
Compression, SIMD, and Postings Lists
 Andrew Trotman

Department of Computer Science
University of Otago

Dunedin, New Zealand
andrew@cs.otago.ac.nz

ABSTRACT
The three generations of postings list compression strategies (Var-
iable Byte Encoding, Word Aligned Codes, and SIMD Codecs)
are examined in order to test whether or not each truly represented
a generational change – they do. Some weaknesses of the current
SIMD-based schemes are identified and a new scheme, QMX, is
introduced to address both space and decoding inefficiencies.
Improvements are examined on multiple architectures and it is
shown that different SSE implementations (Intel and AMD) per-
form differently.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing - Indexing methods

General Terms
Algorithms, Performance.

Keywords
Compression, Procrastination.

1. INTRODUCTION
Modern search engines usually store their postings list in memory
and compressed. The variety of compression scheme (or codecs)
has changed periodically and we are now entering a third genera-
tion.

In the first generation, typified by Elias [5], Golomb [6] and Vari-
able Byte Encoding, indexes were stored on disk. It was generally
accepted that a disk seek and read was slow by comparison to the
decoding time, regardless of the cost of decoding. Indeed, disk
was so slow that the main objective of index compression research
was to create an encoding scheme targeting the smallest possible
postings lists. Moffat & Stuiver [8] present the Binary Interpola-
tive Coding, an elegant codec, for exactly this purpose.

The first generational change happened when Scholer et al. [9]
observed that Variable Byte Encoding was faster in situ in the
search engine than Elias or Golomb codes. Trotman [12] analyzed
the performance of a hard disk drive and the CPU when loading
and decoding postings lists and also showed that, of the schemes
he tested, Variable Byte Encoding was the most efficient. The
conclusion, at that time, was that bit-wise schemes such as Elias
and Golomb were slower than byte-wise schemes because they
required more CPU instructions to decode.

In the second generation, typified by Simple-9 [1], Simple-16
[15], Simple-8b [2], PForDelta [16], and VSEncoding [10], the

objective was to pack as many integers as possible into a machine
word. In the case of Simple-9, that machine word is a 32-bit inte-
ger; in the case of Simple-8b it is a 64-bit integer.

Another generational change is happening right now. Authors
such as Stepanov et al. [11] have proposed using SIMD instruc-
tions for decoding and have shown substantial improvements in
decoding time by doing so. Others have improved on the result of
Stepanov et al. including Lemire et al. [7].

Just as the shift from bit-wise schemes to byte-wise and word-
wise schemes resulted in improvement, so too has the use of
SIMD-word schemes, and for the same reasons. More work can
be done in a single CPU instruction.

Recently Catena et al. [3] re-examined the result of Scholer et al.
in light of hardware, operating system, compiler, language, and
search engine algorithmic improvements over the last 10 years.
They show that, of the schemes they tested, the PForDelta family
of schemes resulted in the highest throughput. Such an experiment
should be re-conducted periodically as new codecs are introduced
– however that is not the topic of this contribution.

There are two important aspects to consider with any codec to be
used in a search engine. The first is the compression ratio (i.e.
index size), which henceforth shall be referred to as effectiveness,
the second is the decoding time, which henceforth shall be re-
ferred to as efficiency. The first should be invariant to implemen-
tation, but the second certainly is not. This leads to the first re-
search question of this investigation:

Are all implementations essentially equal in decoding efficiency?

To examine this question several different implementations of
several different codecs were downloaded and compared to each
other. In result, there are huge discrepancies in implementation
efficiency. Which leads to the second question:

How do the most efficient implementations of different codecs
compare to each other?

This questions is fundamentally different from the question usual-
ly asked when a new codec is introduced, that question being: is
new codec a more efficient or effective than previous codec b,
when implemented by the author of codec a? This is not to sug-
gest deliberate bias on the part of the author of codec a, but rather
that the intricacies of codec b are best understood by the origina-
tor of codec b, and therefore their implementation should be used
(wherever possible), or at the very least any new implementation
should be shown to be an improvement on it.

In result of this second question, it is unsurprising to find that the
decoding efficiency and space effectiveness of the implementa-
tions tested does show a generational leap between the first and
second generation (when compared to Variable Byte Encoding).
There is evidence to suggest that the third generation made a con-
tribution to decoding efficiency, but not space effectiveness.
Leading to the third research question:

Can effectiveness or efficiency improvements be made on current
SIMD codecs?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee. Request permissions from Permissions@acm.org.

ADCS '14, November 27 - 28 2014, Melbourne, VIC, Australia
Copyright 2014 ACM 978-1-4503-3000-8/14/11…$15.00
http://dx.doi.org/10.1145/2682862.2682870

A new codec, QMX, is introduced. This codec combines word-
alignment and SIMD, but is novel in that it also combines run-
length encoding. Experiments show that this scheme is highly
space effective and can be decoded extremely quickly.

CPU architectures are not universal. Even within the x86-64 fami-
ly different aspects of the CPU are optimized for different purpos-
es. This leads to the final research question:

Are the reported results generally applicable or platform specific?

The answer to this question is left to Section 5.

