Effects of Spam Removal on Search Engine Efficiency and
Effectiveness

Matt Crane
Department of Computer Science
University of Otago
Dunedin, New Zealand
mcrane@cs.otago.ac.nz

ABSTRACT

Spam has long been identified as a problem that web search
engines are required to deal with. Large collection sizes are
also an increasing issue for institutions that do not have the
necessary resources to process them in their entirety. In this
paper we investigate the effect that withholding documents
identified as spam has on the resources required to process
large collections. We also investigate the resulting search
effectiveness and efficiency when different amounts of spam
are withheld. We find that by removing spam at indexing
time we are able to decrease the index size without affecting
the indexing throughput, and are able to improve search
precision for some thresholds.

Categories and Subject Descriptors

H.3.1 [Information Search and Retrieval]: Con-
tent Analysis and Indexing — Indexing methods; H.3.3
[Information Search and Retrieval]: Information Fil-
tering

Keywords

Information Retrieval, Web Documents, Spam, Procrastina-
tion

1. INTRODUCTION

Spam has been a long identified problem that web search en-
gines must address. In 2009 TREC adopted the ClueWeb09
collection, a crawl of 1 billion web pages, as a standard
collection for web track tasks. Some TREC submissions
also made use of proprietary spam filters in their submis-
sions [11].

Zuccon et al. |16] investigated the effect of withholding
documents identified as spam on indexing and retrieval per-
formance. They presented some interesting results, includ-
ing a u-shaped relationship between amount of spam with-
held from the index and the indexing time. They also show

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ADCS’12, December 5-6, 2012, Dunedin, New Zealand

Copyright 2012 ACM 978-1-4503-1411-4/12/2012 ...$15.00.

Andrew Trotman
Department of Computer Science
University of Otago
Dunedin, New Zealand
andrew(@cs.otago.ac.nz

that there is no effect on retrieval time when spam was re-
moved.

We aim to reproduce and explain these results, and to
extend them by performing our own experiments of the ef-
fectiveness and efficiency that withholding spam documents
has on a search engine.

We find that we are unable to replicate some of their re-
sults, but present some plausible reasons for them. Specifi-
cally, we find that the indexing time decreases consistently
when more documents are excluded, and that retrieval time
is strongly correlated with the size of the index that is gen-
erated.

2. RELATED WORK

Cormack et al. [8] provide an in-depth examination of the
effects of spam on the performance of the runs submitted to
TREC 2009. They generated four different rankings of the
spamminess of pages within the English ClueWeb09 dataset:

e UK2006: A set of labels trained against a small set of
web pages containing 746 spam pages and 7,474 non-
spam pages.

e Britney: Derived from results returned for popular
queries given to commercial search engines.

e Group X: Manually labelled from results for queries
from the 2009 TREC Ad-hoc task.

e Fusion: A combination of the other three methods.

Using these filters Cormack et al. were able to im-
prove almost all runs that were submitted to TREC 2009.
Two methods for modifying the submitted runs were conse-
quently proposed, both of which were seen to improve per-
formance. The first was to discard documents from the re-
sult set that did not meet a minimum threshold for non-
spamminess, the second was to re-rank results using the
spam score as a feature of the document.

The spam scores generated by Cormack et al. have sub-
sequently been made available for use by other researchers,
and have subsequently been used in a number of the top
ranking systems in both the TREC 2010 and 2011, Web
tracks for both the Ad-hoc and Diversity tasks as a thresh-
old for indexing |1} |10} [13], a threshold for post-processing
of returned results 9], and a feature to be used in document
ranking |2} [12].

In 2010 TREC ran a spam identification track [5], for
which the Fusion ranking generated by Cormack et al. was
used a baseline. This baseline was not bettered.

Number TREC Mean
Year of Queries Query Numbers Query Length
2009 50 1-50 2.1
2010 48 51-99 2.02
2011 50 101-150 3.4

Table 1: Statistics for query sets being used.

Collection ClueWeb09 Category B
Documents 50,220,423
Size 1.5TB
Unique Terms 96,298,556
Total Terms 75,614,656,698
Mean Document Length 1,505.66

Table 2: Collection statistics for ClueWeb09 Cate-
gory B.

