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Abstract—This paper proposes a novel approach to explore
emergent patterns in images in an unsupervised setting. We
consider emergent patterns to be sets of co-occurring visual
words that appear together more often than chance would
indicate. Rather than focusing on finding ways to learn a large
number of objects or their categories we focus on analyzing
behavior associated with emergent patterns. We show that these
patterns emerge from the data and in some cases relate to
object identifiers. We extract SIFT descriptors [1] and then
cluster them to represent each image as a bag-of-words. To
encode co-occurrences between visual words we represent them
as edges of a graph which are weighted by the number of images
containing a particular co-occurrence. Performing a statistical
analysis on weights of the edges identifies words which co-occur
significantly more often than expected. These highly co-occurring
nodes produce clusters in the graph which can be separated
using normalized cuts. Applying normalized cuts reveals that in
simple images datasets these emergent clusters can identify object
classes. Results on more complex datasets like Caltech101 [2]
show that interesting patterns other than object classes can also
emerge from the data.

I. INTRODUCTION

Learning useful information from data in an unsupervised
way is a challenging task but is becoming increasingly im-
portant given the need to learn from extremely large datasets
[3], [4], [5], [6]. The main motivation for such approaches
over supervised ones is scalability, which is a prerequisite
when working with large image datasets. We hypothesize that
emergent properties can serve as a basis for machine vision
systems even though such properties may be different to those
humans use.

In this paper we propose an approach for exploring emer-
gent patterns in a set of images in an unsupervised manner.
Our approach is inspired by graph theoretic approaches and
represents co-occurrence information among words in the form
of a large graph. Partitioning this graph results in clusters of
co-occurring words which emerge from the dataset. Evaluating
emergent information is a challenging task, so to see whether
our proposed approach is finding useful emergent information,
a simpler dataset is initially used. Later on experiments on a
more complex dataset are conducted.

The main contribution of this paper is to suggest a novel
criterion for choosing significant edges of the graph which
are used in the graph partitioning process. This allows us to
address the question — what do emerging patterns look like
in databases of different levels of complexity? While these
patterns may correspond to our a priori expectations of object
categories or classes, this need not be the case.

Related Work

Prior literature on unsupervised learning from images can
be categorized into 3 broad domains: itemset-mining, statistical
and graph-based.

In [7] knowledge discovery in databases (KDD) was intro-
duced and later several algorithms such as Apriori [8], Eclat
[9], Fp-Growth [10] and Apriori Inverse [11] were developed to
mine information from market basket datasets generated from
list of items purchased by customers in their groceries. The
grocery items in a basket or a transaction are called itemset.
These algorithms focused on finding frequent and rare itemset
from the entire datasets.

Quack et al. [12] use itemset mining techniques, such as
Apriori [8], for solving computer vision problems. Each local
neighborhood of image features is considered as a transaction
in a market-basket metaphor. Frequent itemset mining tech-
niques are applied and result in frequently co-occurring fea-
tures pertaining to particular objects or movie actors. Similarly
Malik [13] uses association rule mining for clustering web
images. Association rules are generated for both visual and text
features from web pages and then represented this as hyper-
graphs, which are clustered to find similar images. Several
other papers have also used similar data mining approaches to
find interesting patterns in images [14], [15], [16], [17].

Sivic et al. [3] use statistical modeling to discover patterns
in images. They use topic modeling via probabilistic Latent
Semantic Analysis (pLSA). Topic modeling is a kind of gener-
ative model initially used for identifying topics in text corpora
and assumes each document has a mixture of topics, and each
topic has a distribution of words. They use this approach for
topic discovery from unlabelled images; classification of un-
seen images; and object detection. Performance was evaluated
on four categories (faces, motorbikes, airplanes, cars) from
the Caltech101 dataset, giving an accuracy of more than 90%.
They also introduce the notion of doublets which store infor-
mation about spatially co-occurring regions. In another work
Sivic et al. [18] introduce the hierarchical Latent Dirichlet
Allocation (hLDA) model for automatically discovering object
hierarchies from unlabeled data. Other notable work that uses
statistical modeling based approaches includes [5], [19].