2. PRELIMINARIES
Experiments were conducted on one core of an otherwise idle 64-
core 2.3GHz AMD Opteron 6276 based computer with power
management disabled. This CPU has 48KB Level-1 cache, 1MB
Level-2 cache and a shared 16MB Level-3 cache. Ubuntu Linux
12.04 kernel version 2.6.32 and g++ version 4.8.0 with the –O3
and –msse4 flags was used. This choice is examined in Section 5.

The TREC GOV2 document collection of 25,205,179 web pages
crawled from the .gov domain in 2004 was used for tests because
it is commonly used for experiments of this nature.

Each postings list was first loaded from disk, then for each codec
it was encoded and the space needed for it was recorded. The time
to decode was measured 5 times using the CPUID RDTSC instruc-
tion combination and the smallest value stored. This approach
minimizes the effect of external events (such as interrupts) on the
timing – however it also emphasizes the effect of the cache. The
reported lengths and times are the mean recorded score over all
lists of the same length.

The postings lists were created using the ATIRE search engine
[13]. By default, ATIRE stores postings lists as term frequency
ordered d-gaps. The postings list for a term, t, is normally thought
of as a list of pairs <d, tf>, where d is the document id and tf is the
term frequency (more accurately, occurrence count) of term t in
document d. ATIRE sorts these lists on decreasing tf, then increas-
ing d. Doing so makes it possible to store lists in the form <tf1:d1,1,
d1,2,…,d1,n1, …, tfm:dm,1, dm,2, …, dm,nm>. Since the sequence dk,1,
dk,2, …, dk,n is strictly monotonic, it is d-gap (also known as delta
or difference) encoded, that is, consecutive differences are stored.
For example, for the (<d, tf>) postings <1, 1>, <3, 1>, <5, 2>, <9,
2>; ATIRE will store <1: 1, 2><2: 5, 4>. ATIRE caps tf values at
255 and stores them uncompressed in a single byte. Consequently,
experiments are conducted on the sequences of d-gap encoded
document ids, not the term frequencies.

This contribution contains many color coded graphs. It is assumed
the reader is reading on a color enabled medium (i.e. a screen).
References to source code are footnoted on first occurrence.

3. BASELINES
In this section three different classes of codec are compared in an
effort to identify a suitable baseline under which any new codec
can be compared. Those classes are Variable Byte Encoding from
the first generation, Word Aligned Codes from the second genera-
tion, and SIMD Codecs from the third. A baseline performance is
established by comparing several different implementations.

3.1 Variable Byte Encoding
Variable Byte Encoding has proven popular for many years. At
the end of the first generation Scholer et al. [9] as well as Trotman
[12] suggested using this scheme, and it continues to be used as a
baseline. However, not all implementations are equally effective,
nor do they decode at the same rate.

3.1.1 Variable Byte Encoding: Algorithms
Although Variable Byte Encoding is usually described as an algo-
rithm, it is more accurately a family of algorithms in which an
integer is encoded in a variable number of whole bytes. This is
problematic if used as a baseline for a scientific investigation
because it is unclear what the comparison is against. Indeed, many
prior investigators use their own byte-based compression scheme
and called it Variable Byte Encoding, the decoding performance
of these algorithms is, as expected, variable.

1 0 0 0 1 1 1 00 1 1 1 0 0 0 1190510 = 77116 = 111011100012 

Figure 1: Variable Byte Encoding of decimal 1905 (771 hex,
11101110001 binary) using the encoding of Silbestri et al.

Silvestri et al. [10]1 implement an algorithm which takes a 32-bit
integer and breaks it into 7-bit chunks. For an integer that can be
stored in 7 bits, it adds a leading (i.e. high) 1-bit and stores one
byte. For an integer that requires 8-14 bits, it stores the low 7 bits
with a leading 0 and then the high 7 bits with a leading 1. In other
words, it stores the integer little endian with a termination flag
stored as the top bit of each byte. Figure 1 depicts the encoding of
decimal 190510. In binary (111011100012) it takes 11 bits, those
bits require 2 bytes, the low 7 bits are stored in the first byte and
the remaining 4 are stored in the second byte with leading 0s; the
high bit of the first byte is set to indication continuation (0) and
the high bit of the second byte is set to indicate termination (1)
giving the sequence 011100012, 100011102 (hexadecimal 7116
8E16). Silvestri et al. use this implementation to demonstrate the
superiority of VSEncoding word-aligned codes (see Section 3.2)

It is the decoding algorithm that is more important for search en-
gine efficiency. Silvestri et al. implement a decoder that first
primes a bit-manipulation library with a long bit string. When
decoding an integer they first ask this library for the next 8 con-
secutive bits, and store the low 7 bits of this byte for the resultant
integer, then, and in a loop, they check the high bit of this byte
and if non-zero ask for the next 8-bits, shift them the correct num-
ber of places (counted in integers) and OR it with the sum so far.