Zuccon et al. |16| investigated the effect that removal of
spam had on the resources required to index ClueWeb09
Category B — the first 50 million English documents —
and the effectiveness of the resulting indexes.

As Zuccon et al. stands, to our knowledge, as the only
systematic investigation of the effects that spam removal at
indexing time has on indexing performance and subsequent
retrieval performance we seek to replicate and extend their
experiments with the aim of applying the results learned on
Category B to the Category A collection.

Intuitively removing documents from the indexing process
will result in both a smaller index, and less time required to
index. This was the opposite of the results presented in
Zuccon et al., who saw an increase in indexing time when
removing a large proportion of the collection. Removing
documents from the indexing process will also have an ef-
fect on the retrieval performance of the system, however,
Zuccon et al. found no change in the retrieval time for a
selection of ranking functions.

For our experiments we use the ATIRE search en-
gine |14||H The experiments conducted in this paper are
all performed on a machine with a quad cpu AMD Opteron
6276 2.3GHz 16-core, 512GB PC12800 memory, 6x 600GB
10000 RPM hard drives, and running Linux with kernel ver-
sion 2.6.32.

Table[2]shows statistics of ClueWeb09 Category B. Table[l]
shows some of the statistics for the query sets, we excluded
queries 95 and 100 from the 2010 query set because no rel-
evance judgements are available for them.

3. INDEXING

Zuccon et al. |16] propose an algorithm for modifying the
indexing process to consider the spam score of the document
being indexed, and only index those documents where its
score met a given threshold. A list of documents to exclude
is constructed prior to indexing, and this is consulted to
determine whether to index a document.

Their results show that the indexing time forms a u-shape
with respect to the given threshold, indicating that a higher
threshold would take longer to index than a lower threshold.

One of the driving design decisions behind the ATIRE
search engine |14] is the absence of any preprocessing. To

!Changeset: 56591fcef100

\T —® - Online
| e .
ﬁ — I o-- Offline
| r 1 r
\ | | i
| ‘ i
| - .9 .
ko
— = e A
E e S R S
= \
&0 \\} \r N ‘T
-3 - | N
¥ o - .
£ 27 b
S N BN r
= ~ ol
BN
;_\\;r
=1 RTINS
g ,-\\\\-r
L
hg
I I I I I
0 20 40 60 80
Threshold

Figure 1: Comparative indexing time between on-
line and offline calculation of documents to include
or exclude from indexing with respect to the spam
threshold given.

keep aligned with this design decision, the spam filtering we
added to ATIRE generates an internal list of documents to
exclude at run-time from the complete list of <document,
score> pairs. We, like Zuccon et al., use the Cormack et al.’s
Fusion scores.

However, we additionally take advantage of the fact that
the spam scores are percentile scores. This allows us to
construction an inclusion list if the threshold is greater than
50.

For instance, if given a threshold of 70, on the Category
A collection 352,732,667 documents would be excluded from
the index. Doing a binary search on this list of docids would
require 29 string comparisons to identify whether a docu-
ment should be excluded, compared with 27 when searching
the list of documents that should be included. These com-
parisons are done on every document that is encountered
during indexing, saving a total of over 1 billion string com-
parisons when indexing Category A.

Figureshows the total indexing time for different thresh-
olds using both the online and offline generation of lists. The
figure shows the results across three runs for each method,
with the median runs being joined and the slower and faster
runs shown as error bars.

In an attempt to replicate the results from Zuccon et al.
the offline method calculates only lists of documents to ex-
clude. However, instead of the u-shaped results, we instead
see a consistent drop-off in indexing times using both meth-
ods.

The reasons for the u-shape as seen in Zuccon et al. |16]
is unclear and we were unable to reproduce it. They suggest
that it “...may be caused by the procedure we used for
loading the file containing the list of documents which do
not have to be considered ...”.

