
Optimal Packing in Simple-Family Codecs
Andrew Trotman

eBay Inc.
San Jose, USA

Michael Albert
Department of Computer Science

University of Otago
Dunedin, New Zealand

Blake Burgess
Department of Computer Science

University of Otago
Dunedin, New Zealand

ABSTRACT
The Simple family of codecs is popular for encoding postings lists
for a search engine because they are both space effective and time
efficient at decoding. These algorithms pack as many integers into
a codeword as possible before moving on to the next codeword.
This technique is known as left-greedy. This contribution proves
that left-greedy is not optimal and then goes on to introduce a
dynamic programming solution to find the optimal packing. Ex-
periments on .gov2 and INEX Wikipedia 2009 show that although
this is an interesting theoretical result, left-greedy is empirically
near optimal in effectiveness and efficiency.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing - Indexing methods

General Terms
Algorithms, Performance.

Keywords
Inverted Files, Compression, Procrastination.

1. INTRODUCTION
The typical index seen in a search engine is known as an inverted
file. An inverted file stores a vocabulary of all unique terms seen
in the collection along with a postings list for each term. These
postings lists are usually represented as an ordered list of <d, tf>
tuples, where d is a document identifier and tf is the term frequen-
cy (more accurately, the number of times the term occurs in the
document). As indexing can be performed in a single linear pass
over the document collection, the document identifiers form a
strictly monotonically increasing sequence but the term frequen-
cies do not.

In a term-frequency ordered index [9] the <d, tf> tuples are sorted
first on decreasing tf, then on increasing d. The index is thus rep-
resented <tf1:d1,1, d1,2, … d1,n>…<tfm: dm,1, dm,2, dm,n> where tf
scores decrease as m increases and d scores increase as n increas-
es. The sequences of document identifiers continue to form mono-
tonically increasing sequences; however such a representation is
smaller than a document-ordered index as fewer integers are
stored overall.
In a process known as impact ordering [2], the ranking function is
partially computed at indexing time and the result is quantized
into a fixed sized value (typically a single-byte or smaller). In this

case the <tfm: dm,1, dm,2, dm,n> sequences in the term-frequency
ordered index are replaced with <qm: dm,1, dm,2, dm,n> sequences,
where qm is the quantized impact of the term with respect to the
document. Such an impact score might be computed from a rank-
ing function such as BM25 [10]. Regardless of how it is comput-
ed, the document identifiers continue to form strictly monoton-
ically increasing sequences. An impact ordered index is typically
larger than a term-frequency ordered index, but faster to process.
Postings lists are normally compressed in order to reduce their
size and to increase throughput. A substantial amount of prior
work exists on this topic.
First a monotonic sequence is converted into a series of d-gaps [8]
(also known as deltas, or differences). There are two popular ap-
proaches. In the first, known as D1 and used herein, each d-gap,
gn, is computed by subtracting the previous integer, dn-1 from the
current integer, dn: gn = dn - dn-1. For example, the sequence <3, 5,
8, 21, 23, 24, 26, 28> becomes <3, 2, 3, 13, 2, 1, 2, 2>. These d-
gap sequences further compress more effectively than when d-
gaps are not used because each gn can be no larger than dn.
In the second approach, known as D4, four such interleaved d-gap
sequences are constructed; (gn, gn+1, gn+2, gn+3) = (dn, dn+1, dn+2,
dn+3) – (dn-4, dn-3, dn-2, dn-1). In this way the sequence <3, 5, 8, 21,
23, 24, 26, 28> becomes <3, 5, 8, 21, 20, 19, 18, 7>. This second
approach is seen with schemes that use SIMD instructions to de-
code [8].
There are four approaches to compressing these d-gaps. The first,
bit-aligned codes, is typified by schemes such as Elias gamma [5]
and Golomb [6] encoding. The second, byte aligned codes, is
typified by Variable Byte Encoding [11] and Group Varint [4].
The third, word-aligned codes (also known as the Simple family),
is typified by Simple-9 [1], Simple-16 [15], Simple-8b [3], and
variants such as PForDelta [16] and VSEncoding [12]. The fourth
are SIMD schemes such as SIMD-BP128 [7] and QMX [13].