For Trotman’s experiment discussed in Section 1 [12]2 he imple-
ments a similar algorithm, but stores integers big endian. His de-
compression algorithm manipulates bytes directly thus eliminating
the calls to a general-purpose bit-manipulation library. By storing
big endian he also eliminates the need to store how far to shift the
current byte. He always shifts the current accumulated total to the
left by 7 bits and ORs the next byte with the high bit turned off.
Interestingly, he also has a short circuit for single byte integers.

Williams & Zobel [14]3 also break an integer into 7-bit chunks
and store them big endian. The remaining bit in each byte (the low
bit in this case) is used as a continuation bit, with a 0 indicating
the end of the integer. During decompression this bit is turned off
using a right shift, and the bytes are reconstructed into an integer
using an ADD. It is presumed herein (perhaps incorrectly) that
this is the implementation used by Scholer et al.

Zhang et al. [15] also store big endian and with a continuation bit
stored in the low bit4. Different from Williams & Zobel, Zhang et
al. they unroll the loop over the input byte stream when decom-

1 http://hpc.isti.cnr.it/~integerencoding/
2 http://atire.org/
3 http://www.seg.rmit.edu.au/projects.html
4 http://code.google.com/p/poly-ir-toolkit/

pressing. This implementation is distributed with a popular im-
plementation of PForDelta.

Anh & Moffat [1] use a termination bit, have special handling for
the single byte case, and store their integers big endian. However,
they assume the sequence contains no zeros and so subtract one
on encoding and add one on decoding. Their implementation is
distributed with their code5 for Simple-4b and Simple-8b.

The experiments of Catena et al. [3]6, discussed in Section 1, use
the Hadoop implementation, which can also store negative num-
bers. Positive integers less than 128 are stored in one byte with a
leading (high bit) 0. All other positive integers are broken into two
parts. First the length of the integer (in bytes) is stored in a leading
byte, and then the integer itself is stored big endian, using the
minimum number of bytes possible. Decompression requires
computation of the number of bytes used to store the integer. If
this is one then the integer has been stored directly and decoding
is over. Elsewise an accumulator is shifted left by 8 bits and the
next byte is ORed with it – a process that is repeated until the
integer is complete.

Unfortunately, the Hadoop implementation is in Java. For the
experiments herein it was line-by-line translated into C++ with
routines being marked inline. Results on this code are not the
original code base and must be taken with caution.

Dean [4] suggests that Google use a Variable Byte Encoding
scheme they call Group Varint. They compute the number of 8-bit
bytes need to store an integer, being 1, 2, 3, or 4. Storing this
number takes 2 bits. Storing 4 such numbers takes 8 bits. So rather
than encoding each integer separately they encode 4 consecutive
integers. First they store a byte representing the 4 lots of lengths,
then they store each integer in the minimum number of bytes nec-
essary. Decompression is of particular note. They take the leading
length byte, switch on it, and from that know how to unpack the
next 4 integers. This unpacking is extremely fast: a 1-byte integer
can be unpacked by dereferencing a byte pointer and casting to a
32-bit integer; for a 2-byte integer the first byte is shifted left 8
places and the next byte is ORed with it; similarly for 3 and 4 byte
integers. No loop is required for a tuple of 4 integers, and the
compiler implements the switch using a branch table. Unexpect-
edly, comparison to Group Varint is not common in the literature.
Burgess2 provides the implementation used in the experiments.

It should be clear from the discussion in this section that Variable
Byte Encoding is a family of algorithms, not a single algorithm. It
should also be clear that decoding performance should vary from
implementation to implementation.

3.1.2 Variable Byte Encoding: Performance
The previous section discussed Variable Byte Encoding with par-
ticular reference to different implementations seen in the litera-
ture. This section discusses the effectiveness (in bits per integer)
and the decoding throughput (in clock-cycles) of these implemen-
tations.

Figure 2 shows on a log log scale the decoding efficiency of the
various implementations tested. The horizontal axis is the number
of integers being decoded while the vertical axis is the number of
clock cycles necessary to decode that number of integers (smaller
is better). The figure demonstrates the variability of decoding
performance across implementations. The fastest implementation
tested was the Group Varint implementation by Burgess.

5 http://ww2.cs.mu.oz.au/~alistair/coders-64bit/
6 http://hadoop.apache.org/

Figure 2: Decoding efficiency of Variable Byte Encoding Im-

plementations. Of those tested, the Burgess implementation of
Group Varint was the most efficient.

Figure 3: Effectiveness in bits per integer. Variable Byte En-

coding reaches an effectiveness of 8 bits per integer while
Group Varint reaches an effectiveness of 10 bits per integer.

Figure 3 shows on a log log scale the number of bits per integer
necessary for storing one integer as the length of the postings list
grows (and consequently d-gaps decrease). Once the d-gaps be-
come small enough, each can be stored in one 8-bit byte with the
termination (or continuation) bit set – the effectiveness tends to 8
bits per integer. The exception is Group Varint which stores 4
small integers in 8-bits each plus a 2-bit selector each (totaling 10
bits per integer).

In conclusion, Group Varint is less effective but more efficient
than the others – the extra memory accesses do not inhibit
throughput. The others are more effective but less efficient than
Group Varint. In the next section the more space effective Word
Aligned Codes are examined in a similar way.

