
Snip!

Andrew Trotman, Matt Crane

Department of Computer Science
University of Otago

Dunedin, New Zealand

Abstract. The University of Otago submitted runs to the Snippet Retrieval
Track and the Relevance Feedback tracks at INEX 2011. Snippets were
generated using vector space ranking functions, taking into account or ignoring
structural hints, and using word clouds. We found that using passages made
better snippets than XML elements and that word clouds make bad snippets. In
our runs in the Relevance Feedback track we were testing the INEX gateway to
C/C++ and blind relevance feedback (with and without stemming). We found
that blind relevance feedback with stemming does improve prevision in the
INEX framework.

Keywords: Wikipedia, Snippet Generation, Procrastination.

1 Introduction

In 2011 the University of Otago participated in two tracks it had not previously
experiment with: the Snippet Retrieval Track and the Relevance Feedback Track. Six
snippet runs were submitted and three relevance feedback runs were submitted. This
contribution discusses those runs.

For details of the INEX document collection and the “rules” for the tracks the
interested reader is referred to the track overview papers in this volume.

2 Snippets

2.1 Runs

A total of six runs were submitted:

First-p: in this run the snippet was the first 300 characters of the first <p> element in
the document. This run was motivated by the observation that the start of a Wikipedia
article typically contains an overview of the document and is therefore a good
overview of the paper. In this run and all submitted runs the snippet was constructed
so that it always started at the beginning of a word and ended at the end of a word and
all XML tag content was discarded.

Top-tf-paragraph: in this run the snippet was the first 300 characters from the
paragraph (<p>) element with the highest sum of query term occurrences (that is, for
a two word query it is sum of the tf’s of each term).

Top-tf-passage : in this run the snippet was the 300 character (word aligned) sliding
window with the highest sum of query term occurrences. Since there are usually
many such possible windows, the window was centered so that the distance from the
start of the window to the first occurrence was the same (within rounding errors) as
the distance from the last occurrence to the end of the window (measured in bytes).

These three runs together form experiment 1 in which the aim is to determine whether
a snippet is better formed from an element or a passage.

Top-tficf-paragraph: in this run the snippet was the first 300 characters of the
paragraph with the highest tf * icf weight were icft = log(C/ct) were C is the length of
the collection (in term occurrences) and c is the number of times term t occurs.

Top-tficf-passage: in this run the snippet was the first 300 character (word aligned)
sliding window with the highest tf * icf score.

The tficf runs along with the tf runs form experiment 2 in which the aim is to
determine the most effective way of choosing a passage or paragraph.

The final run was

KL: in this run the KL-divergence between each term in the document and the
collection was used to order all terms in the document. From this ordering the top n
were chosen as the snippet so that the snippet did not exceed 300 characters.

This final run forms experiment 3 in which the aim is to determine whether snippets
are better form using extractive techniques (phrases) are better than summative
techniques (word clouds).

2.2 Results

The preliminary results against the GM metric are presented in Table 1. From this
table it can be seen that the passage runs were universally better than the element runs
and that tf.icf runs were universally better than tf runs. Our best run was passage-
based tf.icf.

No run performed as well as the QUT run that simply took the first 300 characters
from the document. Our run first-p took the first paragraph element from the
document, but this is not equivalent. Our run did not include the document title, and
in some documents the first paragraph was empty. We believe that this demonstrates
the importance of putting the title into the snippet (context matters).

Other participants also submitted runs generated as word clouds, and those runs also
performed below the median, suggesting that word clouds do not make good snippets.

Table 1: Snippet Track results for University of Otago runs

Rank
(of 41)

Run GM

1 LDKE-1111 0.5705
4 QUTFirst300 0.5416
11 top_tficf_passage 0.5242
27 top_tf_passsage 0.4648
28 top_tf_p 0.4574
34 top_tficf_p 0.4337
37 first_p 0.4044
39 kl 0.3598

2.3 Observations from assessing

In total 6 topics were assessed by participants at the University of Otago. A post-
assessment debriefing by the four assessors resulted in the following observations:

Snippets that included the title of the document were easier to assess than those that
did not. It is subsequently predicted that those runs will generally score better than
runs that did not. A recommendation is made to the track chairs to either
automatically include the document title in the assessment tool, or to make it clear
that the snippet may include the document title.

