
Efficient sorting of search results by string attributes

Nicholas Sherlock
Department of Computer Science

University of Otago
Otago 9054 New Zealand
nsherloc@cs.otago.ac.nz

Andrew Trotman
Department of Computer Science

University of Otago
Otago 9054 New Zealand
andrew@cs.otago.ac.nz

Abstract It is sometimes required to order search
results using textual document attributes such as
titles. This is problematic for performance because
of the memory required to store these long text
strings at indexing and search time. We create a
method for compressing strings which may be used
for approximate ordering of search results on textual
attributes. We create a metric for analyzing its
performance. We then use this metric to show that,
for document collections containing tens of millions of
documents, we can sort document titles using 64-bits
of storage per title to within 100 positions of error per
document.

Keywords Information Retrieval, Web Documents,
Digital Libraries

1 Introduction
A document search engine typically takes a search
query provided by the user and generates a list of
documents which contain some or all of the terms
in the query. This list of documents is sorted in a
particular order, defined by a “ranking function”.
Common ranking functions assign an importance to
each term in the search query using some metric, then
for each term in the query, apply that importance to the
number of occurences of the term in each document to
give each document a score. The list of documents is
then sorted using this score to present documents to the
user with the highest scores first.

There are several such ranking functions that are of
interest in search over online discussion forums. For ex-
ample, the online forum software “phpBB” offers users
the ability to order their results by document attributes
such as post time, author name, forum name, topic title,
and post title. In the case of text fields like names
and titles, this is problematic, as it requires the search
engine to have these fields available in text form for
comparison sorting at search time. This consumes a
large amount of memory. For example, in a collection
of 14.8 million forum posts, simply storing the post
title for each post requires 500 megabytes of memory.

Proceedings of the 16th Australasian Document Comput-
ing Symposium, Canberra, Australia, 2 December 2011.
Copyright for this article remains with the authors.

In addition, the search engine must allocate memory
to an index structure which allows it to efficiently re-
trieve those post titles by document index, which, using
a simplistic scheme with 4 bytes required per docu-
ment offset, would require an additional 50 megabytes
of storage.

For search terms which occur in many documents,
most of the memory allocated to storing text fields like
post titles must be examined during result list sorting.
As 550 megabytes is vastly larger than the cache mem-
ory available inside the CPU, sorting the list of docu-
ments by post title requires the CPU to load that data
from main memory, which adds substantial latency to
query processing and competes for memory bandwidth
with other processes running on the same system.

In this paper, we examine several methods which
can be used to reduce the memory requirements for
storing document attributes in a form suitable for sort-
ing. We examine the tradeoffs which can be made be-
tween sorting accuracy and the memory required for
storage at search time. We then demonstrate the ac-
curacy of our methods by applying them to a corpus
of 14.8 million discussion posts taken from an online
discussion forum called “Chicken Smoothie”, and 22
million posts from the online discussion forum at “An-
cestry.com”.

2 Ranking
First, let us examine the way that the search engine cal-
culates ranking scores for documents. For each search
term in the query, an index over the document collec-
tion is consulted. This index maps the term onto a list
of document IDs which contain that term, along with
extra information about that term’s appearance in each
document (for example, a count of the number of times
that term appears in the document). This information is
passed to a “ranking function”, which uses it to generate
a ranking score for each document.

The scores generated by the ranking function for
each term in the search query are combined together in
a structure called the “accumulator”. The accumulator
can be represented as an array of integers of a fixed size,
one integer for each document in the collection. Every
element in the accumulator is initialised to zero at the
beginning of the search. Then, the value returned from



the ranking function for each term in the search query
is typically added (using simple arithmetic addition) to
the value already present in the accumulator for that
document, to give a new score for the document.

At the end of the search process, the search engine’s
accumulator is sorted in descending order, which brings
the documents which the ranking function scored the
highest (which are hoped to be the “most relevant” doc-
uments to the user’s information need, based on their
search query) to the front of the result list.