Threshold Documents Unique Terms
0 50,220,423 96,298,556
10 48,736,112 74,805,408
20 46,432,700 69,693,504
30 43,718,178 64,173,727
40 40,844,719 58,008,256
50 37,655,996 51,750,917
60 33,836,981 45,082,561
70 29,038,220 37,621,793
80 23,148,047 29,487,702
90 15,374,591 19,745,587

Total Terms Mean Document Length
75,614,656,698 1,505.66
72,664,843,957 1,490.99
69,021,947,305 1,486.49
64,714,615,144 1,480.27
60,003,421,198 1,469.06
54,792,100,355 1,455.07
48,802,927,422 1,442.30
41,525,104,236 1,430.02
32,832,607,822 1,418.37
21,417,223,927 1,393.03

Table 3: Index statistics for indexes generated with different threshold values.

Threshold
- — 0
S ---
— o
= »
g =
2
ﬁ
)
[}
=
% -
o |
\ \ \ \ \ \ \ \
0 200 400 600 800 1000 1200 1400
Data Indexed (GB)
Figure 2: Indexing throughput for two different

thresholds of spam removal as measured by time
taken relative to data indexed.

We believe this is a reasonable explanation as Zuccon et al.
use C++’s >> operator to read documents into a std: :map,
while the spam filter added to ATIRE performs a block read
of the file, and performs a linear scan to set up pointers with
no unnecessary copying of data.

We also make note of the large difference in total indexing
times (/1750 minutes compared with 210) between the two
indexing processes when performing no spam filtering. This
suggests that there may also be an underlying engineering
component to the discrepancy in results.

We see only a marginal overhead in the online calculation
of the lists of docids to discard or keep, with the difference
between median runs with a threshold of 70 being 7 minutes,
or ~6%.

Figure [2] shows the time taken to index as a function of
the amount of data that has been indexed (without spam
removal, and with a threshold of 40). This figure shows that
by withholding spam from the index, we do not substantially
affect the throughput rate of the indexing system, which
indicates that the time taken to determine whether to index

a document is negligible when compared to the time needed
to index that document. Further evidence that the u-shape
is due to factors outside of the spam identification itself.

We also note from this graph the near linear relationship
between indexing time and data indexed (r? value of 0.9985).

Figure |3 shows the resulting index sizes for each of the
indexes generated. We see a similar drop off in relative index
sizes as Zuccon et al. [16], with a threshold of 40 generating
an index that is 24GB in size, while their index is ~135GB
for a threshold of 45.

Table [3| show some statistics — number of documents,
number of unique terms, number of total terms, and aver-
age document length — of the generated indexes for each
different threshold, for example at a threshold of 40 we in-
dex 41 million documents, containing 60 billion instances of
58 million unique terms and an average document length of
1,469 terms.

Interestingly, we see a sharper drop off in unique terms
than total terms, as well as a consistent decline in the av-
erage document length. This indicates that documents that
are identified as spam have a higher proportion of unique
terms, and tend to be longer.

The ATIRE search engine defaults to Variable Byte com-
pression. The ATIRE search engine also stores the postings
lists using impact ordering on term frequency, which is itself
a form of compression [14].

We note that the number of documents remaining in the
index does not match the thresholds given. This is because
the spam scores were generated across the complete set of
500 million English documents of ClueWeb09 Category A.
Category B contains the first documents crawled, and due
to the nature of the crawl contains documents that are less
likely to be spam. If one wanted to remove half the docu-
ments in Category B, then a threshold in the 70s should be
specified.

4. SEARCHING

4.1 Effectiveness

Having now investigated the performance of indexing under
different thresholds for spam removal, we now investigate the
efficacy of the search engine across these different indexes.
We measure search performance against the qrels from the
diversity task for the 2009 queries to enable training on these
queries and testing on the 2010 and 2011 queries.

As a precision measure we use ERR-IA as described by
Chapelle et al. |[4] as the primary measure as it is used by
TREC. We also report a-nDCG (7] scores to enable compar-

Index Size (GB)
15 20 25
| |

10

0 20 40 60 80
Threshold
Figure 3: Size of generated index for different

threshold values.

ison with prior reported results.

For each index we perform a grid search to find the best
parameters for the BM25 function. The grid search is per-
formed across the 50 queries from the 2009 web track at
TREC, with ERR-TA@20 as the primary performance mea-
sure.

Figure [4] shows an example surface generated by the grid
search performed on the index with spam threshold set to 40.
The darker the shading, the higher the ERR-IA@20, with a
peak value of 0.1931 when k1=1.4 and b=0.4. The other,
traditional, variables within the BM25 ranking functions are
ignored due to the modified version implemented within the
ATIRE search engine .