Another broad area uses graph theoretic approaches to mine
information. These techniques build graphs from visual words
or images by capturing their correspondences. Graph clustering
or edge cutting techniques are then applied to obtain partitions
that represent objects. Grauman and Darrell [20] present an
approach for categorizing unlabelled images. Their approach
starts by finding feature correspondences and based on these



correspondences they calculate affinities among images. A
spectral clustering technique is then applied to partition data.
The partitioned data can be used to train classifiers for different
object categories. Evaluation on the Caltech-4 dataset gives
94% accuracy when grouping images according to their cate-
gories. In another approach Kim et al [21] created a large graph
directly from image features and then captured object category
information using analysis techniques widely used in web and
social network data. For the 4 objects from the Caltech101
dataset they achieved a classification accuracy of 95.42% and
for 3 objects from TUD/ETHZ dataset a classification accuracy
of 95.47% was achieved.

Most previous work described focuses on unsupervised
discovery of object categories which is different from what
we aim for in our approach. We focus on finding emergent
patterns using co-occurrence of features that might or might
not relate to a single object.

II. PROPOSED APPROACH

We consider the problem of finding emergent patterns as a
graph clustering problem where clusters in a graph represent
some emergent behavior. The graph contains co-occurrence
information among different visual words. An edge weight
represents how many images contain a pair of words that co-
occur. The goal is to partition the graph into parts that represent
emergent patterns.

In this paper we suggest an approach to select significant
edges (co-occurrences) from a large numbers of total edges.
Keeping only significant edges not only reduces the complexity
of the graph partitioning process but also facilitates emergent
patterns by only keeping the most important information.

A. Co-occurrence Graph

We use SIFT [1] descriptors to represent image features.
These descriptors are then quantized by using K-Means to
generate a Bag of Words representation for each image. For
our approach co-occurrence is the basis for emergence. Co-
occurrence is encoded in a graph G(V,E) where a node,
vi ∈ V , represents a single visual word, and an edge,
ei ≡ (vi, vj , fij) ∈ E encodes the frequency, fij , of co-
occurrence of two visual words, vi and vj , in the image
set (ignoring multiple co-occurrences in a single image). The
resulting graph is an undirected weighted graph.

B. Statistical Analysis and Graph Visualization

Significant edges are chosen based on the binomial test.
The null hypothesis is that visual words appear independently
in each image. Those words that co-occur much more fre-
quently than expected are dependent on each other and are
result of some activity in images and hence they are chosen as
significant co-occurrences. This is measured by calculating a
z-score for each co-occurrence or an edge in our graph. Details
of this process is given in Algorithm 1. This z-score is also
assigned as edge weight by replacing previous co-occurrence
count based weight. The edges are then thresholded based
on this value, in order to keep only the most significant co-
occurrences. We experimented with multiple z-score values as
thresholds discussed in Sub-section III-A.

Algorithm 1: Finding significant edges
Data: A graph G = (V,E) where an edge is a

co-occurrence of two words and edge weight
encodes the frequency of this co-occurrence

Result: Edges score according to their statistical
significance

1 for each vi ∈ V do
2 Find probability of each vertex:

P (vi) =
# of document containing this word

total documents (n)

3 for each edge ek ∈ E in the graph do
4 Compute joint probability of vertices vi and vj

co-occurring together P (vivj) = P (vi)P (vj)
5 Compute the probability of failure

Q(vivj) = 1− P (vivj)
6 Compute the mean of the binomial distribution

µ = nP (vivj)
7 Compute the standard deviation:

σ =
√
nP (vivj)Q(vivj)

8 z-score =
x− µ
σ

9 weight of an edge(wij) = z-score

The graph obtained after applying a threshold value is visu-
alized using the graph viewing package Gephi [22]. Visualizing
the graph allows us to see emergent clusters before analyzing
them using a graph partitioning or clustering method. The edge
weight distribution can also give important insight to the graph
structure and could also be used for deciding the edge threshold
value. As described earlier, emergent patterns appear as dense
clusters of words in the graph, ideally disconnected from each
other (although this is not the typical case).

C. Graph Clustering

Graphs obtained after only keeping the most significant
edges still have many connections among emergent clusters.
In order to obtain vertices that are related to each cluster we use
spectral clustering via normalized cuts [23]. Unlike other graph
partitioning techniques, spectral clustering uses the spectrum
(eigenvalues) of an affinity matrix of data points to obtain a
dimensionality reduced version of the data. The affinity matrix
W is defined as:

Wij =


wij , if (vi, vj) ∈ E
1, if i = j

0, otherwise.

(1)

Here wij is the weight (z-score) of the edge calculated
during statistical analysis.