2.1 Pregenerated ranking
If a ranking function’s value does not depend on the
content of the user’s query, then instead of computing
it when a document is located at search time, it can
be computed when the document index is first created
(at “indexing time”). This pregenerated ranking can be
stored as a file (a “pregen”) consisting of an array of
integers, one for each document in the collection. When
the search engine starts up, it can read each of its pregen
files into memory. Then at search time, rather than
performing any computations to calculate the ranking
score for a document, the search engine can simply read
the precalculated value stored in the pregen and store
that value directly into its accumulator to be sorted.
This technique allows the pregenerated ranking to take
advantage of the search engine’s existing implementa-
tion of accumulator sorting. For example, the search en-
gine may already implement special optimisations like
partial sorting of accumulators for the case where only
the top-K sorted documents are required[5].

If a ranking function is particularly expensive to
compute (compared to reading a precomputed value
from memory), speed gains can be made at search
time, at the expense of the extra memory required to
store the pregens. For example, one ranking function
which is expensive to compute, but independent of the
user’s query, is Google’s PageRank algorithm[4]. This
ranking function essentially assigns a score to web
documents based on how many incoming links they
have.

If we could compute a compact pregenerated
ranking for each of the document attributes that our
users want to sort on, we could improve the speed at
search time (by sorting the smaller pregen instead of
the longer original strings) and reduce the memory
required to store those text attributes. For example,
if we could fit the 14.8 million post titles in the
Chicken Smoothie collection into 64-bit integers,
the pregenerated ranking would only require 110
megabytes of memory to store. That would allow the
search engine to save 440 megabytes of memory that
would otherwise be required to store complete post
titles and an index structure for those titles.

3 Generating pregens by sorting
One way in which a pregenerated ranking on a textual
document attribute can be generated is by sorting. At

indexing time, the text attributes for each document are
extracted and stored in temporary memory. When the
indexing of the document collection is complete, the
document attributes are sorted using a string compari-
son function. Each document’s position in the list of
sorted attributes then directly becomes its pregenerated
ranking score. In this way, we generate a maximally-
compact set of ranking scores for the document col-
lection (having exactly as many distinct values as there
are distinct attributes in the collection), which also per-
fectly encodes the relative ordering of the documents
in the sorted list of attribute text. If each integer in
the pregen is 32 bits large, approximately 4.3 billion
distinct documents can be perfectly ranked using this
method (232).

This method has several drawbacks. Because every
attribute of the documents which must be sorted needs
to be available at the end of indexing time, we must
either allocate enough memory to store those values
(e.g. 550MB for post titles in the Chicken Smoothie
corpus), or avoid allocating memory by storing those
values in some sort of disk structure (requiring at least
1 gigabyte of additional disk I/O, as we must both write
the values to disk and read them in again).

Another drawback is that each value in the gener-
ated ranking is dependent on the attributes of every doc-
ument in the collection. If a later change to the doc-
ument collection results in the first post in the rank-
ing being deleted (say, “aardvarks and apples”), every
pregenerated ranking function for the collection is now
invalid and must be recomputed.

This is also a problem in distributed search,
where a document collection may be split into several
chunks, with each chunk being indexed by a separate
computer. The pregens created by each index will
be incompatible, since they are based on different,
incomplete fragments of the total document collection.
If, during searching, a search engine consults several
such distributed indexes, and retrieves a list of
documents from each with corresponding scores from
their pregens, it will be unable to merge those results
using just the values of the pregens to create a list
which is sorted by the ordering over the complete
collection.

A better method for generating pregens would
be able to compute a ranking score for a document
attribute immediately upon reading it (which would
eliminate the requirement to store those values until
the end of indexing), and the computed value would be
independent of all other documents in the collection
(which would provide consistency between different
distributed fragments of the complete document
collection).