Common to the third and fourth approaches is the task of packing
integers into machine words. This is typically implemented in a
left-greedy fashion, packing as many integers as possible into the
current codeword before moving on to the next. We ask:
Is left-greedy packing optimal?
And show by counter example that it is not.

We then present a graph-based model of the optimal packing, and
a dynamic programming solution to find it.
We apply it to three members of the Simple family resulting in
Simple-9 packed, Simple-16 packed, and Simple-8b packed.
Experiments on two standard collections show a small but negli-
gible difference in both space effectiveness and decoding efficien-
cy. Despite the elegance of being optimal, empirically we find
that: left-greedy packing is near optimal in space and decoding
time.

2. SIMPLE ENCODING
This section provides an overview of three Simple family codecs
and discusses left-greedy packing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICTIR’15, September 27-30, 2015, Northampton, MA, USA
© 2015 ACM. ISBN 978-1-4503-3833-2/15/09…$15.00
DOI: http://dx.doi.org/10.1145/2808194.2809483

2.1 Simple-9
In Simple-9 [1] a 32-bit codeword is broken into two parts, (called
snips), a selector and a payload. The payload carries as many
fixed-width integers as possible, while the selector gives the num-
ber of integers in the payload (and hence their width in bits). For
Simple-9 the selector is 4 bits wide and the payload is 28 bits
wide.

Table 1: Simple-9 integer packings

Selector 0 1 2 3 4 5 6 7 8

Integers 1 2 3 4 5 7 9 14 28

Width 28 14 9 7 5 4 3 2 1

Table 1 lists the 9 possible ways to pack fixed-width integers into
a 28-bit payload. The first row lists the selectors, the second lists
the number of integers, while the third row lists the width of each
integer. For example, encoding the sequence <260, 270, 240>
using Simple-9 requires 9 bits per integer, and hence the sequence
would become (in binary): <0010><100000100, 100001110,
011110000>.

2.2 Simple-16
Simple-16 [15] adds two space savings to Simple-9. First, it is
observed that only 9 of the possible 16 selectors are used; in Sim-
ple-16 the remaining 7 are used to store asymmetric combinations.
The second saving is that some Simple-9 combinations result in
wasted bits; for example, storing five 5-bit integers leaves three
unused bit. Simple-16 alters these selectors to make them asym-
metric and in doing so is no worse than the Simple-9 original.

Table 2 lists the way the selectors are used in Simple-16. The first
column gives the selector value, the second gives the number of
integers that are being stored, while the third gives the usage of
the 28-bits (the remaining columns are discussed in Section 2.3).
For example, the selector value 6 represents one 3-bit integer fol-
lowed by four 4-bit integers followed by three 3-bit integers.

The first space saving is seen in a selector such as 2, which stores
21 integers in a combination not possible in Simple-9. The second
space saving is seen in selectors such as 10 and 11 which store
combinations of 5-bit and 6-bit integers without wastage whereas
Simple 9 stores five 5-bit integers with 3 bits wasted.

2.3 Simple-8b
Both Simple-9 and Simple-16 store codewords in 32-bit integers
made up of selectors and payloads. Simple-8b [3] extends the size
of the codeword to 64-bits, but retains the 4-bit selector. Doing so
results in a space saving because fewer selectors are stored per
encoded bit (4 per 60 encoded bits rather than 4 per 28 encoded
bits).

Table 2 additionally lists the Simple-8b selectors and their mean-
ings. The first column gives the selector value, the fourth column
the number of integers being stored and the fifth gives the width
in bits. For example, selector 6 indicates that the payload stores
twelve 5-bit integers.

The space saving comes when a long sequence of similar sized
integers must be stored, for example twelve 5-bit integers can be
stored in one 64-bit codeword with Simple-8b whereas it would
take three 32-bit codewords using Simple-9. A second space sav-
ing comes due to the addition of selectors 0 and 1 which encode
long sequences of 0s.

When decoded on a 64-bit architecture Simple-8b is more effi-
cient than Simple-9 because 64-bit instructions can be used to
perform shifts during decoding.

