
Fast Search Engine Vocabulary Lookup

Xiang-Fei Jia

Computer Science
University of Otago

Dunedin, New Zealand

fei@cs.otago.ac.nz

Andrew Trotman

Computer Science
University of Otago

Dunedin, New Zealand

andrew@cs.otago.ac.nz

Jason Holdsworth

Information Technology
James Cook University

Cairns, Australia

jason.holdsworth@jcu.edu.au

Abstract The search engine vocabulary is normally
stored in alphabetical order so that it can be searched
with a binary search. If the vocabulary is large, it can
be represented as a 2-level B-tree and only the root of
the tree is held in memory. The leaves are retrieved
from disk only when required at runtime. In this paper,
we investigate and address issues associated with the
2-level B-tree structure for vocabulary lookup. Several
compression algorithms are proposed and compared.
the proposed algorithms not only performs well when
the leaves are stored on disk, but also when the whole
vocabulary is stored in memory.

Keywords Inverted Files, Vocabulary Compression.

1 Introduction
Inverted files [16, 15] are the most widely used index
structures in Information Retrieval (IR). An inverted
file typically contains two parts, a vocabulary of unique
terms extracted from a document collection and a list of
postings (normally a pair of〈document number, term
frequency〉) for each of the vocabulary terms. Due to
the large size of the postings, various techniques have
been developed to improve the processing of them, in-
cluding better compression algorithms [12], impact or-
dering [9, 2] and pruning [2, 13, 5]. With the applied
techniques, the postings can be efficiently loaded and
processed. What becomes of interest is the time taken
to search through the vocabulary in order to locate the
postings for the terms.

The vocabulary is normally stored in alphabetical
order so that it can be searched with a binary search.
If the vocabulary is large, it can be represented as a
2-level B-tree and only the root of the tree is held in
memory. The leaves are retrieved from disk only when
required at runtime. Three steps are required to locate
the postings for the terms; (1) A binary search of the
root gives the disk location of the leaf. (2) One disk-
seek and one disk-read load the leaf into memory. (3)
A search through the leaf gives the location of the post-
ings.

Proceedings of the 16th Australasian Document Comput-
ing Symposium, Canberra, Australia, 2 December 2011.
Copyright for this article remains with the authors.

There are three efficiency issues related to the 2-
level B-tree structure. First, disks are an order of mag-
nitude slower than main memory and it can take a long
time to read the leaves. Second, The size of the leaves
has a big impact on the performance of disk I/O. If the
size is large, it can take a long time to read. However,
large leaves might benefit from disk caching provided
by operating systems [4]. On the other hand, small
leaves are fast to read, but cannot benefit much from
the caching. The last issue is how the leaves should
be compressed. Algorithms with better compression
ratios might be slow to decompress at runtime, due to
the complexity of the algorithms.

In this paper, we investigate and address issues as-
sociated with the 2-level B-tree structure for vocabu-
lary lookup. A number of compression algorithms are
proposed and compared. As shown in the results, the
proposed algorithms not only performs well when the
leaves are stored on disk, but also when the whole vo-
cabulary is stored in memory. Theembedfixedalgo-
rithm provided the best trade-off between compression
ratio and fast lookup.

2 In-memory Algorithms
Manning et al. [8] discuss storage efficiency for
in-memoryvocabulary compression and provide three
data structures. This section gives a brief discussion of
those structures.

In fixed, vocabulary terms are sorted in alphabet-
ical order and stored in fixed-width blocks as shown
in Figure 1(a). The example shown in the figure al-
locates 24 bytes for each term, followed by an 8-byte
postings pointer (the location of the postings for the
term). Terms are null-terminated (shown as “ø”) for
fast string comparison. This fixed structure is clearly
not very space efficient, since the average length of a
term is expected to be small. Also terms longer than
24 characters have to be truncated. In order to alleviate
these problems it is better to store terms in variable-
width structures.