4 Approximate pregens
The immediate issue with a method that directly com-
putes one ranking score from one attribute (examin-
ing no other attributes) is that the pigeonhole princi-



ple shows that the resulting pregen cannot, in general,
perfectly rank the documents, as the previous approach
could. The average post title’s length in the Chicken
Smoothie corpus is 35 bytes, and we hope to reduce that
to an 8-byte integer for each document. Even in the best
case where the resulting values are evenly distributed,
each post title (in the universe of possible post titles)
would alias with 1.1× 1065 different titles (i.e. 235×8

28×8 ),
destroying the information about the relative ordering
of those titles.

In order for this approximate pregen method to be
effective, we hope for two things to be true. First, that
there is significantly less information in the post titles
than their raw byte counts would suggest, and secondly
that the error in the resulting ranking is sufficiently
small that our users will not notice the difference
compared to a perfect ranking.

5 Baseline
The accuracy of an approximate pregenerated ranking
can be measured against a baseline which is considered
“perfectly ranked”. This perfect ranking corresponds
to the user’s expectations for document ordering in the
search results, which allows users to locate the docu-
ments that they are interested in in the results.

The Chicken Smoothie corpus consists of 14.8 mil-
lion forum posts, which are overwhelmingly written in
the English language. Topics in the Chicken Smoothie’s
“International Forum”, which is intended to be a fo-
rum for posts written in non-English languages, com-
prise only 0.1% of the total number of topics in the
corpus. Because of this language bias, it is reasonable
for the perfect ranking to ignore the relative order of
non-English characters, as most users are not aware of,
and do not take advantage of, the “correct” ranking for
these characters. We will also consider that accented
characters are equivalent to non-accented characters for
the purpose of sorting. The ordering rules for accented
characters are different even among common languages
such as French and German, so in a multilingual col-
lection like Chicken Smoothie, there is no one collating
sequence for accented characters which is useful for all
users. We consider that uppercase letters are equivalent
to lowercase letters, as this difference does not play a
significant role in English text. For this baseline, we
consider the relative ordering of punctuation characters
to be significant, and require it to follow the same order-
ing as in ASCII. We will call this baseline the “standard
baseline”.

We also consider the performance of our pregen
ranking against a more limited baseline. This baseline
contains only the ASCII alphanumeric characters and
the space character, ignoring all punctuation marks and
non-English characters. The rationale of this baseline is
that users are unaware of the correct ordering of ASCII
punctuation characters or other special characters, and
so are not able to take advantage of that ordering when

reading the search results. We will call this baseline the
“restricted baseline”.

The baseline is defined by a comparison function
which, when applied to the attributes of a pair of docu-
ments, either declares that the two documents are con-
sidered equivalent for the purposes of ranking (that is,
their characters do not differ in a way that the baseline
considers significant), or identifies that one of the doc-
uments must occur before the other in the final ranking.
This comparison function is the collating sequence of
the document collection.

6 Character encoding
The Chicken Smoothie corpus is Unicode text encoded
using “UTF-8”, which encodes the majority of the
characters used in English text into single bytes
whose encoding matches ASCII, and encodes more
complex characters, such as characters with accents
and characters from other languages, into multi-byte
sequences. As the discussion in the Chicken Smoothie
forum is primarily in the English language, Unicode
characters outside the ASCII range are rare (about 0.1%
of the byte total). Since ASCII is a 7-bit encoding (128
distinct codepoints), we can expect to perfectly encode
35-byte titles into about 30.6 bytes (log256(12835)
bytes). That falls far short of the 8-byte target.

6.1 Standard baseline
Since the standard baseline does not distinguish
between uppercase and lowercase characters, we can
reduce the number of ASCII codepoints that we encode
by 26, by lowercasing the text before we process it.
We also consider the fact that a title of a document
may not contain any ASCII control codes, since
document titles in our collection are single-lines of text
(and so contain no newline control characters), and
cannot contain tab characters because of web browser
limitations. This allows the number of codepoints
to be reduced by a further 32 characters. Since the
baseline considers the relative order of non-ASCII
characters to be unimportant, we merge all those
characters into one encoded codepoint, which sorts
after any ASCII codepoint. This character encoding
has 90 codepoints in total. Using this encoding, we
can encode 35-byte titles to text which users consider
“perfectly ranked” (compared to the standard baseline)
in log256(9035) = 28.4 bytes. We call this simple
90-codepoint encoding the “printable ASCII” text
encoding.

