, 24 bytes for
storing the term and the other 8 bytes for the postings
3 Fast Lookups with 2-level B-tree pointer. The size of a disk sector is normally 512 bytes,

which is evenly divisible by 32. There is no need to

For large data collections and systems with limited regy,a 4 header, instead the header can be constructed at

sources, it is not feasible to store the whole vocabularytartup time.
in memory. In this section we discuss how to efficiently Figure 2(a) and Figure 2(b) show the origisgiing

compress the vocabulary in terms of both storage spag@ qp|ockedrepresented as a 2-level B-tree. The header

and speed of search using a 2-level B-tree. The root @, the eft in the Figure 2(a) is that describe above.

the tree is stored in memory. The leaves are stored e |eaf structures are identical to the orignal structures

disk and retrieved only when required. encoded usingtring andblock-krespectively, théeaf

3.1 Prior Algorithms lengthentry is added to the bgglr_mmg of the structure
and stores the number of entries in the leaf.

It is easy to convert Manning’s structures into 2-level)

B-tree structures and he suggests this. The header strd&c2 New Algorithms

ture (the root of the 2-level B-tree) is constructed Q- neywembedalgorithm is based on the assumption
allow fast lookup using binary search in order to locatg, o+ similar data types should be grouped together as
the leaf. The leaf structure is built with the consid-cps gre good at caching and fast at reading data of a
eration of disk properties so that leaves can be storgflaq jength. The data types used in the leaf structure
efficiently on disk and read quickly from disk. are word-aligned as CPUs read/write data in units of
Two fields are required for each entry in the headef,,rqs. A vocab pointer is assigned to each term stored
structure. The first field stores the first term stored iRy, ihe |eaf and the stored terms are not compressed, thus
each leaf. The header terms are null-terminated fQfy ye_serialisation is required. As shown in Figure 2(c),
fast string comparison. The secqnd field stores thg di bedleaf first stores the postings pointers, followed
offset to the leaf on disk. The size of the leaf pointey,y the yocab pointers, then null-terminated strings and
is dependent on the vocabulary file size and might b1y the number of entries in the leaf. The header
either 4 or 8 bytes. Throughout our discussion, we Us§yctyre oembeds the same as the header structure in
8 bytes for the leaf pointer. THeaf countentry atthe 5 jeye|string, The leaf structure asmbeds similar to
beginning of the header stores the number of leaves. ey string with the exceptions that (1) elements are
The left part of Figure 2(a) shows a typical header. ORg_qrdered for faster CPU processing and (2) terms are

(a) 2-levelstring (b) 2-levelblocked-k

leaf count| leaf length leaf count| leaf length

(4 bytes) (4 bytes) (4 bytes) (4 bytes)

leaf ptr vocab ptr | postings ptr leaf ptr vocab ptr postings ptr postings ptr
headerd | g'bytes) (4bytes) | (8 bytes) header?| 'ty tes) (4 bytes) (8 bytes) (8 bytes)

leaf ptr vocab ptr | postings ptr leaf ptr vocab ptr postings ptr postings ptr
headerd | g'tvtes) (4bytes) | (8 bytes) header?| 'ty tes) 4 bytes) (8 bytes) (8 bytes)

leaf ptr vocab ptr | postings ptr leaf ptr VOC: tr postings ptr
headerd | &'t tes) (4bytes) | (8 bytes) header@| 't tes) 8 bytes)

leaf ptr cab ptr | postings ptr leaf ptr N -
header@ (8 bytes) %ytes) (8 bytes) header® (8 bytes) -4term5terms7termstr8termstrs4them

vocakptr | postings ptr
(8 bytes)
Y X
mtermtermstermstrtermstrsthem@

(c) embed (d) embedfront
postings ptr | postings ptr postings ptr postings ptr postings ptr postings ptr | postings ptr postings ptr postings ptr postings ptr
(8 bytes) (8 bytes) (8 bytes) (8 bytes) (8 bytes) (8 bytes) (8 bytes) (8 bytes) (8 bytes) (8 bytes)
vocab ptr vocab ptr vocab ptr vocab ptr vocab ptr Mermd1s52tr71s13hem

“t4bytes) | ~{4 bytes) (4 bytes) (4 bytes) (4 bytes)
1 »
te;btermsmerms(rmermstrs emd

leaf length
(4 bytes)

leaf length
(4 bytes)

