
Malformed UTF-8 and Spam

Matt Crane
Department of Computer

Science
University of Otago

Dunedin, New Zealand
mcrane@cs.otago.ac.nz

Andrew Trotman
Department of Computer

Science
University of Otago

Dunedin, New Zealand
andrew@cs.otago.ac.nz

Richard O’Keefe
Department of Computer

Science
University of Otago

Dunedin, New Zealand
ok@cs.otago.ac.nz

ABSTRACT
In this paper we discuss some of the document encoding er-
rors that were found when scaling our indexer and search
engine up to large collections crawled from the web, such
as ClueWeb09. In this paper we describe the encoding er-
rors, what effect they could have on indexing and searching,
how they are processed within our indexer and search engine
and how they relate to the quality of the page measured by
another method.

Categories and Subject Descriptors
H.3.1 [Information Search and Retrieval]: Con-
tent Analysis and Indexing – Indexing methods; H.3.3
[Information Search and Retrieval]: Information Filter-
ing; H.3.0 [Information Search and Retrieval]: General

Keywords
Information Retrieval, Web Documents, Errors, Procrasti-
nation

1. INTRODUCTION
Scaling up a search engine from smaller, controlled, collec-
tions such as the Wall Street Journal and Wikipedia collec-
tions to collections that are larger in size and drawn from an
uncontrolled domain like the web, such as the ClueWeb09
collection, leads to a set of new problems as old assumptions
no longer hold.

Documents from the general web contain issues not seen
in pre-cleaned TREC-like collections, for instance invalid en-
coding of content and spam.

In this paper we will describe and discuss some of these
encoding issues, the effect that they can have on indexing
and search, and how they are processed within the ATIRE
search engine [8]. We discuss the relationship between the
class of errors and the spamminess of the page, and the
potential combination of the detection of these errors with
spam filtering.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ADCS’13, December 05–06, 2013, Brisbane, QLD, Australia
Copyright 2013 ACM 978-1-4503-2524-0/13/12 ...$15.00.
http://dx.doi.org/10.1145/2537734.2537746.

2. UNICODE & UTF-8
Unicode is a standard that defines a set of codepoints for
characters, a set of encoding methods and rules for the nor-
malization, decomposition, lower- and upper-casing etc. of
these characters. Each unicode character has a unique code-
point, and a name. For instance, WHITE SMILING FACE, or
U+263A where 263A is the codepoint in hex. Currently the
ATIRE search engine implements Unicode version 6.0 [3].

One of the most commonly used encodings for Unicode is
UTF-8, a variable byte encoding that maintains backwards
compatibility with ASCII, which is the most used encoding
on the web[6].

In each UTF-8 encoded sequence, the high bits within
the first byte determine how long the sequence is, while the
remainder are identified as continuation bytes — identified
by the bit pattern: 10xxxxxx. Figure 1 shows some of these
features for a set of UTF-8 encoded sequences.

Character (Codepoint) Encoded Binary

$ (U+0024) 00100100

¢ (U+00A2) 11000010
10100010

€ (U+20AC) 11100010
10000010
10101100

Header Sequence Continuation Byte Header

Figure 1: Diagram of encoding features of UTF-8

For instance, e (EURO SIGN, U+20AC), is encoded as fol-
lows. First, the codepoint (20AC) gets converted to binary:
10000010101100. Because this is larger than 11 bits, but less
than 17, the resultant encoding is a 3 byte sequence. The
codepoint is padded with 0s to extend it to the necessary 16
bits for a 3 byte sequence.

Because the encoding is 3 bytes long, the first byte starts
with 1110, followed by the first four bits of the code point:
0010. The second, and third, bytes then start with 10 as
they are continuation bytes, followed by the next six bits
of the code point: 10000010 and 10101100 respectively.
The final, correct, encoding is then: 11100010 10000010

10101100.

2.1 Web Data
Despite the assurances of the ClueWeb09 distributors —
“English content is encoded in UTF-8 format (where proper
UTF-8 character encodings apply)”[1] — the documents con-
tained in the English section contain invalid UTF-8 en-
coded data. There are a number of issues we observe in
the ClueWeb09 collection that needed to be handled by our
UTF-8 parser:

Unexpected continuation bytes: continuation bytes
are the non-first bytes that make up an encoded character.
They are identified by having the high bit in the byte set to
1, and are unexpected when they do not follow the correct
head-byte. Figure 2 shows an example of an unexpected
continuation byte after a correctly encoded sequence (e).