Zuccon et al. identified a threshold of 70 provided
the best results when considering both ERR-TA@Q10 and
a-nDCG@10 across a range of ranking functions. Cor-
mack et al. identified a threshold of 50 for Category B
when altering runs submitted to TREC. Both identify an up-
side down u-shape, with no filtering performing the worst.

Figure [B] shows the results from the grid searches as a
function of the spam threshold specified during indexing.
These are optimal scores with our ranking function. We
identify the same upside down u-shape, although we find
that the performance of no spam filtering to perform better
than a threshold of 90. When targeting ERR-IAQ20 we
obtain a peak value of 0.1931 when a threshold of 40 is given
at indexing time.

Figure [6] shows the results of evaluating using a-
nDCG@20 when using the BM25 parameters found from the
grid search against ERR-IA@20. We find the same upside
down wu-shape, suggesting that this is evaluation function-
independent. Interestingly, we find that no spam filtering
performs better than specifying a threshold of 70 or higher.
A peak a-nDCG@20 value of 0.3237 is obtained with a
threshold of 30. These are optimal scores using our ranking

ERR-IA

2.0 0.20
15 - 0.15
@ 0.10

0.00
0.5 1.0 1.5 2.0

K1

Figure 4: Example surface generated from the grid
search of BM25 parameters on index with spam
threshold set to 40. A darker shade indicates a
higher ERR-IA@20.

0
0! —
< —&— BM25
—e— LMDIR
—A— LMJM
=4
[.
S
0
=4 —
5 =]
=
=
& 2 A/“—Bﬁ‘—"_‘\‘—_\
B =
(=}
Pin
o
S
= e — & —0—0o—9
S e—e . .
(=}
I I I I I
0 20 40 60 80

Threshold

Figure 5: Best results from grid search of BM25
values for different thresholds targeting ERR-IA@20
as the evaluation function.

e
’,"’.2 —
< —a— BM25
—e— LMDIR
2 —— LMJM
fe=}
0
(.\! —
LS o
o
ST
T2
3 3
El
3
IS
I o o o o —o ¢ O —o o
o

T T T T T
0 20 40 60 80

Threshold

Figure 6: Best results from grid search of BM25
values for different thresholds using a-nDCG@20 as
the evaluation function from search against ERR-
TA@20.

function.

Because of its use as the primary ranking function in the
TREC diversity tasks, the rest of the paper focuses on ERR-
TA@20, but will reports a-nDCG values as appropriate.

4.2 Efficiency

Zuccon et al. [16] identify an interesting phenomenon when
evaluating the time to search, where only the LMJM [15]
ranking function (Unigram Language Model with Jelineker-
Mercer smoothing) showed any change in query throughput.
They suggest that this change in throughput is caused by
implementations in Indri. Intuitively, however, a smaller
index should result in higher throughput, with time taken
to search 0 documents being near 0.

Figure |Z| shows the retrieval time per query for indexes
pruned of spam (at various thresholds). We see an almost
linear drop off in relation to the spam threshold regardless
of ranking function. For instance removing no spam results
in an average search time of 6 seconds, while a threshold of
90 results in an average search being performed in a quarter
of the time.

Times for BM25 were averaged across 400 runs of the
50 queries used during the grid search, while LMJM and
LMDIR [15] (Unigram Language Model with Dirichlet
smoothing) times were averaged across 3 runs of the same
queries. For LMJM and LMDIR, we utilised the same pa-
rameters as Zuccon et al., that is, p = 3000 for LMDIR, and
A = 0.01 for LMJM.

We cannot suggest a reason for no change in retrieval per-
formance identified by Zuccon et al., other than their own,
specific implementations in Indri.

—=— BM25
© - —e— LMDIR
—A— LMJM

0 —

Search Time (s)

T T T T T
0 20 40 60 80

Threshold

Figure 7: Average time taken to search with respect
to spam removal threshold.

S. FURTHER REDUCTIONS

Having generated an index that provides good performance
on the 2009 queries, we now question whether we can further
reduce the size of the index without compromising on the
precision of the results.