Figure 2: (a) The header and leaf structures for 2-letréhg. (b) The leaf structure for 2-levélocked-k (c) The
leaf structure foembed (d) The leaf structure foembedfixedThe header structure of 2-lev&ting is also used
in 2-levelblocked-k embedandembedfixed

null-terminated so that standard intrinsic string compar- ot | Mo ot n
1 f
ison can be perfprmed. e | mane

head leaf pt
. The search time oémbeds O(loga(lc)), wherele (eader | ettt]
is the number of leaves in the header, plu@og-(11)), i
wherell is the number of entries in the leaf. The perfor- = PElses| Piieerr | Poine bt | Pohee st P e
mance oembeds efficient as it allows binary search in Yoo | e | Gones L (o sufixa
the header and leaf structures to locate the term (no de — ey
serialisation is required). Howevenmnbeds not space leatenglh

efficient. Terms inside each leaf are not compressed.
Two new algorithms are introduced to overcome thi's_-i
problem,embedfronandembedfixed

The embedfrontalgorithm uses front coding [14, L)
p. 122] to compress terms in each leaf. Front Codinbaaves, but de-serialisation is required for lookup. An

takes advantage of the fact that adjacent terms in sortfférmediate solution, e.gembedfixedis proposed to
alphabetical order tend to share a common prefix. Twgrovide a trade-off betweeembedandembedfront
integers (we use one-byte integers) are used; one to The gmbedﬂxedalgorlthm uses a simple but effec-
track the size of the common prefix between the currefv€ coding method for compressing terms and allows
term and the previous one, and another is the size of tﬁ%st lookup W|thout.de—senall.sanon. Instead of alloca_t—
suffix for the current term. As shown in Figure 2(d),ind leaves as multiples of disk sectors and squeezing
“term,terms, termstr,termstrs, them” is front encoded a& Many terms as possible into each leaf, a leahn
“4term41s52tr71s13hem”. The first term has a value di€dfixedonly contains terms with the same common

zero for the common prefix count and there is no nee@réfix. The leaf size thus depends on the number of
to store this. common prefix characters and how many terms share

Since there is no way to access the terms directij?t common prefix. Additionally and uniquely, only
without de-serialisation, there is no need to store thi1€ suffixes of the terms are stored in the leaf and are

vocab pointers for each term. The header structure gull-terminated for fast string comparison. Essentially,

embedfronts identical to the header structure in 2-levelUr @lgorithm is a form of Trie [6, Section 6.3, p. 412].
string. The construction of the header is also different from

The embedfrontalgorithm not only compresses the previous algorithms. Instead of storing the whole

terms more effectively but also does not need vocals™ (Of varying lengths) in the header, only the charac-

pointers. However, the search time in the leaf requird§'s of the common prefix are stored, and all common
a linear search 0P (logs(il)) or a de-serialisation and prefixes are of the same length. There are sevgral ad-
a binary search aP(il + logs (1l)). vantages to constructing the header structure this way;

(1) For the same number of leaves, the structure has
3.2.1 Embedfixed a smaller footprint compared with the previous header
structure since only partial terms are stored. (2) During
lookup, a shorter string comparison is performed to lo-
fate the leaf containing the term. (3) If the partial terms

gure 3: The header and leaf structuresdimbedfixed

The embedalgorithm allows fast lookup, but provides
no compression of terms. On the other haachbed-
front uses front coding to compress the terms stored

are treated as integers, integer comparison can be us#41,671 terms. The average query length is about 4
for fast lookup instead of standard string comparison. terms.

Essentially,embedfixeplits terms into two parts, Instead of using a real search endina simula-
the common prefix and the rest of the term (the suffix}tion program was written and used for the evaluation.
For example, the term “termstr” with common prefixThe advantage of using a simulation is that it is easy
“term” will be split as “term” and “strg”. The common to implement and evaluate the algorithms. At the same
prefix “term” will be stored in the header and the suffixtime, the simulation program can provide the correct
“strg” will be stored in the leaf. performance since it mimics how a real search engine

