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ABSTRACT
Previous work has examined space saving and throughput
increasing techniques for long postings lists in an inverted
file search engine. In this contribution we show that highly
sporadic terms (terms that occur in 1 or 2 documents) are
a high proportion of the unique terms in the collection and
that these terms are seen in queries. The previously known
space saving method of storing their short postings lists in
the vocabulary is compared to storing in the postings file.
We quantify the saving as about 6.5%, with no loss in pre-
cision, and suggest the adoption of this technique.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Content
Analysis and Indexing – Indexing methods

General Terms
Experimentation, Performance

Keywords
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1. INTRODUCTION
An inverted index typically contains two parts, a vocabulary
of unique terms in a document collection and a list of post-
ings (normally a pair of 〈document id, term frequency〉) for
each term. Postings lists can be very long and can require a
substantial amount of processing time. Various techniques
have been developed to manage their size including com-
pression [10, 4] and static pruning; and various techniques
have been developed to decrease processing time including
impact ordering [8] and dynamic pruning [2]. However, lit-
tle attention has been give to the very large number of short
postings lists typically seen in an inverted index. As terms
frequencies follow a power law distribution it is reasonable
to expect the majority of terms to occur only once or twice
and so the majority of postings lists will be short.
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The management of short lists is simple if their terms are
not seen in queries: they could be removed (stopped). If
they are misspellings then they could be folded into other
postings lists. However such terms are intentionally used
or created by authors, can be important, and consequently
should not be stopped. Shakespeare uses honorificabilitu-
dinitatibus once; in Love’s Labour’s Lost. Orc, from Tolkien,
is a derivative of orcneas, a term seen only once in Beowulf
(to refer to the offspring of Cain).

In this contribution, we examine the management of short
postings lists. By short we mean those of singletons (terms
that occur in only one document, including all hapax legom-
ena) and doubletons (occurring in only two) which together
we refer to as highly sporadic terms. We first ask the ques-
tion: What is the observed frequency of highly sporadic terms
relative to other terms in the collection? We examine this
by indexing 4 TREC collections and counting the number
of highly sporadic terms. We then ask: Do highly sporadic
terms occur in queries? This we do by observing the fre-
quency of singletons and doubletons in TREC Million Query
Track queries from 2007 and 2008. We find that (as ex-
pected) highly sporadic terms account for the majority of
the terms in the vocabulary; and (not as expected) they do
occur in queries.

We then investigate a method of reducing the space nec-
essary to store short postings lists. The approach we take is
to store the postings lists in the vocabulary rather than as
separate postings lists. This is done by re-purposing integers
already present in the vocabulary, a technique reminiscent
of a union in the C programming language. This technique
has been discussed in the past [11]. Our contribution is
the quantification of the consequential space saving; about
6.5%. We also make the observation that storing short post-
ings lists in the vocabulary is a form of pre-fetching. If the
vocabulary is loaded into memory on search engine start-up
but the postings remain on disk then a disk seek and a disk
read can be saved. If the entire index is loaded into memory
on start-up then the CPU cache is likely to return gains.

2. RELATED WORK
To quantify any space saving it is first necessary to construct
a solid baseline, to apply the technique, and then to measure
the savings on multiple collections. Considerable work has
been done on fast and efficient methods to store and process
an inverted file index, but much of this has concentrated on
the small number of very long postings lists that take much
of the index space and considerable time to process.

Postings are often described as being a tuple of 〈document



id, term frequency〉 and a postings list as a list of tuples.
Document ids form a monotonically increasing sequence but
term frequency numbers do not and so different compres-
sion techniques have been developed for each. For docu-
ment ids it is usual to difference (or delta) encode and then
to compress the differences using a technique such as vari-
able byte encoding, simple-9 [3], or PForDelta [14]. The
term frequency numbers can either be compressed directly
using variable byte encoding or a word-aligned binary code,
or further processed as is seen in sigma-encoding [12]. Some
document-at-a-time search engines store these two lists sep-
arately while others break the postings lists into blocks of
consecutive postings and further index those - a technique
known as skip lists. Efficient processing of skip lists can be
done using the MaxScore [13] or WAND [5] algorithms.

In the case of a singleton, the postings list contains only
one tuple. Difference encoding of the document id is inef-
fectual, and it is likely that the term frequency will fit in
one byte (i.e. be less than 256). Word-aligned binary codes
require the storage of a machine word (for simple-9 this is 4
bytes) and are therefore wasteful.