We can further reduce the size of the index by stopping
terms. The selection of these terms can influence the per-
formance of the search engine, by removing potential query
terms, and by altering the statistics of the documents that
are indexed. We select numbers and HTML tags as obvious
candidates for removal.

By stopping numbers we are able to reduce the size of the
index by 3GB, by stopping tags we can reduce the size of
the index by 1GB. Stopping numbers reduces ERR-IA@Q20 to
0.1827. Whereas stopping the tags has no effect on retrieval
performance, because ATIRE does not consider the presence
of tags in the document or collection statistics.

The terms that are of the most importance when consid-
ering a document’s relevance to a query are the “middle”
terms, that is, those terms that are not infrequent, and also
not frequent. To this end, we stop those terms with a doc-
ument frequency of 1, reducing the index size by 1GB and
resulting in an ERR-IA@20 of 0.1931.

When all of the stopping conditions are selected, the re-
sulting index is reduced in size by 20%. This is slightly less
than the sum of the individual improvements because some
terms may be stopped under multiple conditions. This re-
duction in index size is accompanied by an approximate 15%
decrease in time required to search.

Unfortunately, the ERR-IA@Q20 for the stopped index
drops from 0.1931 to 0.1826, which is a statistically signifi-
cant change (p-value < 0.01 on a two-tailed pairwise ¢-test).
We consider this change in performance to be acceptable
given the increase in efficiency. This efficiency versus effec-
tiveness trade-off has been explored by others [3].

ERR-TA a-nDCG
Year | @10 @20 @10 @ 20
2009 | 0.1044 0.1105 | 0.1732 0.2021
2010 | 0.1048 0.1124 | 0.1702 0.1968
2011 | 0.2934 0.2995 | 0.3667 0.3883

Table 5: Evaluation scores on the different query
sets using LMJM, A = 0.01, with spam threshold set

to 40.
ERR-TA a-nDCG
Year Q10 @20 @10 @ 20
2009 | 0.0026 0.0026 | 0.0056 0.0055
2010 | 0.0004 0.0014 | 0.0017 0.0060
2011 | 0.0000 0.0000 | 0.0000 0.0000

w L
® |
S
©o
=
o

(=)

8

)

<

JOR

5 S

=
o™
a
[=}
o
=l
fe=}

T
0e-+00

Figure 8: Effect of static pruning on ERR-IA@20
on index with numbers, tags and infrequent terms

2e+06 4e+06

6e+-06 8e-+06

Prune Point

removed and spam threshold set to 40.

T
le+07

ERR-TIA a-nDCG
Year @10 @20 @10 Q@ 20
2009 | 0.1792 0.1842 | 0.2892 0.3105
2010 | 0.1863 0.1995 | 0.2533 0.3029
2011 | 0.4035 0.4123 | 0.4803 0.5120

Table 4: Evaluation scores on the different query
sets using BM25 learned on 2009 queries, with spam
threshold set to 40.

We can further reduce the size of the index by statically
pruning the postings lists. That is, only allowing at most the
first n documents of each postings list for a term to remain
in the index. Recall that our index is impact ordered on
term frequency and so the first documents have the highest
tf scores. The ATIRE search engine support this at both
search-time and index-time parameters, allowing us to train
at search time and to re-index with the optimal value.

Figure[8|shows the ERR-IA@20 as a function of this prun-
ing value, with the stopped, unpruned performance shown
as the black dashed line. We see that it takes substantial
pruning before the retrieval performance is degraded, and
some pruning actually increases the performance. A prun-
ing value of 300,000 provides an ERR-TA@20 of 0.1840 with
a p-value of 0.051 (not significant) when compared to the
unstopped, unpruned index.

When pushing this static pruning to indexing time, we
reduce the size of the index by only 400MB. This relatively
small change in the index size is accompanied by a much
larger relative reduction of search time from 5 seconds, to
850 milliseconds, when our index is stored on disk. This is
because the postings lists do not take much space inside the
index, but are processed exhaustively during search.

The results for all query sets on this final generated index

Table 6: Evaluation scores on the different query
sets using LMDIR, ¢ = 3000, with spam threshold
set to 40.

are shown in Table @l The scores for 2009 should not be
used in direct comparison as these were the queries used for
training, they are included for completeness. On the 2009
queries, the final index has a p-value of 0.04 when compared
to the index generated with no filtering applied.