Figure 3 shows the complete structure ofprocess queries for vocabulary lookup. Through out
embedfixedIn the header, 4 bytes are allocated for thehe experiments, only the vocabulary of the inverted
common prefixes and 8 bytes for the leaf pointers. Thiles was built as the postings are not touched in the
leaf countand max leaf lenentries at the beginning experiments.
of the header structure store the number of leaves and The program has two executablespuild-
the size of the largest leaf respectively. Tmex leaf dictionaries and search-dictionaries The build-
len entry is used to allocate one fix-sized buffer fordictionariesexecutable uses the parser from the search
reading leaves throughout the execution of the sear@ngine described in [13, 5] and takes a number of
engine. In the leaf, the 8-byte postings pointers arparameters including (1) which vocabulary structure to
stored first, followed by the 4-byte vocab pointers, theibuild, (2) the number of disk sectors for the leaf size
the null-terminated suffixes and finally the number ofand (3) the value of for the blocked-kstructure.
entries in the leaf. The vocab pointers are used to avoid In order to minimise the interference from the Linux
de-serialisation of the suffix string. With the illustratedkernel during the evaluation, one of the CPU cores is
terms of “term,terms,termstr,termstrs,them”, the headeonfigured off the management of the kernel and the
will have common prefix “term” and the terms aresearch-dictionarieprocess was assigned to that partic-
compressed as “gsgstrgstrsg” in the leaf. The last temhar core using the CPU affinity system calls [7, p. 172].
“them” does not share a common prefix with “term”search-dictionarieslso takes a number of parameters,
and has to be stored in a different leaf (not illustrated)including (1) which vocabulary to search, (2) whether

There is a case that a leaf may contain only onthe nodes are stored on disk or the whole vocabulary
term. This happens when the current term does nig loaded into memory, (3) the number of sectors for
share a common prefix with the next term. For examplehe leaf node size, (4) the value bffor the blocked-k
the terms “termstr,worm” have no common prefix. Thestructure and (5) which query file to use for batch mode
first four characters of the term “termstr” will be storedprocessing.
in the header since the header has a length of 4 byte for
the common prefix. The suffix “strg” will be stored in5 Results
the leaf by itself. In this case, the vocab pointer is no

longer needed. Thieaf lengthentry is still required to FoUr Sets of experiments were conducted to test the 2-
indicate that it is a leaf containing a single term. level vocabulary algorithms dixed string, blocked-
k with a value of 2, 4 and 8mbed embedfrontand

4 E . embedfixedUnless specified, the number of characters
Xperiments stored in the header are 4 bytes long énbedfixed
We conducted all our experiments on a system witlll search results were average over twenty runs. The
dual quad-core Intel Xeon E5410 2.3 GHz, DDR2gettimeofday(junction was used for the timing.

PC5300 8 GB main memory, Seagate 7200 RPM]
500 GB hard drive and running Linux with kernel9.1 EXxperiment One

version 2.6.30. The hard drive has a model number ofpe first set of the experiments examined the storage
ST3500320AS and 512 byte sectors [11]. space of the proposed 2-level structures with various

The collections used were the INEX 2009jg4f sizes. The leaf sizes were 1, 2, 4, 8, 16 and 32
Wikipedia collection [10] and the uni-gram corpussectors and the corresponding length in bytes are 512,

from the Web 1T S5-gram version 1 [3]. The 1024, 2048, 4096, 8192 and 16384 (the disk has a sector
Wikipedia collection has about 2.6 million documentsgjze of 512 bytes).

2,348,343,176 total words and 11,393,924 unique Figyre 4(a) shows the results. In both collections,

words. The Web 1T corpus was generated from aboutgleqdandembedfixeghowed static storage space as the
trillion terms of text from public web pages. It containssjze of the leaf did not depend on the number of sectors.
English word n-grams (uni-grams to 5-gram) and theifixed required about 349 MB to store the Wikipedia

frequency counts. Throughout the experiments, onlygjiection and about 337 MB for the unigram data set.
the uni-grams was used. There are 13,588,391 words
in the uni-gram data set. 1But the ATIRE search engine currently under development at

- . University of Otago now uses essentially thebedfixedlgorithm
The Million Query Track queries from TREC and so it has been tested in a search engine.