We developed a base-40 character encoding, which
has distinct codepoints for alphanumeric characters
and the space character, but merges all punctuation and
non-ASCII characters into the remaining 3 codepoints.
Those 3 codepoints are chosen to preserve the
relative ordering between the groups of alphanumeric
characters and the groups of punctuation characters.
The first codepoint is allocated to those punctuation
characters occurring before the character ’0’, the



second codepoint for those characters occurring before
the character ’a’, and the last codepoint is allocated
to the characters which occur after the letter ’z’.
The performance of this character encoding depends
on punctuation characters being rare enough in the
collection that the relative ordering within the groups
of punctuation marks which are conflated do not
significantly perturb the ranking.

6.2 Restricted baseline
The restricted baseline only contains lowercase
alphanumeric characters and the space character.
As with the standard baseline, text is converted to
lowercase before processing, and characters with
accents are converted to their unaccented equivalents.
A trivial base-37 encoding can encode every character
in the restricted baseline to a distinct codepoint.
Base-36 encodes every character in the baseline except
space (and so is useful in the extreme circumstance
where the encoded string terminates before the first
word of input is completed).

We also developed a base-32 encoding, which
halves the number of codepoints allocated to storing
numeric characters (every second digit from ASCII
is conflated with the digit before it). This encoding
trades off minor inaccuracy in the ordering of the
(relatively rare) numeric characters in exchange for
more available precision for encoding more-common
characters. Bases which are powers of two are
attractive for encoding text, because many of the
arithmetic operations required for encoding strings can
be reduced to simple bit shifts.

7 Encoded string compression
The characters encoded by our various encoding
schemes must be combined together to give an integer
for sorting. A simple method of achieving this is “radix
encoding”. Radix encoding treats the output as an
integer of the same base as the number of possible
symbols in an encoded character, and adds each
encoded character to the output as a digit in that base,
with the earliest characters in the string becoming the
most significant digits of the encoded integer. If the
final encoded character can not completely fit in the
encoded integer, it is scaled down.

If the number of symbols used to represent encoded
characters is r, and the size of the encoded integer is
b bits, we have the following psuedocode for a radix
encoder of a string:

chars in output := blogr 2bc
rlast := 2b

rchars in output
output := 0
for i := 1 to chars in output do

output := output × r + encode(read())
od
output := output × rlast + encode(read ())

r−1 × (rlast − 1)

The “read” operation retrieves the next character
from the input string, and the “encode” operation
applies the chosen character encoding (characters
which have no representation in the character encoding
are ignored and the next character is read instead).
The radix encoder assumes that every symbol is
equally likely, so assigns equal-length encodings to
each symbol. When the actual probabilities of the
symbols being encoded are known, it is possible to
choose an encoding which uses shorter strings of bits
to represent common symbols, and longer strings of
bits to represent infrequent symbols. This allows space
characters and vowels, which are the most common
characters in our collection of English text, to have
short encodings, while the uncommon letters Q and Z
have longer encodings.

The most well-known variable-length coding
scheme is probably Huffman coding[2]. Huffman
coding selects a bit-string representation for each
input symbol such that the average length of encoded
strings which follow the expected symbol probability
distribution is minimized. A similar coding scheme,
Hu-Tucker coding[1], is additionally able to preserve
the lexicographic ordering of the resulting encoded
strings, and so would be suitable for pregen encoding.
However, as both Huffman coding and Hu-Tucker
coding assign codes for input symbols which are an
integer number of bits long, they only accurately model
input symbol probabilities which are negative powers
of two. Input symbol distributions which deviate from
that pattern are encoded slightly less efficiently than
theoretically possible.