Table 2: Simple-16 and Simple-8b integer packings

 Simple-16 Simple-8b

Selector Integers Integers × Width Integers Width

0 28 28×1 240 0

1 21 7×2, 14×1 120 0

2 21 7×1, 7×2, 7×1 60 1

3 21 14×1, 7×2 30 2

4 14 14×2 20 3

5 9 1×4, 8×3 15 4

6 8 1×3, 4×4, 3×3 12 5

7 7 7×4 10 6

8 6 4×5, 2×4 8 7

9 6 2×4, 4×5 7 8

10 5 3×6, 2×5 6 10

11 5 2×5, 3×6 5 12

12 4 4×7 4 15

13 3 1×10, 2×9 3 20

14 2 2×14 2 30

15 1 1×28 1 60

2.4 Encoding
Encoding integers using the Simple family is straightforward.
Compute the number of bits necessary to store the first integer in
the sequence. If storing that number of bits fills a codeword then
move on to the next codeword. If not then examine the next inte-
ger, and so on until a codeword is full, and then move on to the
next codeword.

This packing approach is left-greedy. As many integers as possi-
ble are packed into the current codeword before moving on to the
next.

3. PACKING
This section shows that left-greedy is not optimal and then intro-
duces the optimal packing algorithm.

3.1 Non-optimal Left-greedy Packing
Left-greedy can be shown to be non-optimal by using a proof by
counter example using Simple-9

Take the thirty-two integer sequence <260, 260, 1, 1, 1, 1, 1, 1, 1,
1, 260, 260>,
that is, two 9-bit integers followed by twenty-eight 1-bit integers,
followed by two 9-bit integers. Such a sequence might be the d-
gaps for a single term in the inverted index.

Packing left-greedy, three 9-bit integers <260, 260, 1> are packed,
then fourteen 2-bit integers <1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>,
then seven 4-bit integers <1, 1, 1, 1, 1, 1, 1> then five 5-bit inte-
gers <1, 1, 1, 1, 1> then three 9-bit integers <1, 260, 260> for a
total of 5 codewords.

A smaller packing stores two 14-bit integers <260, 260> then
twenty-eight 1-bit integers <1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1> then two 14-bit integers <260,
260> for a total of 3 codewords.

Hence, by counter example, left-packing is not space-optimal for
all sequences.

3.2 Optimal Packing
In Simple-9 there are at most 9 possible ways any one integer
might be packed (see Table 1). As such, an integer sequence can
be thought of as a 9-way branching tree with each vertex repre-
senting the start of the next codeword and each edge labeled with
the number of integers to pack to get to that codeword. The opti-
mal packing is the shortest valid path through this tree, the path
that touches the minimum number of nodes (ignoring edge
weights). A similar construction exists for Simple-16, Simple-8b,
and similar codecs. Without loss of generality, the solution to
Simple-9 is presented.

For long integer sequences, such as long postings lists, it is pro-
hibitively expensive to build and exhaustively search the tree. The
optimal path can, however, be built using dynamic programming.
Doing so requires starting at the final integer to be encoded, the
right hand end of the sequence, and working backwards. At each
step the optimal solution up to that point is computed.

The first integer can be optimally packed into one codeword, so
store a 1 for this integer (in extra storage). Moving back one inte-
ger, there are at most two ways the integer might be packed: on its
own, or with the next integer. Compute all valid packings and
store for this integer: the minimum number of codewords neces-
sary to store this integer and the tail of the sequence, and which
branch in the tree to take to get that packing. Move to the previous
integer, which might be packed in three ways, and repeat the pro-
cess. By the tenth integer there are at most nine combinations to
check – one of which is optimal if the sequence started there; so
store the optimal number of codewords, and the branch to take.
Repeat the process until the start of the list is reached.

At each point the extra storage holds the optimal number of
codewords necessary to store that integer and the tail of the se-
quence, along with the optimal branch to take if starting at that
point. At most 9 branches need be followed for each integer – and
hence the computation is linear time in the length of the sequence
to be compressed, O(n).

Given the extra storage it is possible to now move forward and
pack. Start at the left-hand end of the extra storage. Repeatedly
follow the tree-branch and packing accordingly. As each branch is
optimal starting at that point, so to must be the result. The pack-
ing process is also linear time, O(n).

As stated at the start of this section, this approach is optimal. At
all times the optimal packing of the tail of the list is known, and
the optimal way to add one integer to the start is computed.