An alternative approach to document-at-a-time is term-
at-a-time processing. In this case the 〈document id, term
frequency〉 tuples can be re-arranged to group together all
terms with the same term frequency. These groups are first
sorted in decreasing term frequency order then within each
group on increasing document id. The latter is done so that
difference encoding can be performed on the document ids
(which are then further encoded using variable byte or word
aligned codes). The former is for efficiency; documents with
the highest term frequency (most likely the highest term-
weight) are at the head of the list and can be processed first;
and those with a lower“impact”can be optionally pruned [2].
This technique is known as impact ordering.

A further throughput efficiency gain is seen in impact
ordering by replacing the term frequencies with the pre-
computed term-weight. At indexing time (or shortly there-
after) the term frequency and document frequency is known
for each term in each document, as is the document length
and the average document length. In a post process the
indexer can compute the result of the ranking function for
every term in every document and replace term frequency
values in the postings list with these impact values [2]. Prob-
lematically the impact values are not integers. Consequently,
impact values are quantized into integers [8, 2]; in practice
a simple linear scaling to fit in one byte is effective.

Impact ordering is a form of compression. The worst case
is that each document has a unique quantized impact value
and so a tuple needs to be stored for each (no compressive
gain). The best case is that all documents share the same
impact value and so only one impact value is stored for the
entire postings list. In this case the number of stored integers
is n + 1 where n is the number of documents in which the
term occurs and 1 is for the impact score. When term-
weights are linearly scaled into one byte the maximum length
of a postings list is n + 256 as only 256 impact scores are
possible.

In the case of a singleton there is a throughput advantage
to impact ordering but both the impact value and document
id must be stored so there is no space advantage.

Our search engine is term-at-a-time with impact ordered
postings list, and consequently our indexes are a small frac-
tion of the collection size (for .GOV, 2.7%) without loss in

precision. We use term frequencies as impact scores. These
are capped at 255 and stored in one byte. This capping could
affect the ranking of frequent terms in long documents, but
we assume long documents are rare, that high frequency
terms are noise, and observe that many ranking functions
are asymptotic. Our postings lists are sorted on decreasing
impact value. Within each impact, document ids are sorted
on increasing value, then difference encoded, then variable
byte encoded.

Efficient methods of managing the vocabulary are exam-
ined by Jia et al. [6]. They assume a two-level B-tree and
investigate throughput and space tradeoffs. They conclude
that dictionary front-encoding of the leaves is space efficient
but throughput inefficient; a front-encoded dictionary must
either be decompressed and searched linearly O(m), or a de-
serialised and binary searched O(m), where m is the num-
ber of terms in the leaf. They propose embedfixed as a good
trade-off of space and efficiency. This technique is a form
of front-encoding that can be binary searched without de-
serialisation. They first construct a dictionary as the sorted
list of all unique terms in the collection; then divide this
into blocks of terms that share the same common prefix of
length p. The prefixes form the root of a B-tree while the
terms in each block (with the common prefix removed) form
the leaves. Common prefixes are stored only once (in the
root) and the vocabulary can be binary searched without
de-serialisation. This technique has an average search time
of O(log(r)) + O(log(s)) where r is the number of prefixes
in the root and s is the number of suffixes in the leaf.

Our search engine uses embedfixed encoding of a 2-level
B-tree to store the vocabulary. A prefix length p = 4 is used
as this has proven to be the best trade off of space verses
throughput [6].

3. HIGHLY SPORADIC TERMS
In this section we illustrate the extent to which highly spo-
radic terms are seen in the document collection (as expected
from the power law distribution) and queries.

3.1 Experiment Setup
Four document collections of different sizes were used. The
small (517MB) TREC WSJ (Wall Street Journal) contains
173,252 documents. The 18.5 million document 100GB TREC
WT100G is a collection of web pages sourced from the Inter-
net Archive in 1997. The TREC WT10G collection is a 1.69
million document subset of WT100G. TREC .GOV2 is a
2004 trawl of the entire .gov domain, is 426GB and contains
25 million documents.

We used queries from the 2007 and 2008 TREC Million
Query Tracks. Both contain 10,000 queries. The 2007 queries
have 41,671 terms (10,783 unique) with an average query
length of about 4. 2008 has 51,910 terms (10,292 unique)
and an average query length of 5. These queries were sourced
from “a large Internet search engine” [1].

Two investigations were carried out. The first counted the
number of unique terms, singletons, and doubletons in each
collection. The second counted the number of these that
occur in queries from the Million Query Tracks.

3.2 Singletons and Doubletons in Collections
In this investigation we counted the number of unique terms,
singletons, and doubletons in each collection.