2007 [1] were used for throughput evaluation. The
track has a total of ten thousand queries with a total

(a) the total storage space

350

0
)

—o— fixed
& string
blocked-2
%~ blocked-4
- blocked-8
- embed
embedfront
- embedfixed

100
100

1 2 4 8 16 32 1 2 3 8 16 32
Number of Sectors Number of Sectors

(b) the wastage of the storage space

o
®

30

fixed
string
blocked-2
-~ blocked-4
- blocked-8
embed
embedfront
- embedfixed

25

0 AN
Q

20

20
Theeiied

KB
15
KB
15

10
10

3 8 16 3 8
Number of Sectors Number of Sectors

Figure 4: The total storage space and the wastage. The lefefigshows the results using the Wikipedia
collection [10] and the right figures shows the results usiiregguni-gram data set in the Web 1T corpus [3].

embedfixedised about 196 MB and 197 MB respec- Figure 4(b) shows the wasted storage space due to
tively in the Wikipedia collection and the uni-gram datainternal fragmentation in leaves. Apart frdimedand
set. embedfixedas the size of the leaf increased more stor-
The storage space steadily decreased as the leaf sarge space was wasted. However, the wastage is small
increased forstring, blocked-2 blocked-4 blocked-8 compared with the total storage space.
embedand embedfronin both collections. When the There is an apparent contradiction when compar-
leaf size increased from 1 to 8 sectopdpcked-8had ing Figure 4(a) and Figure 4(b). As the the number
the biggest drop in the storage required from 244 MBf sectors increased, the wastage increased, however
to 201 MB in the Wikipedia collection and from 232 the total storage space decreasedstang, blocked-k
MB to 193 MB in the uni-gram dataset. embedandembedfrontA common factor for the reduc-
Overall, embedfrontvas the most storage efficienttion of the storage space is a reduction in the number
and used about 62% and 60% less storagefilkadin of leaves and hence the size of the header is smaller.
the corresponding collections. In most casambed- Further moreblock-kalso benefitted from combining
fixedperformed better than the other algorithms exceptvo or more odd sized leaves into even sized leaves and
that it used about 60 MB and 50MB more storage thaembedfronfrom better compression of terms stored in
embedfrontn the corresponding collections. larger leaves.
There are two reasons whgmbedfrontused less]
storage space thambedfixedFirst, the 4-byte vocab 9.2 EXxperiment Two

pointer is not used irembedfront For a leaf stored The second set of the experiments examined the search
with 100 terms, 400 bytes are saved (100 pointers @ferformance when the header of the vocabulary struc-
4 bytes each). Secondmbedfroncomputes the com- tyres was loaded into memory and only the required
mon prefix dynamically between each adjacent termsaayes were retrieved from disk. The simulation pro-
while the common prefix irmbedfixeds preset. For gram did not cache 1/O, but depended on the Linux
example, for “term,terms,termstr,termstreftnbedfront arnel to do so. Before each run of the experiments,

computes the common prefixes of “term”, “terms” andpe disk cache was flushed.

"termstr”, while shorter common prefix of “term” is Figure 5(a) shows the I/O time, taken to read the

used forembedfixed For terms sharing long common required leaves from disk. The I/O time fembefixed

prefixes.embedfronprovides better compression. is approximately constant regardless of the number of
sectors to store each leaf. For other algorithms, the

(a) the /O time

(=3
© ©
—— fixed
&~ string
2 2 =+ blocked-2
-»- blocked-4
-<- blocked-8
2 2 -~ embed
—&— embedfront
§ § —-%- embedfixed
88 88
[o3 [o3
» »
o o
& &
2 2
1S 1S
1 2 3 8 16 32 1 2 3 8 16 32
Number of Sectors Number of Sectors
(b) the total read
8 S 2 ¥ * ¥ ¥
A - —— fixed
~£- string
o o -+ blocked-2
8 &8 - blocked-4
-©- blocked-8
-¥- embed
3 /e 3 —=— embedfront
© | ¥ ¥ * * * * @ %~ embedfixed
[as] [as]
= =
o o
g g
o o
& &
o o
1 3 8 16 32 1 3 8 16 32
Number of Sectors Number of Sectors
(c) the search time
o o
o o
© ©
—— fixed
15 15 & string
~ ~ +- blocked-2
o o -~ blocked-4
3 & ~<- blocked-8
- - -~ embed
23 23 —&— embedfront
° el .
< So - embedfixed
o
89 89
Sg Sg
@ @
o (=3
o o
39 39
o o
) e
————p oy e
o o
1 4 8 16 32 1 4 8 3 32
Number of Sectors Number of Sectors
(d) the total time
o o
3 3
—o— fixed
—£- string
-+ blocked-2
3 3 -~ blocked-4
-~ blocked-8
-~ embed
o o —&— embedfront
N N —%- embedfixed
2 2
3 3
ol ol
Do Do
@ @
o o
Y Y
2 2
1 2 4 8 16 32 1 2 4 8 16 32
Number of Sectors Number of Sectors

Figure 5: The performance of the algorithms when leaves wiared on disk. The left figures shows the results
using the Wikipedia collection [10] and the right figuresskdhe results using the uni-gram data set in the Web
1T corpus [3].