⋮

11100010

10000010

10101100

10100100

⋮

Valid Sequence

This continuation byte
belongs to no sequence

so is unexpected

Figure 2: An unexpected continuation byte

Not enough continuation bytes: the first byte in a
UTF-8 encoded sequence identifies how many bytes are con-
tained in the sequence. This error occurs when the sequence
is identified as containing a given number of bytes, but then
this is not followed by the sufficient number continuation
bytes. Figure 3 shows an example of a missing continua-
tion byte, where the third byte for e is missing from the
encoding.

⋮

11100010

10000010

11001100

10100100

⋮

Incomplete Sequence

Figure 3: Not enough continuation bytes

This error is inherent in the ClueWeb09 corpus because
pages were truncated at 10MB of content.

Invalid surrogate halves: the characters U+D800–
U+DFFF have been defined as not legal unicode values, and so
their respective UTF-8 encodings are invalid. These charac-
ters were originally used in UTF-16.

Invalid 4-, 5- and 6-byte sequences: the original spec-
ification allowed sequences of up to 6-bytes, allowing for
codepoints up to 31 bits in length. However, this was later
restricted by RFC 3629 [9] to match the limits of UTF-16,
with codepoints ending at U+10FFFF, removing 5-, 6- and
about half of the 4-byte sequences.

Over-long encodings: by adding padding 0s at the be-
ginning of the codepoint to be defined, the resultant encod-

ing is longer than is necessary. The UTF-8 standard specifies
that the smallest encoding is the correct, and only correct,
encoding. Figure 4 shows an example over-long encoding of
the e symbol, to result in a four byte encoding, whereas the
valid encoding is only three bytes long.

⋮

11110000

10000010

10000010

10101100

⋮

Overlong Sequence

Figure 4: Over-long encoding

The over-long encoding of the NUL character was used in
Modified UTF-8 [2], a variant used by the Java programming
language, as a way to allow for a string containing the NUL
character to be processed using traditional null-terminated
string functions. These are the only class of errors that are
non-trivial to correct, by replacing the over-long encoding
with the correct encoding.

2.2 Error Frequencies
We investigated the frequency with which these different er-
rors occurred within ClueWeb09 Category A, a collection of
500 million English documents crawled from the web. Ta-
ble 1 provides the total number of times each error occurred,
with the first column showing the error type and the second
the number of times it occurred, for instance an over-long
encoding of a non-ASCII character occurred 722,726 times.

Error Occurrences
Unexpected continuation byte 1,062,303,975
Not enough continuation bytes 880,735,432
Invalid surrogate halves 78,378,657
Invalid 4-, 5- and 6-byte sequences 1,752,814,236
Over-long NUL encoding 20,374,475
Over-long ASCII (non-NUL) encoding 11,496,910
Non-ASCII over-long encoding 722,726

Table 1: Total occurrences of the various encoding errors in
the ClueWeb09 corpus

We consider three cases of over-long encoding: an ASCII
character, a NUL character and another unicode character.
It is particularly interesting to see the large number of over-
long NUL encodings. We suspect this is due to an uptake
of Modified UTF-8, where the over-long encoding of NUL is
permitted.

2.3 Spam
We next considered the various types of errors found in
pages, and the spamminess of the page, we hypothesised
that the more spammy a page was, then the more encod-
ing errors it would contain. The spam scores generated for
ClueWeb09 by Cormack et al. [4] were used.

Figure 5 shows the proportion of documents for each
spamminess level that contain each of the different encoding
errors. For most classes of error, the proportion of docu-
ments containing these errors increases as the spamminess

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Unexepected Continuation Byte

Spamminess

P
ro
p
o
rt
io
n

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Not Enough Continuation Bytes