4. EXPERIMENTS
Two experiments were conducted, one measuring the effect, per
integer, on the index, the other measuring the effect in situ in the
search engine.

4.1 Effect Per Integer
The two packing approaches discussed in Section 3 (left-greedy
and optimal packing) were implemented for the 3 Simple family
schemes discussed in Section 2 giving a total of 6 schemes. Im-
plementation was in the ATIRE search engine [14].

For the experiments the left-greedy algorithms are known as S9,
S16, S8b for Simple-9, Simple-16 and Simple-8b. The optimally
packed versions are suffixed with a ‘p’ (e.g. S9p).

Experiments were conducted on two collections. First, the TREC
.gov2 collection of 25,205,179 web pages crawled from the .gov
domain in 2004. Second, the INEX 2009 Wikipedia collection of
2,666,190 documents, a dump taken in 2008 annotated using
YAGO and converted into XML. A single core of a 64-core AMD
Opteron 6276 at 2.3GHz with 512 GB RAM was used throughout.

A term-frequency ordered index was built for each collection and
the mean number of bits per integer used to store the document
identifiers was recorded. The term-frequency index was preferred
because it is smaller than a document-ordered or impact-ordered
index of the same collection. The time taken to decode each post-
ings list was measured 10 times using the CPUID RDTSC combi-
nation and the minimum was recorded. The minimum of 10 was
preferred because it reduces the effect of outliers.

Table 3 presents the size and time required to store and decode
each document identifier in the postings lists (7,688,185,119 for
.gov2 and 813,998,392 for Wikipedia). The first column gives the
name of the codec, the second column the average size of an inte-
ger in bits per integer (bpi), the third column the mean time to
decompress in cycles per integer (cpi). The table shows that, as
expected, a Simple-8b index is smaller than a Simple-16 index,
which is smaller than a Simple-9 index. It also shows virtually no
difference between the left-greedy and optimal versions of each
codec – suggesting that left-greedy is near-optimal.

Table 3: bits per integer (bpi) and cycles per integer (cpi) av-
eraged over the entire index

 .gov2 Wikipedia

bpi cpi bpi cpi

S9 11.09 6.87 11.85 9.29

S9p 11.08 6.87 11.84 9.31

S16 10.73 6.71 11.49 9.01

S16p 10.73 6.72 11.49 9.02

S8b 10.00 4.56 11.01 6.79

S8bp 9.99 4.55 11.00 6.77

4.2 Effect In Situ
A search engine index contains many short postings list, which
are unlikely to appear in queries; it also contains many long lists
also unlikely to appear in queries. This section measures the index
size, and time effect on the search engine by using queries.

The size of the six indexes (in gigabytes) is presented in Figure 1.
Top shows .gov2 and bottom shows Wikipedia. ATIRE produces
only a single index file containing postings, vocab, external do-
cids, and so on; so these figures show the true size of the entire
index not just the postings size. The figure also shows that there is
little effect due to optimal-packing.

To measure the throughput effect on the Wikipedia collection, the
titles of all the assessed topics available for it (2009 & 2010, 120
topics in total) were used. For .gov2, the titles of the TREC ad hoc
topics 701-850 were used. The search process was annotated to
measure the time to fully decompress the postings lists before
being processed. The experiment was repeated 95 times (over-
night). The mean time to decode all lists is presented as it is rea-
sonably resembles the expected time, however variation was very
small, with standard deviations always less than 1% of the mean.

Figure 2 presents the sum of times required to decode the lists.
For example, it took approximately 2 seconds to decode all the
postings lists for the 150 topics for .gov2. The figure shows virtu-
ally no difference between Simple-9 and Simple-16, but Simple-
8b is more efficient. The variation between the left-greedy and
optimal packing is negligible, varying from 2% worse to 2% bet-
ter; simple-8b, however, took 36% less time than Simple-9. The
improvement due to switching schemes is vastly greater than due
to the packing strategy – again suggesting that left-greedy is near
optimal.

Figure 1: Index size in GB

5. CONCLUSIONS
In an inverted file based search engine the postings lists are typi-
cally compressed using d-gaps and then further compressed using
a scheme such as Simple-9, Simple-16, or Simple-8b.