Thestringstructure stores the vocabulary terms as a
long string of characters as shown in Figure 1(b). The
vocab pointers are used to identify the beginning of
each term and the end of each term is specified by the
next vocab pointer. As strings are not null-terminated



(a) fixed (b) string (c) blocked-k

Figure 1: The in-memory vocabulary structures from Manninget al. [8]. Inblocked-k, k has a value of 2.

special string comparison using string length has to be
used.

The blocked-kstructure further extendsstring by
grouping terms into blocks of sizek and assigning a
vocab pointer to each group. An example ofblocked
with k = 2 is shown in Figure 1(c). An exception is
that the last block has only one term since there are only
five terms in the illustrated example.

The blocked-kstructure provides better compres-
sion ratio by reducing the number of vocab pointers
required. However it takesO(log2(n/k) + k) to search
instead ofO(log2n) for fixedanddictionary-as-string,
wherek is the blocking factor andn is the total number
of terms in the vocabulary.

3 Fast Lookups with 2-level B-tree
For large data collections and systems with limited re-
sources, it is not feasible to store the whole vocabulary
in memory. In this section we discuss how to efficiently
compress the vocabulary in terms of both storage space
and speed of search using a 2-level B-tree. The root of
the tree is stored in memory. The leaves are stored on
disk and retrieved only when required.

3.1 Prior Algorithms
It is easy to convert Manning’s structures into 2-level
B-tree structures and he suggests this. The header struc-
ture (the root of the 2-level B-tree) is constructed to
allow fast lookup using binary search in order to locate
the leaf. The leaf structure is built with the consid-
eration of disk properties so that leaves can be stored
efficiently on disk and read quickly from disk.

Two fields are required for each entry in the header
structure. The first field stores the first term stored in
each leaf. The header terms are null-terminated for
fast string comparison. The second field stores the disk
offset to the leaf on disk. The size of the leaf pointer
is dependent on the vocabulary file size and might be
either 4 or 8 bytes. Throughout our discussion, we use
8 bytes for the leaf pointer. Theleaf countentry at the
beginning of the header stores the number of leaves.
The left part of Figure 2(a) shows a typical header. On

average, it takesO(log2(lc)) to locate the leaf in the
header, wherelc is the number of leaves.

In order to optimise disk I/O, a leaf should be a
whole number of physical disk sectors. The sector is
the smallest unit a disk can read/write. If leaves are
sector aligned, the time taken to read a leaf should be
minimised. During construction of the leaf, as many
terms as possible are inserted into the leaf and the re-
maining bytes padded with zeros.

In order to convert the originalfixedstructure into
a 2-level B-tree, each entry in the structure should be
given a specific size so that terms do not cross sector
boundaries. As shown in Figure 1(a) in our experi-
ments, each entry is assigned 32 bytes, 24 bytes for
storing the term and the other 8 bytes for the postings
pointer. The size of a disk sector is normally 512 bytes,
which is evenly divisible by 32. There is no need to
store a header, instead the header can be constructed at
startup time.

Figure 2(a) and Figure 2(b) show the originalstring
andblockedrepresented as a 2-level B-tree. The header
on the left in the Figure 2(a) is that describe above.
The leaf structures are identical to the orignal structures
encoded usingstring andblock-krespectively, theleaf
lengthentry is added to the beginning of the structure
and stores the number of entries in the leaf.