(e} [Te}
w w
—o— fixed
~£- string
=+ blocked-2
- o -%- blocked-4
0 0 -<- blocked-8
Py -~ embed
” » —&— embedfixed
© PO S °
2 2
8w =0 8w
3 ' S
g % 8T 5] 8 g
P s
Ly 7 ——
=4 g g g
e} e}
@ ©
i 2 3 8 16 32 i 2 4 8 16 32
Number of Sectors Number of Sectors

Figure 6: In-memory total time withouembedfront The left figures shows the results for the Wikipedia
collection [10] and the right figures shows the results ferthi-gram data set in the Web 1T corpus [3].

I/O time decreased with the increasing number of se¢gato memory. The results show the same pattern as
tors. For both collectionsgmbedfixegerformed the shown in Figure 5(c)embedfrongrew linearly as the
best,embedfrontook more time tharembedfixedut leaf size increased. Figure 6 shows a detailed plot of
performed better than other algorithms, dngdper- the results from Figure 5(c), but withoembedfront
formed the worst. In both collections, The time to search fatring,
The performance difference betweéxed string, blocked-2 blocked-4 blocked-8and embedincreased
blocked-kembedandembedfronshowed the impact of as the leaf size increased, whiiged and embedfixed
the total file size on disk I/O. The smaller the file sizeshowed static performance.
the less time taken to read from disk.]
The embedfixedilgorithm performed the best, even9.4 Experiment Four

though it had a larger file size tha@mbedfront This The |ast set of the experiments explored various lengths
is due to the fact thaémbedfixedaccessed a smaller of the common prefix in the header fembedfixedFig-
number of leaves tharembedfrontand the leaves e 7(a) shows the required storage space as the size of
were larger. A large leaf can contain more terms thathe common prefix increased from 1 to 10 bytes. In both
a small leaf and be better cached by the operatingy|iections, the required storage space decreased from
system. For example in the Wikipedia collection,; 1o 4, and increased from 7 to 10. Tkebedfixed
embedfronthad 280,399 leaves when the leaf was 2gorithm used the least storage space when when the
sectors. On the other handmbedfixedhad 314,871 ommon prefix had a length of 4.

leaves but only 169,187 of them contained more than Figure 7(b) shows the search performance when the
one term. 169,187 large blocks is smaller than 280,39Qnh0le vocabulary was loaded into main memory. In
blocks, and they were read and cached earlier in the Wikipedia collectionembedfixedshowed the best
experiments. Figure 5(b) shows the total number Oféerformance when the common prefix had a length of
bytes read from disk. When the leaf had a size of 2 o 6. While in the uni-gram data setmbedfixedhad
sectors,embedfixedead 560 MB and 950 MB more the pest performance when the common prefix had a
thanembedfrontespectively in the collections. _length of 8. This is due to how terms are distributed

_ Figure 5(c) shows the search time. As the leaf sizgmong the header and leaf structures. For a header
increased from 1 to 32 sectors, the search time takgin long common prefix, more terms are squeezed into
by embedfrongrew exponentially on the log scale of {he header and more characters have to be compared
the number of sectors (linearly in linear scale). Then order to locate the leaf. For a header with shorter
performance gap betweembedfronand the other al- common prefixes, fewer terms are squeezed into the

access the individual terms stored in leaves during thgkes longer to locate the term in the leaf.

lookup.
As shown in Figure 5(d), the total time was domi- .
nated by the 1/O time. Figure 5(d) is almost identical to6 Conclusion and Future Work
Figure 5(a) because the CPU time was order of madpn this paper, we have investigated and addressed the
nitude lower than the 1/0 time. Overakmbedfixed related issues associated with the 2-level B-tree struc-

showed the best performance. ture for storing the vocabulary of a search engine. We
_ have conducted experiments on a number of algorithms,
5.3 Experiment Three including 2-levelfixed string, blocked-k embed em-

The third set of the experiments examined the seardifdfrontand embedfixed Our newembedfixecalgo-
performance when the whole Vocabulary was loadefthm provides a simple but effective encoding method