We note that the results on the 2011 queries would have
placed as 6" in the diversity task at TREC [6] without per-
forming any explicit diversification and using just BM25 for
ranking. We do, however, concede that this is not equivalent
to submitting a run to TREC.

Table [7] shows the results of applying the same spam
thresholding, stop word removal and static pruning on the
Category A collection. The results for a threshold of 70
are also shown, as this has been shown in previous work to
provide the best threshold for this collection [8]. The pa-
rameters for BM25 were again trained on the 2009 query set
by grid search against ERR-IA@20. The thresholds of 40 &
70 yield index sizes of 120GB and 62GB and allow searching
in an average time of 4.5 and 1.8 seconds respectively.

6. FUTURE WORK

We can further reduce the overhead of the search to find if
a document should be excluded at indexing time. The files
within each of the .warc.gz files are stored in sequential
docid order. By performing a binary search when we in-
spect the first document within the archive, and then using
a linear scan for the rest of the archive we hypothesise that
we can drastically reduce the number of string comparisons
required.

The index size can also be further decreased by utilis-
ing stemming at indexing time. This would have the effect
of conflating terms together and reducing the size of the
dictionary. However, this would require re-learning BM25
weights, a good static pruning value, and which terms could
still be effectively stopped. The inclusion of more items to
consider at indexing time quickly turns this process into a
multi-objective optimisation problem.

In exploring the effect of the spam score on search effec-
tiveness, Cormack et al. [8] found that by re-ranking results
by incorporating the spamminess score improved precision.
Indeed this approach has been taken by a number of top
ranking runs in the TREC 2011 web track tasks |2} [12]. We

0.4 0.6

Change in ERR-IA@20
0.2

0

0.0
|

-0.2

1 3 5 7 9 11 13 15 17 19 21 23

DDDDEE 5 D:D_D DDDDD

DDDDD_DDDDD _ B

27 29 31 33 35 37 39 41 43 45 47 49

Query

Figure 9: Change in ERR-IA@20 for individual queries in the 2009 query set from no filtering to final
index. A positive value means an improvement for that query, while a negative value indicates performance

degradation.
ERR-TA a-nDCG
Year Threshold @10 @20 @10 @ 20
2009 40 0.1096 0.1178 | 0.1781 0.2069
70 0.1217 0.1289 | 0.1902 0.2204
92010 40 0.1430 0.1509 | 0.1991 0.2289
70 0.1778 0.1883 | 0.2384 0.2794
2011 40 0.3595 0.3718 | 0.4446 0.4878
70 0.4067 0.4173 | 0.4846 0.5216

Table 7: Evaluation scores on Category A between
threshold learned on Category B with previous re-
search, with learned stop word removal and static
pruning.

will explore this alternative approach to the spam problem.

The imminent release of ClueWeb12 provides an opportu-
nity to examine the effects that spam removal will have on
that corpus.

7. DISCUSSION & CONCLUSION

We have investigated the effect of removing spam documents
on both indexing and retrieval performance. We found a
consistent decrease in time to index as the amount of spam
removed during indexing increased, and this was accompa-
nied by a consistent decrease in index size. We also showed
that by removing spam from the indexing process we did
not alter the near linearity of the indexing system.

For each generated index, we then tuned our implemen-
tation of BM25 and identified the threshold that provided
the best effectiveness when measuring ERR-IA@20 on the
TREC 2009 web track queries. We then investigated the
efficiency of searching these indexes, and found a clear rela-

tionship between index size and search throughput.

These results are in contrast to those found within Zuc-
con et al. [16], which suggests their observed behaviour was
extra to the process of indexing and searching (e.g. reading
the spam list).

We then further reduced the index size without decreas-
ing effectiveness by introducing stopping and static pruning.
We found that while stopping numbers, tags and terms with
a document frequency of one made a statistically significant
decrease in effectiveness, static pruning at 300,000 improved
performance to a statistically insignificant level when com-
pared to the unstopped, unpruned index.

The final index generated for Category B is 20GB, and
allows searching to be carried out in 400 milliseconds when
the index is loaded entirely into memory, averaged across 3
runs of the 2009 TREC queries.