Experiments were performed with two partitioning algo-
rithms: recursive two-way Ncut and simultaneous K-way cut
with multiple eigenvectors as described in [23]. The recur-
sive two-way Ncut approach is a hierarchical partitioning
technique, creating a tree of partitions. The root of this tree
contains all nodes of the graph. At each level a partitioning
problem (D − W )x = λDx is solved for the eigenvectors
with the K smallest eigenvalues. Here W is the affinity matrix
of the graph and D is a diagonal matrix containing the sum



of the weights incident on each vertex. For this approach,
only the second smallest eigenvalue is used to bipartition the
graph, although the next few eigenvectors also contain useful
partitioning information. For each subgraph we again solve
the partitioning problem and similarly use the second smallest
eigenvalue to recursively partition it down to a fixed level. This
approach can be computationally wasteful, since it only uses
the second smallest eigenvector and ignores all others. For the
Simultaneous K-way cut approach, instead of using the second
smallest eigenvalues, the top K eigenvectors are used to get a
K-way partition [23].

Purity Measure: Partitions obtained after normalized cuts
split words into different emergent clusters. In a scenario
where a dataset contains images related to some categories of
objects, it is possible that an emergent cluster may represent
one of these objects categories. To compute how much, or to
what extent words from an emergent cluster are related to a
particular object category, a metric called purity is used.

The purity of a cluster can be defined as:

purity(i) = maxj(Pi(cj)), and i = 1 to K (2)

Here, K is the total number of clusters obtained after nor-
malized cuts and all the words in these clusters are from C
categories of objects. Also, Pi(cj) is the proportion of the
words from the jth category to the total number of the words
in all other categories, found in the ith cluster. The purity of a
cluster can only help us to evaluate whether a particular cluster
belongs to any object category or not and does not help to find
emergent clusters. There could be a perfectly valid emergent
cluster that does not belong to a single object category.

D. Image Ranking

Once we have different partitions or emergent clusters con-
taining sets of words that co-occurred significantly more than
their expectation, it is desirable to visualize these clusters. All
images containing these clusters are identified and locations
of words in them are marked. A ranking mechanism is also
presented to rank images according to the number of significant
edges they contain. If an image contains a large number of
significant edges from a cluster then it covers a majority of
the co-occurrences from this cluster and hence, is a better
representation of this cluster. The total number of significant
co-occurrences present in an image gives the rank of an image.

III. EXPERIMENTAL SETUP AND RESULTS

We have experimented with two different image datasets. In
the first experiment we investigate emergence in a very simple
set of images. We created a dataset of 6000 images named
Toymix as shown in Figure 6(a). It contains 6 objects and
for each object there are exactly 1000 images. This dataset
has low complexity as there are only small transformations
(rotations, translations and scale changes) in it and all images
have a plain background. To see emergence in a more complex
scenario we chose the Caltech101 [6] dataset and used 20
categories from it, chosen based on a criteria of having at-least
80 images, in total 1600 images from 20 categories. We used,
the first 80 images per object to give equal weighting to all
categories even when more images were available. Figure 6(b)
shows single images from each of the chosen categories. After

Figure 1. Edge weights distributions for both dataset for 10,000 visual words.

Figure 2. Graph structure obtained for 6 objects categories from the Toymix
dataset. Here we keep significant edges by choosing a minimum z-score of
30 as a threshold of significance (These figures are best viewed in color)

extracting SIFT [1] descriptors from images we quantized them
into 10,000 visual words in our experiments.

A. Graph building and Significant Co-occurrences Selection

For the Toymix dataset there are approximately 26 million
edges and for the Caltech101 dataset there are 46 million
edges. Figure 1 shows the edge weight distribution for the
graphs containing 10,000 vertices (visual word) generated for
each dataset. The maximum edge weights are z-scores of 68
and 35 respectively. There are also significant differences in
the shape of the distributions. In the Toymix case the z-scores
are more spread out than in the Caltech101 case. As in the
Toymix, a large number of non-unique co-occurrences resulted
in having a large number of bins in the edge weight histogram.
On the other hand, in Caltech101 there are fewer non-unique
co-occurrences which caused fewer bins.

Edges that have high z-scores are more significant because
such edges appeared more than expected and so should contain
more important information. Up until this stage, no graph
cutting or partitioning technique has been applied. The Toymix



Figure 3. Graph structure obtained using 20 objects categories from
Caltech101 dataset. Here we keep significant edges by choosing a minimum
z-score of 4 as a threshold of significance (These figures are best viewed in
color)

dataset graphs were visualized by setting threshold values of
20, 30 and 40 and for the Caltech101 dataset thresholds of 3, 4
and 5 are examined. For these threshold values, we have found
similar graph structures. The resulting graphs are visualized in
Gephi [22] using OpenOrd [24] layout. Figure 2 shows a graph
generated from the Toymix dataset, and all edges having a z-
score of more than 30 are displayed. Figure 3 depicts a graph
for the Caltech101 dataset and contains all edges having a
z-score of more than 4.