(a) the total storage space

(b) the search time

45
50

Milliseconds
45

40

150
35

—— Wikipedia
& Web 1T

4 5 6
Length of the common prefix

4 5 6 7
Length of the common prefix

Figure 7: The left figure shows the storage space with diffelengths of the common prefix. The right figure
shows the total search time with different lengths of the iwmm prefix.

by storing terms with the same common prefix in the[2] Vo Ngoc Anh, Owen de Kretser and Alistair Moffat.

same leaf, and the shared common prefix in the header
structure. The new encoding method allows fast lookup

Vector-space ranking with effective early termination.
pages 35-42, 2001.

without de-serialisation, with an average search time[3] Thorsten Brants and Alex Franz. Web 1t 5-gram version

of O(loga(lc)), wherels is the number of leaves in
the header, plu®(logz(1l)), wherell is the number of

entries in the leaf.
In terms of compression ratigmbedfrontshowed

the best performance in both the Wikipedia collection

and the uni-gram data set. Tleenbedfixedlgorithm

used about 60 MB and 50 MB more storage space than
embedfronin the corresponding collections. While in
terms of vocabulary lookup performancembedfixed

showed the best performance in both sets of the exper-

1. Linguistic Data Consortium, 2006.

[4] Xiang-fei Jia, Andrew Trotman, Richard O’Keefe and

Zhiyi Huang. Application-specific disk I/O optimisation
for a search engine. IRDCAT '08 pages 399-404,
Washington, DC, USA, 2008. IEEE Computer Society.

[5] Xiangfei Jia, David Alexander, Vaughn Wood and An-

drew Trotman. University of Otago at INEX 2010. In
INEX [5], pages 250—-268.

[6] Donald E. Knuth. The Art of Computer Programming

Addison-Wesley, 1997.

iments when only the header structure was loaded intd?] Robert Love. Linux System ProgrammingO'Reilly

memory and when the whole vocabulary was loaded
[8] Christopher D. Manning, Prabhakar Raghavan and Hin-

into memory.

However, the performance of vocabulary lookup is
dependent on how disk data is cached in memory. An

Media, 2007.

rich Schutze. Introduction to Information Retrieval
Cambridge University Press, 2008.

extreme case is that systems do not cache disk data &1 Alistair Moffat, Justin Zobel and Ron Sacks-Davis.

all. For such systems, the algorithmes with smaller leaf

sizes will perform the best since less data is read from k o]
10] Ralf Schenkel, Fabian Suchanek and Gjergji Kasneci.

disk. In this case, thembedfrontlgorithm with a leaf

size of 1 sector should be used. The opposite extreme is

that the whole vocabulary can be loaded into memory at _
[11] Seagate. Barracuda 7200.11 serial ATA, January 2009.

startup time, thus disk 1/O is eliminated during lookup.
] Andrew Trotman. Compressing inverted filésf. Retr,

In this case, thembedfixedilgorithm should be used. [12
In future experiments, we will explore the performance

Memory efficient ranking.Inf. Process. ManaggVol-
ume 30, Number 6, pages 733744, 1994.

YAWN: A semantically annotated Wikipedia XML cor-
pus. March 2007.

Volume 6, Number 1, pages 5-19, 2003.

of the algorithms on systems with limited resources, foll3] Andrew Trotman, Xiang-Fei Jia and Shlomo Geva. Fast

example smart phones.

Acknowledgements

Thanks Dylan Jenkinson for his early contribution to

this work.

References

and effective focused retrieval. Focused Retrieval and
Evaluation pages 229-241. Springer Berlin, 2010.

[14] lan H. Witten, Timothy C. Bell and Alistair Moffat.

Managing Gigabytes: Compressing and Indexing Docu-
ments and Imageslohn Wiley & Sons, Inc., New York,
NY, USA, 1994.

[15] Justin Zobel and Alistair Moffat. Inverted files for

text search enginesACM Comput. Sury.Volume 38,
Number 2, pages 6, 2006.

[1] James Allan, Ben Carterette, Javed Aslam, Virgil Pavlu[16] Justin Zobel, Alistair Moffat and Kotagiri Ramamo-

Blagovest Dachev and Evangelos Kanoulas. Million

query track 2007 overview. ITREG 2008.

hanarao. Inverted files versus signature files for text
indexing. ACM Trans. Database SystVolume 23,
Number 4, pages 453-490, 1998.