3.2 New Algorithms
Our newembedalgorithm is based on the assumption
that similar data types should be grouped together as
CPUs are good at caching and fast at reading data of a
fixed length. The data types used in the leaf structure
are word-aligned as CPUs read/write data in units of
words. A vocab pointer is assigned to each term stored
in the leaf and the stored terms are not compressed, thus
no de-serialisation is required. As shown in Figure 2(c),
embedleaf first stores the postings pointers, followed
by the vocab pointers, then null-terminated strings and
finally the number of entries in the leaf. The header
structure ofembedis the same as the header structure in
2-levelstring. The leaf structure ofembedis similar to
2-levelstring with the exceptions that (1) elements are
re-ordered for faster CPU processing and (2) terms are



(a) 2-levelstring (b) 2-levelblocked-k

(c) embed (d) embedfront

Figure 2: (a) The header and leaf structures for 2-levelstring. (b) The leaf structure for 2-levelblocked-k, (c) The
leaf structure forembed. (d) The leaf structure forembedfixed. The header structure of 2-levelstring is also used
in 2-levelblocked-k, embedandembedfixed.

null-terminated so that standard intrinsic string compar-
ison can be performed.

The search time ofembedis O(log2(lc)), wherelc
is the number of leaves in the header, plusO(log2(ll)),
wherell is the number of entries in the leaf. The perfor-
mance ofembedis efficient as it allows binary search in
the header and leaf structures to locate the term (no de-
serialisation is required). However,embedis not space
efficient. Terms inside each leaf are not compressed.
Two new algorithms are introduced to overcome this
problem,embedfrontandembedfixed.

The embedfrontalgorithm uses front coding [14,
p. 122] to compress terms in each leaf. Front coding
takes advantage of the fact that adjacent terms in sorted
alphabetical order tend to share a common prefix. Two
integers (we use one-byte integers) are used; one to
track the size of the common prefix between the current
term and the previous one, and another is the size of the
suffix for the current term. As shown in Figure 2(d),
“term,terms,termstr,termstrs,them” is front encoded as
“4term41s52tr71s13hem”. The first term has a value of
zero for the common prefix count and there is no need
to store this.

Since there is no way to access the terms directly
without de-serialisation, there is no need to store the
vocab pointers for each term. The header structure of
embedfrontis identical to the header structure in 2-level
string.

The embedfrontalgorithm not only compresses
terms more effectively but also does not need vocab
pointers. However, the search time in the leaf requires
a linear search ofO(log2(ll)) or a de-serialisation and
a binary search ofO(ll + log2(ll)).

3.2.1 Embedfixed

The embedalgorithm allows fast lookup, but provides
no compression of terms. On the other hand,embed-
front uses front coding to compress the terms stored in

Figure 3: The header and leaf structures forembedfixed.

leaves, but de-serialisation is required for lookup. An
intermediate solution, e.g.embedfixed, is proposed to
provide a trade-off betweenembedandembedfront.

The embedfixedalgorithm uses a simple but effec-
tive coding method for compressing terms and allows
fast lookup without de-serialisation. Instead of allocat-
ing leaves as multiples of disk sectors and squeezing
as many terms as possible into each leaf, a leaf inem-
bedfixedonly contains terms with the same common
prefix. The leaf size thus depends on the number of
common prefix characters and how many terms share
that common prefix. Additionally and uniquely, only
the suffixes of the terms are stored in the leaf and are
null-terminated for fast string comparison. Essentially,
our algorithm is a form of Trie [6, Section 6.3, p. 412].

The construction of the header is also different from
the previous algorithms. Instead of storing the whole
term (of varying lengths) in the header, only the charac-
ters of the common prefix are stored, and all common
prefixes are of the same length. There are several ad-
vantages to constructing the header structure this way;
(1) For the same number of leaves, the structure has
a smaller footprint compared with the previous header
structure since only partial terms are stored. (2) During
lookup, a shorter string comparison is performed to lo-
cate the leaf containing the term. (3) If the partial terms



are treated as integers, integer comparison can be used
for fast lookup instead of standard string comparison.

Essentially,embedfixedsplits terms into two parts,
the common prefix and the rest of the term (the suffix).
For example, the term “termstr” with common prefix
“term” will be split as “term” and “strø”. The common
prefix “term” will be stored in the header and the suffix
“strø” will be stored in the leaf.