There are coding schemes capable of assigning rep-
resentations to input symbols which are effectively a
fractional number of bits long, while also preserving
the lexicographic ordering of input strings. “Arithmetic
encoding”[6] is one such scheme. The goal of the arith-
metic encoder is to construct an interval which repre-
sents the string of symbols being encoded, then to arbi-
trarily choose an integer which lies in this interval. This
integer represents the encoded string.

For example, consider an encoder which encodes
strings of base-4 characters (a, b, c, d) with relative
probabilities (4, 2, 1, 1) into a 6-bit integer. The
initial interval is the full range of the output integer,
[0..64). This interval is subdivided into 4 segments,
one segment for each of the possible first symbols of
the string, according to the relative probabilities of the
characters. The first encoded character is therefore
represented by one of the intervals [0..32), [32..48),
[48..56), [56..64). Imagine that the first character is
an “a”. The current interval now becomes [0..32). To
encode the next character, the interval is subdivided
again, into [0..16], [16..24), [24..28), [28..32). If
the next character in the string is a “c”, the current
interval now becomes [24..28). At this point, there
is not enough precision left in the output integer for
each range to be distinct: [24..26), [26..27), [27..27.5),



[27.5..28). If the next character is an “a” or “b”, it will
be unambiguously encoded, but “c” and “d” are no
longer distinct.

Each time an interval is chosen which lies entirely
within the smaller half of the current interval, it is the
same as choosing a zero bit as the next-most signifi-
cant bit of the output integer (because the value of the
midpoint of the interval, represented by a 1 bit in the
output integer, did not need to be added). Conversely,
choosing an interval in the upper half of the current
interval outputs a 1 bit. Small subintervals, which rep-
resent less-likely strings, require more bits to specify
as the interval must be bisected more times in order to
accurately specify their position in the initial interval.

This encoding scheme is attractive as a pregen string
compressor, as the resulting integer preserves the rela-
tive ordering between the input symbols—if the symbol
“b” occurs after the symbol “a” in the character en-
coding being used, then all arithmetic-encoded strings
which begin with “b” will be larger than those which
begin with “a”.

We have chosen to use a simple unigram model for
English text, which assigns a relative probability to
each possible symbol in the encoded characterset. We
derived these probabilities from the Chicken Smoothie
post title corpus. The measured symbol frequencies for
the ASCII printable encoding are shown in figure 1.
It is likely that a more advanced English character
probability model (such as a bigram or higher order
model) would be more effective at compressing text.
For example, Moffat and Turpin[3] suggest that an
order-2 model could encode English text at around 2.5
bits per character, which would allow strings of about
26 characters to be stored in a 64-bit pregen value. We
hope to investigate this in the future.

8 Metric
In order to measure the performance of the approximate
pregenerated rankings against the baselines, a metric
must be defined. We have chosen to use the Kendall
rank correlation coefficient (τ ). This metric compares
the relative rank order of every pair of documents in
the two rankings, and assigns a correlation score in the
range [−1.0..1.0]. Kendall’s τ is computed for a list of
n documents which has no ties with the expression:

τ =
nc − nd

1
2n(n− 1)

Where nc is the number of concordant pairs, and
nd is the number of discordant pairs. A concordant
pair is a pair of documents n the baseline (Ba, Bb)
having Ba < Bb, where that ordering is preserved by
the pregen (Pa < Pb). A discordant pair is the opposite
(Ba < Bb, but Pa > Pb). If Ba = Bb or Pa = Pb, then
the pair is said to be “tied”, and is neither concordant or
discordant. The “tau-b” variant of Kendall’s Tau which
we use also includes a correction factor for these tied
pairs (this is not shown in the expression above).

A score of 1.0 indicates perfect agreement in the
rankings, a score of −1.0 indicates perfect disagree-
ment in the rankings (one ranking is the reverse of the
other), and a score of 0.0 indicates rankings which are
not correlated with each other (random ranking). We
are interested in how close we can bring this ratio to
1.0.