3.2 Word Aligned Codes
Word Aligned Codecs were originally introduced by Anh &
Moffat [1], but subsequently others have reported improvements
in effectiveness and efficiency.

3.2.1 Word Aligned Codes: Algorithms
Word Aligned Codes, also known as The Simple Family, are a
family of algorithms and not a single algorithm. Anh & Moffat [1]
initially introduced Simple-9, Relative-10, and Carryover-12,
however it is Simple-9 that sparked interest because it is more
efficient to decode. To this Zhang et al. [15] added Simple-16,
Anh & Moffat [2] added Simple-4b and Simple-8b. Zukowski et
al. [16] introduced the PForDelta algorithm, and Silvestri & Ven-
turini [10] contributed VSEncoding.

1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1

Figure 4: Simple-9 encodes a string of integers in two parts, on
the left a selector indicating the length of each integer and on
the right some number of integers of that length; all packed

into 32-bits.

In Simple-9 a 32-bit word is divided into two parts (called snips),
a 4-bit selector and a 28-bit payload. The payload is divided into
some number of integers all of equal length. The 4-bit selector
describes the number of integers stored in the payload, and conse-
quently their bit-width. Figure 4 provides an example: the selector
(10112) identifies a payload carrying four 7-bit integers (11101002
11001112, 01001012, and 01100112). There are 9 possible selector
values for a 32-bit integer, hence the name Simple-9. Decoding is
achieved by switch-ing the selector and then (in an un-wound
loop) extracting each integer. Anh & Moffat do not provide an
implementation but Silvestri et al.1 do, as do Trotman &
Subramanya2.

Zhang et al. [15] extend Simple-9 by using the remaining selector
values to describe asymmetric combinations, such as seven 2-bit
integers followed by fourteen 1-bit integers; and reassigning codes
that wasted bits. Their approach is known as Simple-16. Imple-
mentations by Silvestri et al.1 and also by Burgess & Trotman2 are
available.

Anh & Moffat [2], use the spare selector values differently. They
assume long runs of 1s are common and so the remaining selec-
tors are used to store various run lengths of 1s. Anh & Moffat
provide code5 for their 32-bit version, Simple-4b, and 64-bit ver-
sion, Simple-8b.

Zukowski et al. [16] realize that when using fixed bit-width
blocks, a single outlier can lead to substantial deterioration in
compression effectiveness. Consequently they identify outliers in
the block and store those in a patch table rather than in-line with
the sequence of numbers. Decoding involves patching up the se-
quence if outliers are present. They call their algorithm PForDelta,
but do not provide an implementation. The implementation tested
is that of Zhang et al.4 using blocks of 128 integers (the default).

Silvestri & Venturini [10] observe that The Simple Family of
compressors are greedy when assigning integers to payloads; they
pack as many integers as possible into the current codeword be-
fore moving on to the next codeword. Their VSEncoding ap-
proach partitions integers into buckets of a fixed bit-width, then
additionally stores the width of each bucket and the number of
integers in each bucket. They describe two implementations. Their
source code1 has others including VSEncodingSimple v2, which
they identify as the fastest, however it uses non-standard language
features (specifically: they take the address of a label) and it
would require a substantial re-write to make the code portable (to,
for example, Visual Studio on Windows). The fastest portable
variant they provide is VSEncodingBlocks.

3.2.2 Word Aligned Codes: Performance
Unlike Variable Byte Encoding, implementations of Word
Aligned Codes tend to have different names and are often availa-
ble directly from the author. However in the case of Simple-9 and
Simple-16, two implementations have been identified.

Figure 5 shows that the decoding efficiency of the various Word
Aligned Codes algorithms and implementations. The most effi-
cient is the PForDelta algorithm as implemented by Zhang et al.

Figure 6 shows the effectiveness in bits per integer as the postings
lists increase in length. When the lists are short, the 32-bit word

codecs are most effective. Unlike Variable Byte Encoding, the
effectiveness does not plateau at 8 bits per integer. Also unlike
Variable Byte Encoding, there is no clear winner or loser when
postings lists are long.

Inverted files are dominated by short postings lists, but the longer
lists can have an overwhelming effect on total index size. Figure 7
shows, for all the implementations examined herein, the sum of
the lengths of all postings lists once encoded. For this dataset, the
smallest index occurs when Simple-8b is used. PForDelta, alt-
hough efficient at decoding long lists, is ineffective for the large
number of short lists. As with Variable Byte Encoding, the most
effective and the most efficient algorithm are different.

Figure 5: Decoding efficiency, in clock cycles, of the Word

Aligned Codes algorithms. The most efficient decoder tested
was that of Zhang et al. for the PForDelta variant.

Figure 6: Effectiveness in bits per integer. There is no clear

winner for long lists, but for short lists, the 32-bit versions of
the Simple family are most effective.

Figure 7: Sum of compressed lengths sorted largest to small-

est. Simple-8b is smaller than QMX but is slower.

3.3 SIMD Codecs
The third generation of codecs use the SIMD instructions present
on modern processors. Research has normally been conducted on
Intel processors using the SSE instructions.