Collection Unique Terms Singletons Doubletons
WSJ 229,493 95,455 (42%) 26,984 (12%)
WT10G 5,440,378 3,006,142 (55%) 910,107 (17)%
WT100G 24,815,587 11,372,766 (46%) 3,683,966(15%)
.GOV2 40,565,854 21,080,843 (52%) 7,516,421 (19%)

Table 1: The numbers of unique terms, singletons and
doubletons seen in each of the 4 collections

2007 2008
Collection Singletons Doubletons Singletons Doubletons
WSJ 346 (332) 224 (221) 319 (306) 176 (173)
WT10G 77 (73) 49 (49) 54 (53) 36 (36)
WT100G 26 (26) 25 (25) 24 (24) 22 (22)
.GOV2 26 (26) 13 (13) 15 (15) 16 (16)

Table 2: The number of terms in Million Query Track
queries occuring in only one document (singletons) or
two documents (doubletons) in each collection; paren-
theses indicate the number of queries

The results are shown in Table 1. The first column lists
the name of the collection, the second gives the number of
unique terms in the collection, the third lists the number of
singletons, and the fourth shows the number of doubletons.
For example, in WT100G there are 24,815,587 unique terms
of which 11,372,766 (46%) occur once and 3,683,966 (15%)
occur twice.

We observe that the number of unique terms, singletons,
and doubletons increases as the collection gets larger. We
also observe that the proportion of terms that are highly
sporadic remains approximately constant, ranging from 41%
to 55% for singletons, and from 11% to 18% for doubletons.
Overall, between 53.5% and 72.0% of the terms are highly
sporadic. By Heaps’s law we expect to be unable to close
the vocabulary and therefore to see an increasing vocabulary
size as the collection gets larger. Due to the power law
distribution we expect most terms to be highly sporadic.

3.3 Singletons and Doubletons in Queries
In this investigation we counted the number of singletons
and doubletons that occur in each query set.

The results are shown in Table 2. The first column gives
the name of the collection, then for each of 2007 and 2008 the
number of singleton and doubleton terms seen in the queries
is presented along with the number of queries containing
singletons and doubletons (in parentheses). For example, in
the 2007 Million Query Track queries against WT10G there
were 77 singleton terms seen in 73 queries and 49 doubleton
terms seen in 49 queries.

We observe that in both sets of queries the number of
highly sporadic terms and the number of queries containing
highly sporadic terms decreased as the collection size in-
creased. However, highly sporadic terms were seen in both
query sets against all collections.

4. SPORADIC TERM MANAGEMENT
The investigations show that highly sporadic terms account
for a large proportion of the unique terms in the vocabulary
and that they do occur in queries. In this section we exam-
ine a method of adapting the index to reducing the space
necessary storing these terms.

Figure 1 presents the index used in our search engine, we
present it in full for the purpose of reproducibility. The
vocabulary root is similar to that described by Jia et al. [6].
a 4-byte value (Prefix n) stores the number of prefixes then

Prefix_n 

Prefix Leaf_p 

Prefix Leaf_p 

Chain_p Chain_l Qn Posting_p 

Suffix_n 

S Q Doc_n Doc_p Q Doc_n Doc_p 

S d1 d2 dn S d1 d2 dm 

Str_p cf df Disk_p Disk_l Qm Int_n 

Suffix_2 Suffix_1 

Str_p cf df Disk_p Disk_l Int_n Qm 

Vocabulary Root 

Postings List 

Vocabulary Leaf 

Figure 1: The index is divided into three parts including
the vocabulary root and leaves, and the postings lists

each prefix is stored in 4-bytes (Prefix) along with an 8-byte
pointer to a vocabulary leaf (Leaf p).

The search engine must store a number of term-specific
variables for postings list management and ranking. In our
search engine these are stored in the vocabulary leaf. It
stores a count of the number of terms in the leaf (Suffix n)
in 4 bytes followed by a pointer (Str p) to each variable-
length suffix (Suffix n). The collection frequency (cf ) and
document frequency (df ) are stored in 4 each. The location
of the postings list (on disk or in memory) is stored in 8 bytes
(Disk p), its length is stored in 4 bytes (Disk l). The number
of integers in the postings list, used for decompression, is
stored in 4 bytes (Int n). Finally we store in 1 byte the
largest impact value in the postings list (Qm) which is used
for early termination by query term pruning [9].

We observe that the amount of space taken to store the
location and length of compressed postings list (8 + 4 bytes)
is larger than the amount of space necessary to store an un-
compressed singleton (4 byte document id + 1 byte impact)
or a doubleton (2 ∗ (4 + 1) bytes). A union could there-
fore be used to store singletons and doubletons in the space
otherwise used for postings list management. It is possi-
ble to distinguish the two cases by checking the document
frequency.