Spamminess

P
ro
p
o
rt
io
n

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Invalid Surrogate Halves

Spamminess

P
ro
p
o
rt
io
n

0 20 40 60 80 100

0.
0

0
.2

0.
4

0
.6

0.
8

1
.0

Invalid 4-byte Sequences

Spamminess

P
ro
p
o
rt
io
n

0 20 40 60 80 100

0.
0

0
.2

0.
4

0
.6

0.
8

1
.0

Invalid 5-byte Sequences

Spamminess

P
ro
p
o
rt
io
n

0 20 40 60 80 100

0.
0

0
.2

0.
4

0
.6

0.
8

1
.0

Invalid 6-byte Sequences

Spamminess

P
ro
p
o
rt
io
n

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Over-long ASCII

Spamminess

P
ro
p
o
rt
io
n

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Over-long NUL

Spamminess

P
ro
p
o
rt
io
n

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Other Over-long

Spamminess

P
ro
p
o
rt
io
n

Figure 5: Cumulative percentage occurrences of various encoding errors as a function of the spamminess of the page

of the page increases, until the page is part of approximately
the top 10% of spammy pages, when the proportion drops
to the same levels as the least-spammy documents.

This drop in encoding errors is explainable to some extent
by the fact that the spam page has to be presented to a user.
It is likely that if a page contained a large number of encod-
ing errors, then the page would be identified as spam by the
user. Probably why the most spammy pages are constructed
with the same care and attention to correct encodings as the
least spammiest pages.

The prevalence of the invalid 4-byte sequences in the least
spammy documents and then the proceeding bump in the
middle-range documents is of particular interest. A prelim-
inary investigation at some of the affected documents from
within the Wikipedia suggests that these documents are En-
glish documents about non-English people and places, re-

sulting in bad encodings of the non-English characters.
We performed t-tests for each error class to determine if

there was a difference in distributions across spamminess
levels for documents that contain each error, compared to
those that didn’t. The only class of errors that showed any
significance at the p < 0.01 level was the invalid 4-, 5- and
6-byte sequences. This suggests that we can use this class
of errors to determine whether a document is spam. If so
then we can avoid indexing it. We leave for future work to
determine the effect on precision and throughput.

2.4 Indexing
The unicode standard states that upon encountering an ill-
formed sequence such as those described, that the decoder
should consider this an error case, and that a valid parser
should neither interpret or emit an ill-formed code unit. Ob-

viously, error-ing out and ceasing to process any further doc-
uments is not ideal for an indexer, and so we choose to clean
the data when possible.

A common approach to dealing with these ill-formed se-
quences is to replace them with another appropriate charac-
ter. The unicode specified REPLACEMENT CHARACTER, U+FFFD,
is the suggested replacement by the unicode standard [7].
However, as the encoding of this replacement could be larger
than the incorrectly encoded sequence (in fact from Table 1,
we can conclude this is the most common case) and to avoid
unnecessary copying (the character is not considered to be
a letter or digit in unicode and would not be included in the
terms) we did not try this approach.

Another approach is to interpret the invalid bytes as be-
longing to another encoding, such as ISO-8859-1 or CP1252.
For example, the invalid UTF-8 sequence 0x80 would be in-
terpreted as the euro sign if interpreted as being encoded
using CP1252. However, we also did not try this approach
as which other encoding the bytes should be interpreted as
belonging to is a point of contention.

The approach taken inside the ATIRE search engine is to
replace the bytes belonging to invalid sequences with their
correct encodings in the case of an over-long encoding; or
with the space character in all other cases. When the over-
long sequence is replaced, the ending continuation bytes are
left in place, which when encountered are then considered
unexpected, which may inflate the count of unexpected con-
tinuation bytes in Table 1. It is not obvious how to count
this kind of double error.

The space character was chosen because this would have
minimal effect on the terms that would be considered for
inclusion in the final index. The replacement of bytes like
this does lead to the issue of terms being potentially split
into multiple sections. However, we hypothesise that this is
unlikely to result in a measurable retrieval effect.

3. UNWANTED CONTENT
When dealing with content from web collections, it can be
beneficial to remove spam before indexing [5]. These spam
documents include duplicate documents and low quality con-
tent. For instance, Cormack et al. [4] found that by remov-
ing 70% of the spammiest documents from the ClueWeb09
Category A corpus they were able to improve retrieval pre-
cision (estP@10) in 36 of 37 TREC submissions to the 2009
ad-hoc task by 1.4% to 425%. The one submission that
did not improve was a Wikipedia only submission for which
performance was degraded 4%.