The Tau value for simple string truncation on the
standard baseline is already 0.999 for a 64-bit pregen,
so simple intuition about how close Tau is to 1.0 will
not be enough to understand the pregen’s behaviour.
For that purpose, we will compare our pregen’s per-
formance against that of a “reasonable pregen”. The
ordering of a “reasonable pregen” behaves the same
way as a simple truncation of the input strings. More
precisely, if a document Da ranks before document Db

in the baseline ranking, the pregenerated ranking must
not rank Da after Db, it can either rank Da before Db,
or put Da and Db at the same position in the ranking.
Additionally, if two documents Da and Db rank at an
equal position in the baseline ranking, they must also
rank at an equal position in the pregenerated ranking.
The radix and arithmetic string coding methods can be
considered to be “reasonable pregens” by this definition
if the character encoding being used does not misorder
input characters compared to the ordering in the base-
line. This is true, for example, of the base-37 encoding
on the restricted baseline, or the printable ASCII en-
coding on the standard baseline. The base-37 encoding
is not a reasonable encoding on the standard baseline,
since it entirely discards characters that the baseline
considers significant.

Given these preconditions, consider a reasonable
pregenerated ranking which conflates every group
of size x of documents in a ranking of n distinct
documents. That means that, for example, for x = 2, a
baseline ranking of (1, 2, 3, 4, 5, 6, 7, 8) would become
((1, 2), (3, 4), (5, 6), (7, 8)) in the pregenerated
ranking, with the documents in each conflated group
having the same pregen value as each other. The
number of pairs of documents within a group of size x,
gn is given by:

gn =
1
2
x(x− 1)

Within each conflated group in the pregen, we con-
sider that the documents in that conflation will be, on
average, randomly ordered in the search engine’s out-
put. That means that within those groups, the number
of concordant pairs and discordant pairs will be equal,
and so the number of discordant pairs in the group, gd,
is half of the group size:

gd =
1
2
(
1
2
x(x− 1))

Since there are n
x of these groups in the total list of

documents, the total number of discordant pairs in the
ranking nd is given by:



1907 Space
223, 1, 1, 1, 1, 29, 25, 155, 157, 60, 5, 48, 78, 136, 29 Punctuation
16, 50, 16, 17, 5, 4, 1, 5, 7, 8 Digits 0 - 9
41, 30, 1, 3, 1, 190, 1, 29, 1, 28, 11, 4, 1 Punctuation
1048, 134, 549, 502, 1204, 205, 306, 384, 669, 21, 88, 515, 333 Letters a - m
737, 854, 481, 12, 858, 643, 850, 199, 100, 315, 38, 225, 8, Letters n - z
28, 13, 29, 93 Punctuation
15 Unicode

Figure 1: Relative symbol frequencies for the printable ASCII character encoding on Chicken Smoothie titles

nd =
n

x
gd

Because this pregen behaves like a truncation, we
know that these are the only discordant pairs in the
ranking, so nc is computed by subtracting the number
of discordant pairs from the total number of pairs in the
pregen of n documents:

nc =
1
2
n(n− 1)− nd

Substituting these values into Kendall’s Tau gives
the expression:

τ =
( 1
2n(n− 1)− (n

x
1
2

1
2x(x− 1)))− (n

x
1
2

1
2x(x− 1))

1
2n(n− 1)

Combining the two occurences of the expression for
nd gives:

τ =
1
2n(n− 1)− n

x ( 1
2x(x− 1))

1
2n(n− 1)

Performing the division simplifies the expression to:

τ = 1−
n
x ( 1

2x(x− 1))
1
2n(n− 1)

Cancelling terms in the numerator and denomina-
tor gives the value of Kendall’s Tau for a pregenerated
ranking of n distinct values which conflates each group
of x elements:

τ = 1− x− 1
n− 1

We can reverse this expression to derive the value of
x for a given τ for this theoretical ranker:

−τ + 1 =
x− 1
n− 1

(−τ + 1)(n− 1) = x− 1

(1− τ)(n− 1) + 1 = x

x is a useful value to examine, because we can con-
sider its relationship to the number of search results
which the search engine presents on a single page. If
those numbers are of similar magnitude, our search en-
gine could resort just the documents that appear on a
given search result page using their complete titles, and
achieve a high overall ranking accuracy.