Figure 3 shows the complete structure of
embedfixed. In the header, 4 bytes are allocated for the
common prefixes and 8 bytes for the leaf pointers. The
leaf countand max leaf lenentries at the beginning
of the header structure store the number of leaves and
the size of the largest leaf respectively. Themax leaf
len entry is used to allocate one fix-sized buffer for
reading leaves throughout the execution of the search
engine. In the leaf, the 8-byte postings pointers are
stored first, followed by the 4-byte vocab pointers, then
the null-terminated suffixes and finally the number of
entries in the leaf. The vocab pointers are used to avoid
de-serialisation of the suffix string. With the illustrated
terms of “term,terms,termstr,termstrs,them”, the header
will have common prefix “term” and the terms are
compressed as “øsøstrøstrsø” in the leaf. The last term
“them” does not share a common prefix with “term”
and has to be stored in a different leaf (not illustrated).

There is a case that a leaf may contain only one
term. This happens when the current term does not
share a common prefix with the next term. For example,
the terms “termstr,worm” have no common prefix. The
first four characters of the term “termstr” will be stored
in the header since the header has a length of 4 byte for
the common prefix. The suffix “strø” will be stored in
the leaf by itself. In this case, the vocab pointer is no
longer needed. Theleaf lengthentry is still required to
indicate that it is a leaf containing a single term.

4 Experiments
We conducted all our experiments on a system with
dual quad-core Intel Xeon E5410 2.3 GHz, DDR2
PC5300 8 GB main memory, Seagate 7200 RPM
500 GB hard drive and running Linux with kernel
version 2.6.30. The hard drive has a model number of
ST3500320AS and 512 byte sectors [11].

The collections used were the INEX 2009
Wikipedia collection [10] and the uni-gram corpus
from the Web 1T 5-gram version 1 [3]. The
Wikipedia collection has about 2.6 million documents,
2,348,343,176 total words and 11,393,924 unique
words. The Web 1T corpus was generated from about 1
trillion terms of text from public web pages. It contains
English word n-grams (uni-grams to 5-gram) and their
frequency counts. Throughout the experiments, only
the uni-grams was used. There are 13,588,391 words
in the uni-gram data set.

The Million Query Track queries from TREC
2007 [1] were used for throughput evaluation. The
track has a total of ten thousand queries with a total

of 41,671 terms. The average query length is about 4
terms.

Instead of using a real search engine1, a simula-
tion program was written and used for the evaluation.
The advantage of using a simulation is that it is easy
to implement and evaluate the algorithms. At the same
time, the simulation program can provide the correct
performance since it mimics how a real search engine
process queries for vocabulary lookup. Through out
the experiments, only the vocabulary of the inverted
files was built as the postings are not touched in the
experiments.

The program has two executables,build-
dictionaries and search-dictionaries. The build-
dictionariesexecutable uses the parser from the search
engine described in [13, 5] and takes a number of
parameters including (1) which vocabulary structure to
build, (2) the number of disk sectors for the leaf size
and (3) the value ofk for theblocked-kstructure.

In order to minimise the interference from the Linux
kernel during the evaluation, one of the CPU cores is
configured off the management of the kernel and the
search-dictionariesprocess was assigned to that partic-
ular core using the CPU affinity system calls [7, p. 172].
search-dictionariesalso takes a number of parameters,
including (1) which vocabulary to search, (2) whether
the nodes are stored on disk or the whole vocabulary
is loaded into memory, (3) the number of sectors for
the leaf node size, (4) the value ofk for the blocked-k
structure and (5) which query file to use for batch mode
processing.

5 Results
Four sets of experiments were conducted to test the 2-
level vocabulary algorithms offixed, string, blocked-
k with a value of 2, 4 and 8,embed, embedfrontand
embedfixed. Unless specified, the number of characters
stored in the header are 4 bytes long forembedfixed.
All search results were average over twenty runs. The
gettimeofday()function was used for the timing.