The retrieval effectiveness of the final index is comparable
to the top-ranking systems for the diversity task at TREC
2010 and 2011 despite only using BM25 without anchor text
or PageRank scores.

Figure [0] shows the change in ERR-IA@20 for individual
queries in the 2009 query set from performing no filtering to
the final index as discussed in this paper. A positive value
indicates that performance for that query improved, while a
negative value indicates that the performance for that query
was degraded.

We see that there are a few queries that are improved
substantially, most notably query 43 — “the secret garden”
— which was improved substantially. We also see a small
reduction in the performance of a selection of queries that at
cursory glance would suggest should be improved by spam
filtering — 10: “cheap internet”, 21: “volvo”, 32: “website
design hosting”.

8.
[1]

[10]

[11]

[12]

[15]

[16]

REFERENCES

M. Bendersky, D. Fisher, and W. Croft. Umass at trec
2010 web track: Term dependence, spam filtering and
quality bias. In Proceedings of the Text REtrieval
Conference (TREC 2010), 2010.

B. Billerbeck, N. Craswell, D. Fetterly, and M. Najork.
Microsoft Research at TREC 2011 Web Track. In
Proceedings of the Text REtrieval Conference (TREC
2011), 2011.

S. Biittcher and C. Clarke. Efficiency vs. effectiveness
in terabyte-scale information retrieval. In Proceedings
of the Text REtrieval Conference (TREC 2005), 2005.
O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan.
Expected reciprocal rank for graded relevance. In
Proceedings of the 18th ACM conference on
Information and knowledge management, pages
621-630. ACM, 2009.

C. Clarke, N. Craswell, I. Soboroff, and G. Cormack.
Overview of the TREC 2010 Web track. In Proceedings
of the Text REtrieval Conference (TREC 2010), 2010.
C. Clarke, N. Craswell, I. Soboroff, and E. Vorhees.
Overview of the TREC 2011 Web track. In Proceedings
of the Text REtrieval Conference (TREC 2011), 2011.
C. Clarke, M. Kolla, G. Cormack, O. Vechtomova,

A. Ashkan, S. Biittcher, and I. MacKinnon. Novelty
and diversity in information retrieval evaluation. In
Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 659-666. ACM, 2008.

G. Cormack, M. Smucker, and C. Clarke. Efficient and
effective spam filtering and re-ranking for large web
datasets. Information retrieval, 14(5):441-465, 2011.
C. Hauff and D. Hiemstra. University of Twente @
TREC 2009: Indexing half a billion web pages. In
Proceedings of the Text REtrieval Conference (TREC
2009), 2009.

J. Kamps, R. Kaptein, and M. Koolen. Using anchor
text, spam filtering and wikipedia for web search and
entity ranking. In Proceedings of the Text RFEtrieval
Conference (TREC 2010), 2010.

J. Lin, D. Metzler, T. Elsayed, and L. Wang. Of Ivory
and Smurfs: Loxodontan MapReduce experiments for
web search. 2009.

R. McCreadie, C. Macdonald, R. Santos, and I. Ounis.
University of Glasgow at TREC 2011: Experiments
with Terrier in Crowdsourcing, Microblog, and Web
Tracks. In Proceedings of the Text RFEtrieval
Conference (TREC 2011), 2011.

M. Smucker. Crowdsourcing with a crowd of one and
other TREC 2011 crowdsourcing and web track
experiments. In Proceedings of the Text REtrieval
Conference (TREC 2011), 2012.

A. Trotman, X. Jia, and M. Crane. Towards an
efficient and effective search engine. In Proceedings of
the SIGIR 2012 Workshop on Open Source
Information Retrieval, pages 40-47, 2012.

C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to information
retrieval. ACM Transactions on Information Systems
(TOIS), 22(2):179-214, 2004.

G. Zuccon, A. Nguyen, T. Leelanupab, and

L. Azzopardi. Indexing without spam. In Proceedings

of the 16th Australasian Document Computing
Symposium (ADCS 2011), pages 6-13, 2011.

	Introduction
	Related Work
	Indexing
	Searching
	Effectiveness
	Efficiency

	Further Reductions
	Future Work
	Discussion & Conclusion
	References