3.3.1 SIMD Codecs: Algorithms
Stepanov et al. [11] introduce varint-G8IU in which as many inte-
gers as possible are encoded into 8 consecutive bytes preceded by
a one-byte descriptor that explains how many bytes each integer
takes; it follows the form of Group Varint. Decoding is performed
using the PSHUFB shuffle instruction, the descriptor being a key
on how to shuffle. Stepanov et al. do not concern themselves with
word-aligning their accesses, stating that “We depend on the abil-
ity of the CPU to perform unaligned reads and writes efficiently”.
Lemire & Boytsov provide an implementation7.

Lemire & Boytsov [7] provide a comprehensive review of current
codecs and implement several using SIMD instructions. Their
fastest at decompression is SIMD-BP128. This codec uniformly
Binary Packs blocks of 128 consecutive integers into the smallest
number of 128-bit SIMD words possible. Much like Simple-9,
each integer is stored using the same number of bits. Much like
Group Varint, the selector is stored before a sequence. Specifical-
ly, a 16-byte selector is stored before 16 encoded blocks of 128
integers each. Storing in this way makes it possible to decode
using only 128-bit SIMD word aligned reads and writes. Lemire
& Boytsov provide an implementation7.

3.3.2 SIMD Codecs: Performance

Figure 9: Decoding efficiency, in clock cycles. SIMD-BP128 is
more efficient than varint-G8IU when lists are long, but the

reverse is true when the lists are short

Figure 9 shows the decoding efficiency of the two SIMD algo-
rithms. On the data used, SIMD-BM128 is more efficient than
varint-G8IU when the lists are long, but the reverse is true when
the lists are short. It should be noted that the two algorithms were
implemented by the same author which might affect the efficiency
– that said, it is reasonable to expect the word-aligned reading and
writing to be more efficient that non-aligned reads and writes8.

7 https://github.com/lemire/FastPFor
8 Preliminary experiments not reported here showed that a block

copy using SSE instructions was faster when the aligned in-

Figure 10 shows the effectiveness of the two codecs. SIMD-
BP128, which encodes in 16 lots of 128 integers, is ineffective
when postings lists are short, but effective when they are long.
Varint-G8IU, however, plateaus at 9 bits per integer whereas
SIMD-BP128 does not.

Figure 10: Effectiveness in bits per integer of the SIMD co-
decs. Neither algorithm is universally better than the other.

Figure 11: The most efficient decoder for long lists is the

Lemire implementation of SIMD-BP128.

3.4 Comparing Baselines
This section has examined the three generations of codecs for
compressing inverted files – in each case the most effective and
the most efficient implementations have been identified. This
section examines how those perform relative to each other.

In terms of effectiveness, Word Aligned Codes are the most effec-
tive – this can be seen by comparing Figure 3, Figure 6, and Fig-
ure 10. However, for a search engine throughput using an in-
memory index, the decoding efficiency is more important.

Figure 11 compares the most efficient from each generation
(Group Varint, PForDelta, and SIMD-BP128). There is no univer-
sally best codec, but once lists get long SIMD-BP128 is more
efficient than the others. Indeed, this figure shows quite clearly

structions were used than when the unaligned equivalents were
used.

12H 8 4 11H 7 3 10H 6 2 9H 5 1

20 16 12L 19 15 11L 18 14 10L 17 13 9L

0316395119

Figure 8: Twenty integers striped across two 128-bit words. The first 8 integers are stored in the first word, inte-
gers 9-12 are stored with the high 8 bits of each integer in the first word and the low 4 bits stored in the second

128-bit word. Integers 13-20 are stored in the final word. Vertical lines are nybble boundaries.

the generational change from Variable Byte Encoded to Word
Aligned Codes to SIMD Codec and how each successive genera-
tion is more efficient on long lists.

4. NEW CODEC: QMX
The previous section demonstrated that the third generation of
codecs has shown an improvement in decoding efficiency, even if
they are not more effective. This section builds on the prior work
and introduces a new codec called QMX.

It is assumed that integers being encoded and decoded are 232 or
smaller. This assumption is (currently) reasonable as it is unlikely
that a search engine will host more than this number of documents
in a single shard. Compression is lossless.

The first principle is to target short as well as long postings lists.
Section 3.3 shows that neither of the two tested SIMD codecs is
effective at both short and long lists.

The second principle is to use aligned reads and writes whenever
possible. Preliminary experiments suggest that doing so will have
a substantial effect on efficiency. The consequence of alignment is
that a single 128-bit integer can be retrieved from main memory
in a single read, and that a tuple of 4 integers (each 32 bits) can be
written in a single write.

The implementation targets SSE4, an architecture that has been
available in Intel CPUs since 2008 and AMD CPUs since 2011.

4.1 Overview of QMX
QMX is a codec for encoding positive integer sequences, typified
by d-gap encoded postings lists seen in a search engine. Like
Simple-9, a variable number of integers are fixed-width binary
packed into payloads (128-bit SIMD words), and a selector is
stored describing how they are packed. Like SIMD-BP128, the
selector is stored separate from the payload. Unlike either, and
novel to QMX, selectors are run-length encoded. So there are
three parts: the payload (or Quantities), the run length (or Multi-
pliers), and the selector (or eXtractor), hence the name.