9 Results
The performance of each encoding scheme is graphed
against the standard and restricted baselines of
the Chicken Smoothie and Ancestry.com post title
collections in figure 2, and the performance on the
Chicken Smoothie post titles is displayed in table 1.
The performance is measured using the conflation
group size metric we defined in the previous section.
In the standard baseline, we have included the
“strtrunc” encoding, which is a simple truncation of the
lowercased input. The graphs also show the “optimal”
encoding, which is the conflation score expected if
the input document titles are evenly distributed, and
the pregen value is computed by sorting all of the
documents in the collection and then numbering them
in sequential order.

Where arithmetic string encoding has been used, it
always outperforms the radix string encoding on the
same character encoding, on our test data. This is true
even for the Ancestry.com document collection, where
the character probability model has been left unchanged
from that computed for the Chicken Smoothie collec-
tion, suggesting that this unigram character model is
generally applicable to English text.

The Ancestry.com post title dataset shows an un-
usual spike in performance around the 56-bit mark for
the ASCII-printables pregen on the standard baseline.
This is due to a large number of distinct post titles in
this collection which happen to share a long prefix. This
prefix is the string “Looking for ” (as in “Looking for
John Smith”), which occurs in over 200,000 documents
in the Ancestry.com collection. The sharp improvement
in performance corresponds to the position at which
the pregen ranking begins to encode the characters that
appear after this long prefix. The next-best performing
pregen, base-40, can only encode 12 characters in 64-
bits, which happens to coincide with the length of this
prefix, so it conflates the ordering of these 200,000+
documents. Further difficulties are encountered with
documents having the prefix “Looking for info”, which
is two characters longer, outstripping even the compres-
sion capability of the arithmetic-encoded ASCII printa-
bles encoding.

The 64-bit pregens on the Chicken Smoothie post
title collection achieve a conflation group size of 64
documents on the standard baseline, and 52 documents



Average conflations
Scheme Bits Standard baseline

Strtrunc

8 10771
16 4109
24 2837
32 2649
64 586

Base40

8 5640
16 3147
24 1505
32 1023
64 877

Asciiprintables

8 7779
16 2686
24 2224
32 352
64 111

Asciiprintablesarith

8 4680
16 1697
24 474
32 232
64 64

Average conflations
Scheme Bits Restricted baseline

Base37

8 5411
16 2589
24 793
32 259
64 121

Base37arith

8 4400
16 1486
24 310
32 176
64 52

Base36

8 6059
16 3278
24 1513
32 1453
64 1325

Base32

8 4754
16 2508
24 518
32 240
64 67

Base32arith

8 4365
16 1456
24 308
32 179
64 55

Table 1: Pregen performance on Chicken Smoothie post
titles for various encodings and pregen bit sizes

on the restricted baseline, both using an arithmetic en-
coding of the baseline’s character set. On the Ances-
try.com post title collection, the accuracy is 134 docu-
ments on the standard baseline, and 104 documents on
the restricted baseline.

Not shown on the graphs is the performance of a
pregen ranking for sorting Chicken Smoothie posts by
author name. As author names are much shorter than
document titles on average, an accuracy of 3 documents
is achieved on the standard baseline, and approximately
1 document on the restricted baseline.