Vertices of these graphs are visual words and are color
coded by assigning a label to each word according to their
dominating object category. For each word its occurrence count
in each object category ci ∈ C is computed. A word is assigned
to the category it appears in most often. This is done by
computing a ratio of the highest category count, to the second
highest category count, r = Second highest category count

Highest category count . For a word
if this ratio, r < 0.6667, then this word is assigned the category
in which it mostly appeared. A default category cdef /∈ C is
assigned in cases where this criterion is not meet.

The first graph, shown in Figure 2, is for the Toymix
dataset and contains 6 object categories. When viewed using a
graph drawing layout algorithm, six natural categories emerge,
without applying any graph partitioning or edge cutting tech-
nique. Each emergent cluster is dominated by words from
a single category as depicted by different colors for each
cluster. These colors are the same as those assigned to the
object categories in Figure 6(a). Most of the clusters are well
separated, while the two remotes (which are visually similar)
have many overlapping edges. This intuitively make senses
because words in these clusters are very similar to each other.

The second graph, depicted in Figure 3, is for 20 categories

of Caltech101 dataset. The graph has a complex structure but
still there are some clusters, clearly having vertices dominated
by a single category of object. These clusters are a lot more
dense, but do not show a clear separation of different object
categories because many linking edges remain. It is very
interesting to see these clusters emerging before applying any
graph clustering approach. As these clusters are not separated,
assigning any category to them is not possible until these
linking edges are removed. This is done by using a normalized
cut algorithm.

B. Graph Clustering and Displaying Ranked Results

The clusters shown in Figures 2 and 3 still have edges
between them. Spectral graph clustering is applied to these
graphs to completely separate the clusters using methods
described in Section II-C. For the simultaneous K-way cut
approach K is selected as K = 6 and K = 20 for Toymix
and Caltech101 dataset respectively. The reason for choosing
these values is having the same number of object categories in
each dataset even though emergent clusters may not correspond
exactly to object categories. The recursive two-way approach is
a hierarchical splitting and partitioning method where vertices
at each level are split into two parts until a desired level L of
this tree is reached. For both datasets, partitioning is applied
recursively until a depth of L = 16 is attained, and creates a
total of 215 = 32, 768 partitions in total.

For the simultaneous K-way approach on the Toymix
dataset, K = 6 is used as shown in Figure 4. The results
show that, for each cluster, the top ranked images were from
one of the object categories. For the Caltech101 dataset, setting
K = 20 identifies six clusters, five of which relate to object
categories as shown in Figure 5. We did not see any other
semantic category emerging from the data apart from these 6.
The reason for not seeing any other object category could be
due to more variation among images from those categories. By
looking at the last emergent category, the features in images
are related to either backgrounds or heavily textured object for
example sand or grass. It is interesting to see that this category
represents an emergent property which is not directly related
to any of the human-labeled object categories.

For the recursive two-way approach, images found in each
cluster are stored only if they have at least ten visual words
in them. Any cluster having fewer visual words are ignored.
The top 200 images are saved for each cluster in separate
directories. Emergent patterns are found related to object
categories as we go down the tree. Some of the categories from
the Toymix dataset: ball, remote1 and remote2 emerge in the
upper and middle levels of the tree with a maximum purity
of 1. This means that the top 200 images in this cluster are
related to a single category. Other categories emerge at deeper
levels: Kangaroo, cat and gun categories all emerge at level 14
with the maximum purity of 1. For the Caltech101 dataset a
purity of 0.45 was achieved when sunflower category emerged
at level 14 of the tree. No other emergent clusters relating to
object categories are observed using this approach.

IV. CONCLUSION

In this paper an approach to explore emergent patterns in
image datasets is presented. The approach represents the co-
occurrence of words from images in an undirected weighted



Figure 4. Six categories from Toymix dataset that emerged from data.Top 10 ranked images from each category are displayed.

Figure 5. Five categories {Brain, Faces easy, Piano, Sunflower, Watch and Background} from Caltech101 dataset that emerged from data. The top 10 ranked
images from each category are displayed.