4.2 QMX Payloads (Quantities)
In Simple-9 Anh & Moffat uniformly pack as many integers as
possible into a 32-bit word. In SIMD-BP128, 128 consecutive
integers are packed into as few 128-bit words as possible. The
approach of Anh & Moffat is chosen for QMX: as many integers
as possible are uniformly packed into a single 128-bit word. In
this case uniformly means each and every integer in a 128-bit
word is stored using the same number of bits.

Table 1: Packing of integers into 128-bit words

Bits 32 16 10 8 6 5 4 3 2 1
Integers 4 8 12 16 20 24 32 40 64 128
Waste 0 0 8 0 8 8 0 8 0 0
Writes 1 2 3 4 5 6 8 10 16 32

Table 1 shows all the possible ways that a whole number of tuples
of 4 integers (each a single write) can be packed into a single 128-
bit word (a single read). The first row lists the number of bits per
integer. The second row lists the number of integers that can be
packed using that number of bits. The third row lists the number
of wasted bits. The final row gives the number of machine word
(tuple) writes necessary to store those integers once decoded into
32-bit integers. For example, 24 integers of 5 bits each can be
stored in a 128-bit word, once decoded into 32-bit integers they
can be written back to main memory in 6 writes; doing so leaves 8
spare bits in the 128-bit word because 5 × 24 = 120.

In the Simple-9 method of Anh and Moffat, there are several spare
selectors once all possible encodings are accounted for. Different
authors used them in different ways. For example, in Simple-4b

they are used to identify sequences of 1s, and in Simple-16 they
are used for asymmetric combinations.

Table 2: Packing of integers into 256-bit words

Bits 21 12 9 7
Integers 12 20 28 36
Waste 4 16 4 4
Writes 3 5 7 9

When packing whole tuples of 4 integers into 128 bits, only 10
combinations are possible. However, when also including the
number of ways that tuples of 4 integers can be stored in 256 bits
(two consecutive words), there are several more. Table 2 shows
these additional ways. The first row shows the number of bits, the
second row shows the number of integers, the third rows shows
the number of bits left over, and the final row lists the number of
writes necessary to write these to memory. For example, 36 inte-
gers of 7 bits each can be packed into 252 bits with 4 bits wasted.

Combining the two tables gives 14 combinations. Following the
technique seen in Simple-4b and Simple-8b, a 0-bit combination
is added to these 14 ways giving 15 ways in total. This final pack-
ing is for 0-bit integers and identifies a sequence of 256 values,
each implicitly 0. As the values are implicit no payload is stored.

There are many different ways that a number of integers might be
packed into a 128-bit word. In Simple-9 they are packed consecu-
tively. In SIMD-BP128 they are allocated across the four 32-bit
words in a round-robin fashion with any spare bits spilling over to
the next 128-bit word. Figure 8 shows this encoding.

In QMX integers are stored in three different ways. For the com-
binations seen in Table 2, the integers are stored round-robin with
spill over. These can be decoded into tuples using a series of
SHIFT, AND, and OR operations. In the case of combinations seen
in Table 1 (except 8, 16, or 32-bits per integer), they are stored in
a run-robin fashion with no spill over. These can be decoded using
a series of SHIFT and AND operations. Both these combinations
are similar to that seen in SIMD-BP128.

In the remaining cases (8, 16, or 32 bits per integer) the integers
are always stored consecutively (similar to Simple-9). They are
decoded using PMOVZXBD, SHUFPS, and MOVHLPS instructions.

This final encoding is chosen for effectiveness reasons. The
lengths of postings lists in an inverted file typically follow a pow-
er law distribution. To avoid having to store long encodings for
short sequences (i.e. a 128-bit word for a single 32-bit integer),
any sequence of integers shorter than 16 is stored in one of these
three ways, if doing so means a partial 128-bit word can be stored
without loss. For example, striping the sequence 7, 9, 4, 6 would
require a whole 128-bit word, but if stored byte packed consecu-
tively would require only 32 bits. Unlike either SIMD-BP128 or
Simple-9, short lists are stored truncated – this can only happen
for entire (short) postings lists or at the end of a postings list; it
cannot happen in the middle of a list.

4.3 QMX Selectors (eXtractors)
In Simple-9 the selector that identifies how many integers are
stored in the 32-bit word is stored in 4 of the 32 bits in the word,
leaving only 28 bits per word for coding. In SIMD-BP128 the
selector is stored in a byte, 16 such bytes are collected together
and stored before 16 payloads (in a similar way to Group Varint).

The approach taken for QMX is to store a selector in a byte. If the
selectors were stored in-line with the data then the first payload
would no longer be word aligned – this does not matter for
streamed data where the data transfer is likely to take many times
longer than decoding. Inverted indexes are, however, often loaded
into main memory on search engine startup and served from there.

To ensure the reads remain aligned, the implementation stores the
selectors in a sequence after the payload data.

In total 15 selectors are used: the combinations in Table 1 and
Table 2, as well as 0 (for 256 0-bit numbers, without a payload).