Snippets that were extractive from multiple parts of the document (included ellipses)
generally contained multiple snippets each of which was too short to be useful and
collectively not any better.

Snippets made from word clouds were generally instantly dismissible as up-helpful.

Snippets that contained what appeared to be the section / subsection “path” through
the document generally took so much space that the remaining space for the extractive
snippet was too short for a useful snippet.

2.4 Further work

If the track is run in 2012 then from the observations it would be reasonable to submit
a run that contains the document title, a single snippet extracted from the document,
and the title of the section from which the snippet was extracted. The method of
extraction is unclear and would depend on the results of the experiments submitted to
this track in 2011.

3 Relevance Feedback

The purpose of the Otago relevance feedback runs was twofold: The first purpose was
to experiment with the INEX relevance feedback infrastructure. In particular, the
infrastructure was written in Java but the search engine Otago uses (ATIRE) is written
in C++. The gateway from Java to C++ was provided by INEX.

The second purpose was to determine whether or not blind relevance feedback is an
effective method of improving whole-document search results on Wikipedia. To this
end the runs submitted by Otago ignored the human assessments and only returned
whole documents.

3.1 Runs

A total of three runs were submitted:

BM25: in this run the documents are ranked using BM25 (k1=0.9, b=0.4). No
relevance feedback was performed. This runs forms an out-of-the-box baseline. Is it
the result of running the untrained ATIRE search engine over the documents.

BM25-RF: in this run the documents are ranked using BM25 (as above), then from
the top 5 document the top 8 terms were selected using KL-divergence. These were
then added to the query (according to Rocchio’s algorithm) and BM25 was again used
to get the top results. Terms added to the query had an equal weight to those already
there, and terms already in the query could be added. The parameters 5 and 8 were
chosen through learning over the training data.

BM25-RF-S: in this run the documents are ranked using BM25, then from the top 5
document the top 8 terms were selected using KL-divergence (as above). Additionally
the S-stemmer was used in the initial and second query. Additional to this the
parameters for BM25 were learned using a grid search (k1=0.5 b=0.5). Again
training was on the INEX supplied training data.

In all runs blind relevance feedback was used and the user’s assessments were
ignored. As such these runs form a good baseline for ignoring the user.

3.2 Results

A subset of the official INEX published results are presented in Table 1 and the
Precision / Recall graph is presented in Figure 1. The focused retrieval results are not
presented as whole-document retrieval was used.

From the results, it appears as though relevance feedback has no effect on the
performance of the search engine, but stemming does. It is already know that
stemming works on the INEX Wikipedia collection, but unexpected that Rocchio
Feedback does not. This result needs to be verified as it could be a problem with the
run or a problem with the assessment method.

Table 2: INEX Published Results (from INEX)

Precision Reference Reference Otago Otago Otago
 no feedback BM25 BM25-RF BM25-RF-S

P@5 0.500 0.500 0.540 0.540 0.520
P@10 0.515 0.435 0.445 0.445 0.485
P@15 0.490 0.400 0.417 0.417 0.450
P@20 0.468 0.385 0.398 0.398 0.398

R-Precision 0.413 0.336 0.360 0.360 0.357

Figure 1: Official INEX Relevance Feedback Result (from INEX)

3.4 Further work

If the track is run in 2012 then it is reasonable to build on the baseline by including
the user’s assessments in the run. This could be done by performing a process similar
to run BM25-RF-S at each assessment point and returning the top as-to un-seen
document.

However, before any further work is done it is important to understand why relevance
feedback does not appear to have an effect on this collection.

4. Conclusions

The University of Otago submitted six snippet runs and three feedback runs. These
runs form baselines for experiments in improving the quality of the results in the
search engine.

It is not clear why the relevance feedback method had no effect on precision. In
further work this will be investigated.

References

The interested reader is referred to the overview papers of INEX 2011, especially the
overview of the snippet and relevance feedback tracks.

	2.1 Runs
	2.2 Results
	2.3 Observations from assessing
	2.4 Further work
	3.1 Runs
	3.2 Results
	3.4 Further work