Figure 6. Datasets used in our experiments. The top row is the Toymix dataset and the color bars at the bottom of each image links each object to one of the
clusters in the graph shown in Figure 2. The bottom image shows single images from 20 different categories from Caltech101 dataset.

graph. In this graph emergent patterns lead to dense clusters
of nodes having high edge density. Identifying these clusters
is still a challenging task. Applying our statistical criterion
to these co-occurrences identifies emergent patterns from this
data. We show that image datasets (e.g. 6 categories from
Toymix) with low complexity can even result in class identi-
fiers being found using our significance criteria. We also show
that in a more challenging dataset like Caltech101 emergence
can result in various interesting patterns including, but not
limited to, some object categories.

ACKNOWLEDGMENT

The authors would like to thank Timothee Cour, Stella Yu
and Jianbo Shi for their MATLAB Normalized Cuts Segmen-
tation Code.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
2004.

[2] R. P. L. Fei-Fei; Fergus, “One-shot learning of object categories,” IEEE
Transactions on Pattern Analysis Machine Intelligence, 2006.

[3] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman,
“Discovering objects and their location in images,” 2005.

[4] A. Coates, A. Karpathy, and A. Y. Ng, “Emergence of object-selective
features in unsupervised feature learning.” in NIPS, 2012.

[5] D. Liu and T. Chen, “Unsupervised image categorization and object
localization using topic models and correspondences between images,”
ICCV, 2007.

[6] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models
from few training examples: an incremental Bayesian approach tested
on 101 object categories.” in Workshop on Generative-Model Based
Vision, 2004.

[7] U. Fayyad, G. Piatetsky-shapiro, and P. Smyth, “From data mining to
knowledge discovery in databases,” 1996.

[8] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules in large databases,” in VLDB’94. Morgan Kaufmann, 1994.

[9] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New algorithms
for fast discovery of association rules,” in 3rd International Conference
on Knowledge Discovery and Data Mining (KDD), 1997.

[10] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without
candidate generation: A frequent-pattern tree approach,” 2004.

[11] Y. S. Koh and N. Rountree, “Finding sporadic rules using apriori-
inverse,” in Proceedings of the 9th Pacific-Asia Conference on Advances
in Knowledge Discovery and Data Mining. Springer-Verlag, 2005.

[12] T. Quack, V. Ferrari, and L. V. Gool, “Video mining with frequent
itemset configurations,” in CIVR. Springer, 2006.

[13] H. H. Malik, “Clustering web images using association rules, interest-
ingness measures, and hypergraph partitions,” in Proceedings of the 6th
international conference on Web engineering. ACM Press, 2006.

[14] T. Quack, V. Ferrari, B. Leibe, and L. J. V. Gool, “Efficient mining of
frequent and distinctive feature configurations,” in ICCV, 2007.

[15] J. Kleban, X. Xie, and W.-Y. Ma, “Spatial pyramid mining for logo
detection in natural scenes,” in ICME, 2008.

[16] A. Gilbert, J. Illingworth, R. Bowden, and G. X. England, “Scale
invariant action recognition using compound features mined from dense
spatiotemporal corners,” in ECCV, 2008.

[17] U. M. Khan, B. McCane, and A. Trotman, “Emergent semantic patterns
in large scale image dataset: A datamining approach,” in Digital Image
Computing Techniques and Applications (DICTA). IEEE, 2012.

[18] J. Sivic, B. C. Russell, A. Zisserman, W. T. Freeman, and A. A. Efros,
“Unsupervised discovery of visual object class hierarchies,” in CVPR.
IEEE, 2008.

[19] F. Endres, C. Plagemann, C. Stachniss, and W. Burgard, “Unsupervised
discovery of object classes from range data using latent dirichlet
allocation.” in Robotics: Science and Systems. The MIT Press, 2009.

[20] K. Grauman and T. Darrell, “Unsupervised learning of categories from
sets of partially matching image features,” in CVPR, 2006.

[21] G. Kim, C. Faloutsos, and M. Hebert, “Unsupervised modeling of object
categories using link analysis techniques,” in CVPR. IEEE, 2008.

[22] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source
software for exploring and manipulating networks,” 2009.

[23] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1997.

[24] S. Martin, W. M. Brown, R. Klavans, and K. W. Boyack, “Openord: an
open-source toolbox for large graph layout,” in IS&T/SPIE Electronic
Imaging. International Society for Optics and Photonics, 2011.