Compression is used for two reasons. First it can reduce the size
of the index and second it can increase throughput. If the index is
stored in memory, as is often the case, then the space saving
makes it possible to store the index of a larger number of docu-
ments in the same amount of space. If the index is stored on disk
then the reduction in size decreases the time necessary to read a
postings list from disk. Regardless of where the index is stored,
touching fewer memory cells to achieve the same goal can de-
crease processing time in a system that is memory bandwidth
limited (such as a modern PC). The Simple family of compression
algorithms has proven popular because schemes such as Simple-9
are both space efficient and fast to decode whereas previous
schemes such as Elias gamma and Golomb were space efficient
but costly to decode.

This investigation proved by counter example that the left-greedy
approach to packing integers into codewords typically seen in
implementations of the Simple family is not optimal. The optimal
packing is given as the shortest path through the tree representing
all possible packings. A linear time dynamic programming algo-
rithm is given for computing this.

Experiments conducted on .gov2 and the INEX Wikipedia 2009
collections compared left-greedy with optimal and show negligi-
ble difference between the two. This suggests that the prior use of
left-greedy has been effective and should be continued. Despite
not being optimal, left-greedy is straightforward to implement and
requires less work to compute.

Figure 2: Mean time to decompress

REFERENCES
[1] Anh, V.N., A. Moffat, Inverted Index Compression Using

Word-Aligned Binary Codes. Information Retrieval,
8(1):151-166, 2005.

[2] Anh, V.N., A. Moffat, Simplified Similarity Scoring Using
Term Ranks. In SIGIR 2005, pp. 226-233

[3] Anh, V.N., A. Moffat, Index Compression Using 64-bit
words. Software Practice & Experience, 40(2):131-147,
2010.

[4] Dean, J. Challenges in Building Large-Scale Information
Retrieval Systems. In WSDM 2009

[5] Elias, P., Universal Codeword Sets and the Representation of
the Integers. IEEE Transactions on Information Theory,
21(2):194-203, 1975.

[6] Golomb, S.W., Run-length Encodings. IEEE Transactions on
Information Theory, 12(3):399-401, 1966.

[7] Lemire, D., L. Boytsov, Decoding Billions of Integers per
Second Through Vectorization. Software: Practice & Experi-
ence, To Appear.

[8] Lemire, D., L. Boytsov, N. Kurz, SIMD Compression and the
Intersection of Sorted Integers. CoRR abs/1401.6399, 2014.

[9] Persin, M., J. Zobel, R. Sacks-Davis, Filtered Document re-
trieval with Frequency-Sorted Indexes. J. Am. Soc. Inf. Sci.,
47(10):749-764, 1996.

[10] Robertson, S.E., S. Walker, S. Jones, M.M. Beaulieu, M.
Gatford. Okapi at TREC-3. In TREC-3, pp. 109-126, 1994.

[11] Scholer, F., H.E. Williams, J. Yiannis, J. Zobel. Compression
of Inverted Indexes for Fast Query Evaluation. In SIGIR
2002, pp. 222-229

[12] Silvestri, F., R. Venturini, VSEncoding: Efficient Coding and
Fast Decoding of Integer Lists via Dynamic Programming, In
CIKM 2010, 1219-1228.

[13] Trotman, A., Compression, SIMD, and Postings Lists, In
ADCS 2014, pp. 50-57.

[14] Trotman, A., X. Jia, M. Crane, Towards an Efficient and
Effective Search Engine, In SIGIR 2012 Workshop on Open
Source Information Retrieval. pp. 40-47.

[15] Zhang, J., X. Long, T. Suel, Performance of Compressed
Inverted List Caching in Search Engines, In WWW 2008, pp.
387-396.

[16] Zukowski, M., S. Heman, N. Nes, P. Boncz, Super-Scalar
RAM-CPU Cache Compression, In ICDE 2006.

10.00

11.00

12.00

13.00

S9 S9p S16 S16p S8b S8bp

.gov2 index size (GB)

1.40

1.50

1.60

S9 S9p S16 S16p S8b S8bp

Wikipedia index size (GB)

0.0

1.0

2.0

3.0

S9 S9p S16 S16p S8b S8bp

.gov decompression time (s)

0

200

400

S9 S9p S16 S16p S8b S8bp

Wikipedia decompression time (ms)