The general case of this technique is that any compressed
postings list that is short enough to store in the vocabulary
could be so stored. Only a single bit is needed to determine
whether the union stores offset / length data or a com-
pressed postings list. In practice additional management
information is stored in the postings list, such as skip list
pointers, which could render the general case impractical.
For example, our postings lists (Figure 1) have a manage-
ment header that includes an 8 byte Chain p and 4 byte
Chain l used for dynamic update, Qn the number of unique
impact scores (1 byte), and a pointer (Posting p) to the start
of the postings list (4 bytes). Then each postings list con-
tains a (compressed) postings header where the compression
strategy is stored in 1 byte (S) along with the 1 byte im-
pact score (Q), the number of documents with that Q score
(Doc n) and a pointer to the document ID list (Doc p). Fi-
nally each impact stores its compression strategy in 1 byte
(S) and the list of document id delta encoded (dd) and then
further compressed. Compression schemes, S, in Figure 1
can differ from each other.

For query evaluation, the vocabulary root is binary searched
then the leaf is loaded and binary searched to find the term
details. If the document frequency is less than or equal to 2,
the postings are read directly from the vocabulary, otherwise
the postings are read from disk.



Collection In Postings In Vocabulary No Singles No Sporadics
WSJ 64 61 (4.7%) 58 (9.4%) 57 (10.9%)
WT10G 899 804 (10.6%) 727 (19.1%) 672 (25.3%)
WT100G 7,124 6,808 (4.4%) 6,574 (7.7%) 6,328 (11.2%)
.GOV2 11,711 10,977 (6.3%) 10,475 (10.6) 10,020 (14.4%)

Table 3: Index size (MB) and reduction (in parentheses). An average saving of about 6.5% is seen

Our search engine supports loading the entire index into
memory at start-up. In this case Disk p is an 8-byte pointer
storing a location in memory. There is no effectual difference
between the on-disk and in-memory representations. When
the index is stored on disk this technique can be thought
of a as a form of mass pre-fetching [7] of the short postings
lists. All postings of all highly sporadic terms seen in a
vocabulary leaf are loaded when the leaf is loaded. When
seen in a query a disk seek and a disk read are saved.

4.1 Experiment and Results
In this experiment we examine the storage savings obtained
by storing short postings lists in the vocabulary. It uses the
same document collections as in Section 3. The structure of
the index is discussed in Section 4. Additionally a compar-
ison is made to stopping highly sporadic terms, despite the
(likely) precision consequence of doing so.

First, an index storing the postings of highly sporadic
terms as postings lists was created. Then an index stor-
ing these short postings lists in the vocabulary was created.
Finally two additional indexes were created, one with sin-
gletons stopped and the other with highly sporadic terms
stopped. Variable byte compression was used throughout.

The results are shown in Table 3 where the first column
gives the name of the collection, the second column gives the
size of the index with short postings lists stored as postings,
the third column gives the index size when short postings
lists are stored in the vocabulary, the fourth column gives
the index size when singletons are stopped and the fifth col-
umn gives the index size when singletons and doubletons
are stopped. Savings are shown in parentheses. For exam-
ple, for .GOV2 (426GB) the full index is 11.7GB (2.7% of
collection size), with highly sporadic term management the
index is 11.0GB (2.5%), when singletons are stopped it is
10.5GB (2.4%) and when highly sporadic terms are stopped
it is 10.0GB (2.3%). We observe that our index is already
small as a consequence of impact ordering and compression,
but further savings are seen by placing short postings lists
in the vocabulary.

Overall the indexes were reduced by 4.7%, 10.6%, 4.4%
and 6.4% (averaging 6.5%) when highly sporadic terms were
stored in the vocabulary. The savings from stopping single-
tons ranged from 7.7% to 19.1% and from stopping single-
tons and doubletons it was 10.9% to 25.3%; with possible
consequential effects on precision.

5. CONCLUSION
In this investigation we defined highly sporadic terms as
those terms that occur in one (singleton) or two (doubleton)
documents in the collection. We showed that such terms are
a large proportion of the unique terms in the collection, as
expected. We showed that as the collection size increased so
to did the number of highly sporadic terms, as expected. We
took the queries from the TREC Million Query Tracks and
showed that highly sporadic terms occur in those queries.

A method of reducing index size was presented. In that
method short postings lists were stored in the vocabulary

using a union. The meaning of the elements in the union

was determined by examining the document frequency of
the term which was also stored in the vocabulary. Doing
this saved on average about 6.5% of the index size, and in
the case where these terms were seen in queries (and an
on-disk index) it additionally saves a seek and a read.

We also examined stopping highly sporadic terms. This
resulted in a larger saving (as much as 25.3%). However, our
observation that these terms occur in Million Query Track
queries suggests that there could be a consequential effect
on precision (albeit small when averaged over many queries).
In this work we have not examined techniques to stop terms
or to increase precision, but rather have concentrated on
lossless space savings in the index. We observe that in the
case of highly sporadic terms, throughput and space savings
can be made with no effect on precision.
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