4.4 QMX run lengths (Multipliers)
If selectors are stored in a byte there are 4 remaining unused bits
in each selector. Unlike any of the algorithms discussed in Section
3, and novel to QMX, these bits are used to encode a run-length.

There are two parts that could be run-length encoded: the payload
or the selector. It is unlikely (but possible) that the payload will
repeat many times. As there are only 16 possible selectors, these
are more likely to repeat. It is these that are run-length encoded.
As a 0-length run is not possible, runlength – 1 is stored, al-
lowing for the same selector to represent up-to 16 consecutive
payloads encoded in the same way.

4.5 QMX Implementation
In the implementation tested in the experiments, the payload data
is laid out first. This is followed by the run-length encoded selec-
tors. The selector is stored in the high nybble of a byte and the run
length is encoded in 2s complement in the low nybble. In this way
the decoding routine can be coded as a switch statement with fall
through. For example, the (base 16) selector 0016 refers to 64 ×
256 0-bit integers, the selector 0116 identifies 63 × 256 0-bit inte-
gers, and so on to 0F16 identifying 1 × 256 0-bit integers; and so
the routine that decodes integers is a repeat of the same code for
the cases of 0016, 0116, … 0F16 with a single break after case
0F16, and not the prior cases. That is, for this example, the inner
loop (256 integers) is unrolled one time each for each integer, and
the outer loop (run length times) is unrolled due to the case fall-
through. This approach is somewhat similar to that seen in Group
Varint Encoding, but novel in that fall-though is also utilized.

Sixteen selectors (F016, F116, …, FF16) are unused, their use is left
for future work. They could be used, for example, to identify ex-
ception cases much as PForDelta stores exceptions separately.

Silvestri et al., in their VSEncoding codec spend some time iden-
tifying the best packing of consecutive integers into words. The
packing technique clearly affects effectiveness and efficiency –
improving one, the other, or both. A left-greedy packing is used in
the implementation. That is, working from left to right (first to last
integer in the list), the best way to store the leftmost q-integers
using the same number of bits is determined before moving to the
right by q. Finding an optimal packer is left for future work.

Finally, there must be some way to identify the point separating
the payload and selectors. This is done by storing, on the end of
the encoded sequence, a pointer to the start of the selectors. In the
implementation this is a Variable Byte Encoded integer encoding
the length of the selector list plus the length of the encoded length
(encoded backwards from the end of the string).

In this way, a single integer will be stored in at worst a 4-byte
payload, a 1-byte run-length encoded selector, and a 1-byte point-
er to the selector. The best case is a 1-byte payload, a 1-byte run-
length encoded selector, and a 1-byte pointer to the selector.

As 0s cannot occur in a strictly monotonic sequence, the imple-
mentation uses the 0-bit selector for long runs of 1s rather than 0s.

4.6 QMX Performance
Figure 12 presents the efficiency of QMX when compared to the
most efficient codecs seen in Section 3. For short postings lists
QMX is the most efficient. For medium-length lists QMX is sur-

passed by SIMD-BP128, but for long lists QMX again outper-
forms the others.

Figure 13 shows the effectiveness of the codecs. Although Group
Varint is the most effective with short postings lists, it is also the
most ineffective with long ones. QMX is effective at almost all
lengths of postings lists – taking slightly under 48 bits per integer
for short lists and tending to slightly above 0 bits per integer when
long runs of 1s are seen.

The selector utilization (excluding run-length) for the GOV2 col-
lection is shown in Figure 14. The most used selector is for 8 bits
per integer. There is a small hump at 12 and 16 bits per integer,
most likely because there is no selector for 11, 13, 14, or 15 and
so integers that might otherwise be stored in those number of bits
must be stored in a larger number of bits. There is a slump at 1 bit
per integer because, in the implementation, the 0-bit selector is
used for storing runs of 1s, as 0s cannot occur. That is, the 1-bit
selector can only be used to store runs of exactly 128 1s.

As QMX is effective at compressing both long and short postings
lists it is reasonable to expect the overall index size will be sub-
stantially smaller when compressed using QMX than the other
codecs. Figure 7 shows, for all those tested, the sum of com-
pressed lengths for all postings lists – the part of the index varia-
ble in size due to compression. Not compressed is included for
comparison. QMX is the second most effective (7.59GB) beaten
only by Simple-8b (7.45GB) by 1.8%. However, sum of lengths
does not account for alignment, necessary for SIMD decoding.

Figure 12: The efficiency of QMX is comparable, often better

than others for short, medium, and long postings lists.

Figure 13: QMX is efficient at short and long sequences.

Figure 14: Selector utilization.

5. DISCUSSION
The QMX codec has shown to be effective at compressing term
frequency ordered d-gaps, and efficient at decoding them, but the
ATIRE search engine authors suggest BM25-impacted indexes
are more efficient than term frequency ordered indexes. Such
indexes store pre-computed BM25 values (quantized into 1-byte)
rather than term frequencies in the postings lists. The experiments
were re-conducted on such an index, the results being, in essence,
the same as those reported for term frequency ordered indexes –
and for space reasons they are not included here.