5.1 Experiment One
The first set of the experiments examined the storage
space of the proposed 2-level structures with various
leaf sizes. The leaf sizes were 1, 2, 4, 8, 16 and 32
sectors and the corresponding length in bytes are 512,
1024, 2048, 4096, 8192 and 16384 (the disk has a sector
size of 512 bytes).

Figure 4(a) shows the results. In both collections,
fixedandembedfixedshowed static storage space as the
size of the leaf did not depend on the number of sectors.
fixed required about 349 MB to store the Wikipedia
collection and about 337 MB for the unigram data set.

1But the ATIRE search engine currently under development at
University of Otago now uses essentially theembedfixedalgorithm
and so it has been tested in a search engine.



(a) the total storage space

(b) the wastage of the storage space

Figure 4: The total storage space and the wastage. The left figures shows the results using the Wikipedia
collection [10] and the right figures shows the results usingthe uni-gram data set in the Web 1T corpus [3].

embedfixedused about 196 MB and 197 MB respec-
tively in the Wikipedia collection and the uni-gram data
set.

The storage space steadily decreased as the leaf size
increased forstring, blocked-2, blocked-4, blocked-8,
embedandembedfrontin both collections. When the
leaf size increased from 1 to 8 sectors,blocked-8had
the biggest drop in the storage required from 244 MB
to 201 MB in the Wikipedia collection and from 232
MB to 193 MB in the uni-gram dataset.

Overall, embedfrontwas the most storage efficient
and used about 62% and 60% less storage thanfixed in
the corresponding collections. In most cases,embed-
fixedperformed better than the other algorithms except
that it used about 60 MB and 50MB more storage than
embedfrontin the corresponding collections.

There are two reasons whyembedfrontused less
storage space thanembedfixed. First, the 4-byte vocab
pointer is not used inembedfront. For a leaf stored
with 100 terms, 400 bytes are saved (100 pointers of
4 bytes each). Second,embedfrontcomputes the com-
mon prefix dynamically between each adjacent terms,
while the common prefix inembedfixedis preset. For
example, for “term,terms,termstr,termstrs”,embedfront
computes the common prefixes of “term”, “terms” and
”termstr”, while shorter common prefix of “term” is
used forembedfixed. For terms sharing long common
prefixes,embedfrontprovides better compression.

Figure 4(b) shows the wasted storage space due to
internal fragmentation in leaves. Apart fromfixedand
embedfixed, as the size of the leaf increased more stor-
age space was wasted. However, the wastage is small
compared with the total storage space.

There is an apparent contradiction when compar-
ing Figure 4(a) and Figure 4(b). As the the number
of sectors increased, the wastage increased, however
the total storage space decreased forstring, blocked-k,
embedandembedfront. A common factor for the reduc-
tion of the storage space is a reduction in the number
of leaves and hence the size of the header is smaller.
Further more,block-kalso benefitted from combining
two or more odd sized leaves into even sized leaves and
embedfrontfrom better compression of terms stored in
larger leaves.

5.2 Experiment Two
The second set of the experiments examined the search
performance when the header of the vocabulary struc-
tures was loaded into memory and only the required
leaves were retrieved from disk. The simulation pro-
gram did not cache I/O, but depended on the Linux
kernel to do so. Before each run of the experiments,
the disk cache was flushed.

Figure 5(a) shows the I/O time, taken to read the
required leaves from disk. The I/O time forembefixed
is approximately constant regardless of the number of
sectors to store each leaf. For other algorithms, the



(a) the I/O time

(b) the total read

(c) the search time

(d) the total time

Figure 5: The performance of the algorithms when leaves werestored on disk. The left figures shows the results
using the Wikipedia collection [10] and the right figures shows the results using the uni-gram data set in the Web
1T corpus [3].



Figure 6: In-memory total time withoutembedfront. The left figures shows the results for the Wikipedia
collection [10] and the right figures shows the results for the uni-gram data set in the Web 1T corpus [3].