10 Conclusion
We have demonstrated that pregenerated rankings of
text attributes such as post titles can achieve a result that
is, on average, sorted to within 134 documents on av-
erage, across two very different English language col-
lections. Similar performance was achieved on both the
restricted and standard baselines, demonstrating that we
can preserve the ordering of punctuation characters in
the final output without any major additional ranking
error. We have developed a metric which allows the
ranking performance of pregens to be understood. We
have identified a situation in which this pregenerated
ranking method performs poorly, which is the presence
of long common prefixes between distinct document
titles, but we expect that the application of a bigram
probability model for English text will solve this prob-
lem by improving our text compression performance.
We hope to quantify that improvement in the future.

References
[1] T. C. Hu and A. C. Tucker. Optimal computer search trees

and variable-length alphabetical codes. SIAM Journal on
Applied Mathematics, Volume 21, Number 4, pages pp.
514–532, 1971.

[2] D.A. Huffman. A method for the construction of
minimum-redundancy codes. Proceedings of the IRE,
Volume 40, Number 9, pages 1098 –1101, sept. 1952.

[3] A. Moffat and A. Turpin. Compression and coding al-
gorithms. Kluwer international series in engineering and
computer science. Kluwer Academic Publishers, 2002.

[4] Lawrence Page, Sergey Brin, Rajeev Motwani and Terry
Winograd. The pagerank citation ranking: Bringing order
to the web. Technical Report 1999-66, Stanford InfoLab,
November 1999. Previous number = SIDL-WP-1999-
0120.

[5] Andrew Trotman, Xiang-Fei Jia and Shlomo Geva. Fast
and effective focused retrieval. In Shlomo Geva, Jaap
Kamps and Andrew Trotman (editors), Focused Retrieval
and Evaluation, Volume 6203 of Lecture Notes in Com-
puter Science, pages 229–241. Springer Berlin / Heidel-
berg, 2010. 10.1007/978-3-642-14556-8

[6] Ian H. Witten, Radford M. Neal and John G. Cleary.
Arithmetic coding for data compression. Commun. ACM,
Volume 30, pages 520–540, June 1987.



10 20 30 40 50 60

5e
+

01
5e

+
02

5e
+

03
5e

+
04

Number of encoded bits

E
qu

iv
al

en
t c

on
fla

tio
n 

gr
ou

p 
si

ze

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●●
●●●●●●●●●●●●●

●
●●●●●●

●

●

●●●●

●

●

●

●

●

Encodings

Strtrunc
Base40
Base37arith
Asciiprintables
Asciiprintablesarith
Optimal

(a) Pregen ranking performance against standard baseline on Chicken Smoothie post titles

10 20 30 40 50 60

50
10

0
20

0
50

0
10

00
50

00
20

00
0

Number of encoded bits

E
qu

iv
al

en
t c

on
fla

tio
n 

gr
ou

p 
si

ze

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●
●

●
●

●

●

●

●
●

●●●●●●●●

●●●
●

●

●

●

●

●

●

●

Encodings

Base37
Base37arith
Base36
Base32
Base32arith
Optimal

(b) Pregen ranking performance against restricted baseline on Chicken Smoothie post titles

10 20 30 40 50 60

1e
+

02
1e

+
03

1e
+

04
1e

+
05

1e
+

06

Number of encoded bits

E
qu

iv
al

en
t c

on
fla

tio
n 

gr
ou

p 
si

ze

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●
●

●

●●●●●
●

●

●

●●●●

●

●

●

●

●

Encodings

Strtrunc
Base40
Base37arith
Asciiprintables
Asciiprintablesarith
Optimal

(c) Pregen ranking performance against standard baseline on Ancestry.com post titles

10 20 30 40 50 60

1e
+

02
5e

+
02

5e
+

03
5e

+
04

5e
+

05

Number of encoded bits

E
qu

iv
al

en
t c

on
fla

tio
n 

gr
ou

p 
si

ze

●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●●●●●●●●

●
●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

Encodings

Base37
Base37arith
Base36
Base32
Base32arith
Optimal

(d) Pregen ranking performance against restricted baseline on Ancestry.com post titles

Figure 2: Pregen performance on sorting document titles