The experiment was also conducted on a three additional plat-
forms: OS X 10.9.2 with Apple LLVM version 5.0 (clang-
500.2.79) on a 3.2GHz Intel i5-4570 CPU (c. 2013); RedHat
Linux 6.4 kernel version 2.6.32 with g++ 4.4.7 on a 2.4GHz Intel
Xeon E5-2609 (c. 2012); and Windows-7 with cl 16.00.40219.01
on a 2.5 GHz Intel Xeon E5420 (c. 2007). AMD Opteron 6276 is
circa 2011. It is reasonable to expect the same result irrespective
of architecture.

Figure 15 presents (on a linear scale) the efficiency of the three
algorithms, with linear trend lines added. Parallel trend lines rep-
resent implementations of equal efficiency per integer but with
different start-up costs. Divergent trend lines represent algorithms
with different costs per integer. Smaller is better.

On Opteron 6276, the i5, and the much slower Xeon E5420, the
order of most to least efficient: QMX, SIMD-BP128, and then
Varint-G8IU. On Xeon E5-2609 it is: Varint-G8IU, QMX, and
then SIMD-BP128. That is, the behavior is inconsistent across the
platforms. But in all cases, QMX proves to be efficient. Further
investigation is required to measure and understand this perfor-
mance difference – it is unclear whether it is a compiler, operating
system, or hardware effect.

6. CONCLUSIONS
This investigation compared the three generations of compression
strategies for inverted files. In answer to the first research ques-
tion: “are all implementations essentially equal in decoding effi-
ciency?”, it shows that no, implementations vary considerably in
efficiency. In answer to the question “How do the most efficient
implementations of different codecs compare to each other?”, it
shows that the second generation is, indeed, more effective and
efficient than the first generation; and that the third generation is
more efficient and not less effective than the second.

The third generation (SIMD Codecs) were shown to be space
ineffective (especially for short lists) and consequently a new
codec, QMX, was introduced. In answer to the third research
question “Can effectiveness or efficiency improvements be made

on current SIMD codecs?”, QMX was show to be more space
effective and more efficient than SIMD-BP128 and Varint-G8IU.

However, differences in computer architecture, operating systems,
and compilers lead to the fourth research question “Are the re-
ported results generally applicable or platform specific?”, to
which the answer is platform specific. QMX was shown to be
more efficient that the other SIMD codecs on most, but not all,
platforms examined.

Figure 15: Efficiency on four different architectures suggests

the results of Section 4 are platform dependent.

REFERENCES
[1] Anh, V.N., A. Moffat, Inverted Index Compression using

Word-Aligned Binary Codes. Inf. Ret., 2005. 8(1):151-166.
[2] Anh, V.N., A. Moffat, Index compression using 64-bit words.

Softw. Pract. Exper., 2010. 40(2):131-147.
[3] Catena, M., C. Macdonald, I. Ounis, On Inverted Index Com-

pression for Search Engine Efficiency, in ECIR 2014, pp. 359-
371.

[4] Dean, J., Challenges in Building Large-scale Information
Retrieval Systems: Invited Talk, in WSDM 2009.

[5] Elias, P., Universal Codeword Sets and the Representation of
the Integers. IEEE Trans. Inf. Theory, 1975. 21(2):194-203.

[6] Golomb, S.W., Run-length Encodings. IEEE Trans. Inf. Theo-
ry, 1966. 12(3):399-401.

[7] Lemire, D., L. Boytsov, Decoding Billions of Integers per
Second through Vectorization. Software: Prac. Exper.

[8] Moffat, A., L. Stuiver, Binary Interpolative Coding for Effec-
tive Index Compression. Inf. Ret., 2000. 3(1):25-47.

[9] Scholer, F., H.E. Williams, J. Yiannis, J. Zobel. Compression
of Inverted Indexes for Fast Query Evaluation. in SIGIR 2002,
pp. 222-229

[10] Silvestri, F., R. Venturini, VSEncoding: Efficient Coding and
Fast Decoding of Integer Lists via Dynamic Programming, in
CIKM 2010, pp. 1219-1228.

[11] Stepanov, A.A., A.R. Gangolli, D.E. Rose, R.J. Ernst, P.S.
Oberoi, SIMD-based Decoding of Posting Lists, in CIKM
2011, pp. 317-326.

[12] Trotman, A., Compressing Inverted Files. Inf Ret., 2003.
6(1):5-19.

[13] Trotman, A., X.-F. Jia, M. Crane, Towards an Efficient and
Effective Search Engine, in SIGIR 2012 Workshop on Open
Source Information Retrieval. 2012. pp. 40-47.

[14] Williams, H.E., J. Zobel, Compressing Integers for Fast File
Access. Computer Journal, 1999. 42(3):193-201.

[15] Zhang, J., X. Long, T. Suel, Performance of Compressed
Inverted List Caching in Search Engines, in WWW 2008, pp.
387-396.

[16] Zukowski, M., S. Heman, N. Nes, P. Boncz, Super-Scalar
RAM-CPU Cache Compression, in ICDE 2006.

.