I/O time decreased with the increasing number of sec-
tors. For both collections,embedfixedperformed the
best,embedfronttook more time thanembedfixedbut
performed better than other algorithms, andfixedper-
formed the worst.

The performance difference betweenfixed, string,
blocked-k, embedandembedfrontshowed the impact of
the total file size on disk I/O. The smaller the file size,
the less time taken to read from disk.

Theembedfixedalgorithm performed the best, even
though it had a larger file size thanembedfront. This
is due to the fact thatembedfixedaccessed a smaller
number of leaves thanembedfrontand the leaves
were larger. A large leaf can contain more terms than
a small leaf and be better cached by the operating
system. For example in the Wikipedia collection,
embedfronthad 280,399 leaves when the leaf was 2
sectors. On the other hand,embedfixedhad 314,871
leaves but only 169,187 of them contained more than
one term. 169,187 large blocks is smaller than 280,399
blocks, and they were read and cached earlier in the
experiments. Figure 5(b) shows the total number of
bytes read from disk. When the leaf had a size of 2
sectors,embedfixedread 560 MB and 950 MB more
thanembedfrontrespectively in the collections.

Figure 5(c) shows the search time. As the leaf size
increased from 1 to 32 sectors, the search time taken
by embedfrontgrew exponentially on the log scale of
the number of sectors (linearly in linear scale). The
performance gap betweenembedfrontand the other al-
gorithms was caused by the de-serialisation in order to
access the individual terms stored in leaves during the
lookup.

As shown in Figure 5(d), the total time was domi-
nated by the I/O time. Figure 5(d) is almost identical to
Figure 5(a) because the CPU time was order of mag-
nitude lower than the I/O time. Overall,embedfixed
showed the best performance.

5.3 Experiment Three
The third set of the experiments examined the search
performance when the whole Vocabulary was loaded

into memory. The results show the same pattern as
shown in Figure 5(c).embedfrontgrew linearly as the
leaf size increased. Figure 6 shows a detailed plot of
the results from Figure 5(c), but withoutembedfront.
In both collections, The time to search forstring,
blocked-2, blocked-4, blocked-8and embedincreased
as the leaf size increased, whilefixed andembedfixed
showed static performance.

5.4 Experiment Four
The last set of the experiments explored various lengths
of the common prefix in the header forembedfixed. Fig-
ure 7(a) shows the required storage space as the size of
the common prefix increased from 1 to 10 bytes. In both
collections, the required storage space decreased from
1 to 4, and increased from 7 to 10. Theembedfixed
algorithm used the least storage space when when the
common prefix had a length of 4.

Figure 7(b) shows the search performance when the
whole vocabulary was loaded into main memory. In
the Wikipedia collection,embedfixedshowed the best
performance when the common prefix had a length of
5 or 6. While in the uni-gram data set,embedfixedhad
the best performance when the common prefix had a
length of 8. This is due to how terms are distributed
among the header and leaf structures. For a header
with long common prefix, more terms are squeezed into
the header and more characters have to be compared
in order to locate the leaf. For a header with shorter
common prefixes, fewer terms are squeezed into the
header and less characters are compared, however it
takes longer to locate the term in the leaf.

6 Conclusion and Future Work
In this paper, we have investigated and addressed the
related issues associated with the 2-level B-tree struc-
ture for storing the vocabulary of a search engine. We
have conducted experiments on a number of algorithms,
including 2-levelfixed, string, blocked-k, embed, em-
bedfrontand embedfixed. Our newembedfixedalgo-
rithm provides a simple but effective encoding method



Figure 7: The left figure shows the storage space with different lengths of the common prefix. The right figure
shows the total search time with different lengths of the common prefix.

by storing terms with the same common prefix in the
same leaf, and the shared common prefix in the header
structure. The new encoding method allows fast lookup
without de-serialisation, with an average search time
of O(log2(lc)), where ls is the number of leaves in
the header, plusO(log2(ll)), wherell is the number of
entries in the leaf.