The issue of deciding whether to index a document or not
is an issue that needs to be addressed for larger collections.
For example, given the list of the 70% of the documents to
exclude, two additional string comparisons need to be made
when performing a binary search, when compared to the
list of the 30% of documents that would remain. Over the
ClueWeb09 collection of 500 million documents using the
smaller list would save 1 billion string comparisons, and this
effect will only grow larger as the collections grow larger.
The same saving of two string comparisons per document
would save 1.4 billion comparisons on the ClueWeb12 cor-
pus.

When the construction of these lists is done at run-time at
the beginning of the indexing process, the overall indexing
time increases by about 6%, but the indexing throughput is
not affected by this filtering process [5].

The process of filtering at indexing time has a marginal
improvement in retrieval effectiveness, increasing ERR-
IA@20 from 0.1655 to 0.1931 (p < 0.05) on tuned BM25
runs. However, the index with fewer documents is also able
to be searched to completion in 75% of the time [5].

If a document passes this spam filtering, but would fail to
pass based on the rate, and type, of encoding errors present
in the document, then we may wish to reject the document
regardless, and vice versa. We leave this for future work.

4. CONCLUSION & DISCUSSION
There are a number of considerations when engineering an
indexer and search engine to be able to scale to large collec-
tions sourced from the general web. These issues range from
high level decisions about determining whether to include a
document or not, to lower level issues such as incorrect char-
acter encodings.

We have shown that the errors in UTF-8 encoding exist
in large numbers across web-pages regardless of how highly
their content is rated in terms of spam. In fact, one class
of errors is remarkably prevalent among those documents
that are rated as being among the least spammiest doc-
uments. We showed that this class was the only class of
errors that had a statistically significant distribution of doc-
uments containing that error when compared to documents
not containing that error. We leave the implementation of
this document filtering based on the encoding error type and
rate, and the combination with the spam filter described in
Section 3, to future work

The effect that cleaning the input, and thereby potentially
splitting tokens, and the different replacement methods has
on the retrieval performance is also left for future work.

5. REFERENCES
[1] ClueWeb09 Wiki.

http://boston.lti.cs.cmu.edu/clueweb09/wiki/

tiki-index.php?page=Page+Encodings accessed 3 Oct
2013.

[2] Modified UTF-8. http://docs.oracle.com/javase/6/
docs/api/java/io/DataInput.html#modified-utf-8

accessed 3 Oct 2013.

[3] Unicode 6.0.0.
http://www.unicode.org/versions/Unicode6.0.0/

accessed 3 Oct 2013.

[4] G. Cormack, M. Smucker, and C. Clarke. Efficient and
effective spam filtering and re-ranking for large web
datasets. Information retrieval, 14(5):441–465, 2011.

[5] M. Crane and A. Trotman. Effects of spam removal on
search engine efficiency and effectiveness. In
Proceedings of the Seventeenth Australasian Document
Computing Symposium, ADCS ’12, pages 1–8, 2012.

[6] M. Davis. Moving to Unicode 5.1. http://googleblog.
blogspot.com/2008/05/moving-to-unicode-51.html.

[7] M. Davis and M. Suignard. Unicode technical report 36:
Unicode security considerations. Technical report, 2012.

[8] A. Trotman, X. Jia, and M. Crane. Towards an efficient
and effective search engine. In Proceedings of the SIGIR
2012 Workshop on Open Source Information Retrieval,
pages 40–47, 2012.

[9] F. Yergeau. UTF-8, a transformation format of ISO
10646. RFC 3629 (INTERNET STANDARD), Nov.
2003.

http://boston.lti.cs.cmu.edu/clueweb09/wiki/tiki-index.php?page=Page+Encodings
http://boston.lti.cs.cmu.edu/clueweb09/wiki/tiki-index.php?page=Page+Encodings
http://docs.oracle.com/javase/6/docs/api/java/io/DataInput.html#modified-utf-8
http://docs.oracle.com/javase/6/docs/api/java/io/DataInput.html#modified-utf-8
http://www.unicode.org/versions/Unicode6.0.0/
http://googleblog.blogspot.com/2008/05/moving-to-unicode-51.html
http://googleblog.blogspot.com/2008/05/moving-to-unicode-51.html

	Introduction
	Unicode & UTF-8
	Web Data
	Error Frequencies
	Spam
	Indexing

	Unwanted Content
	Conclusion & Discussion
	References