In terms of compression ratio,embedfrontshowed
the best performance in both the Wikipedia collection
and the uni-gram data set. Theembedfixedalgorithm
used about 60 MB and 50 MB more storage space than
embedfrontin the corresponding collections. While in
terms of vocabulary lookup performance,embedfixed
showed the best performance in both sets of the exper-
iments when only the header structure was loaded into
memory and when the whole vocabulary was loaded
into memory.

However, the performance of vocabulary lookup is
dependent on how disk data is cached in memory. An
extreme case is that systems do not cache disk data at
all. For such systems, the algorithmes with smaller leaf
sizes will perform the best since less data is read from
disk. In this case, theembedfrontalgorithm with a leaf
size of 1 sector should be used. The opposite extreme is
that the whole vocabulary can be loaded into memory at
startup time, thus disk I/O is eliminated during lookup.
In this case, theembedfixedalgorithm should be used.
In future experiments, we will explore the performance
of the algorithms on systems with limited resources, for
example smart phones.

Acknowledgements
Thanks Dylan Jenkinson for his early contribution to
this work.

References
[1] James Allan, Ben Carterette, Javed Aslam, Virgil Pavlu,

Blagovest Dachev and Evangelos Kanoulas. Million
query track 2007 overview. InTREC, 2008.

[2] Vo Ngoc Anh, Owen de Kretser and Alistair Moffat.
Vector-space ranking with effective early termination.
pages 35–42, 2001.

[3] Thorsten Brants and Alex Franz. Web 1t 5-gram version
1. Linguistic Data Consortium, 2006.

[4] Xiang-fei Jia, Andrew Trotman, Richard O’Keefe and
Zhiyi Huang. Application-specific disk I/O optimisation
for a search engine. InPDCAT ’08, pages 399–404,
Washington, DC, USA, 2008. IEEE Computer Society.

[5] Xiangfei Jia, David Alexander, Vaughn Wood and An-
drew Trotman. University of Otago at INEX 2010. In
INEX [5], pages 250–268.

[6] Donald E. Knuth. The Art of Computer Programming.
Addison-Wesley, 1997.

[7] Robert Love. Linux System Programming. O‘Reilly
Media, 2007.

[8] Christopher D. Manning, Prabhakar Raghavan and Hin-
rich Schutze. Introduction to Information Retrieval.
Cambridge University Press, 2008.

[9] Alistair Moffat, Justin Zobel and Ron Sacks-Davis.
Memory efficient ranking.Inf. Process. Manage., Vol-
ume 30, Number 6, pages 733–744, 1994.

[10] Ralf Schenkel, Fabian Suchanek and Gjergji Kasneci.
YAWN: A semantically annotated Wikipedia XML cor-
pus. March 2007.

[11] Seagate. Barracuda 7200.11 serial ATA, January 2009.

[12] Andrew Trotman. Compressing inverted files.Inf. Retr.,
Volume 6, Number 1, pages 5–19, 2003.

[13] Andrew Trotman, Xiang-Fei Jia and Shlomo Geva. Fast
and effective focused retrieval. InFocused Retrieval and
Evaluation, pages 229–241. Springer Berlin, 2010.

[14] Ian H. Witten, Timothy C. Bell and Alistair Moffat.
Managing Gigabytes: Compressing and Indexing Docu-
ments and Images. John Wiley & Sons, Inc., New York,
NY, USA, 1994.

[15] Justin Zobel and Alistair Moffat. Inverted files for
text search engines.ACM Comput. Surv., Volume 38,
Number 2, pages 6, 2006.

[16] Justin Zobel, Alistair Moffat and Kotagiri Ramamo-
hanarao. Inverted files versus signature files for text
indexing. ACM Trans. Database Syst., Volume 23,
Number 4, pages 453–490, 1998.


