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ABSTRACT 
The Simple family of codecs is popular for encoding postings lists 
for a search engine because they are both space effective and time 
efficient at decoding. These algorithms pack as many integers into 
a codeword as possible before moving on to the next codeword. 
This technique is known as left-greedy. This contribution proves 
that left-greedy is not optimal and then goes on to introduce a 
dynamic programming solution to find the optimal packing. Ex-
periments on .gov2 and INEX Wikipedia 2009 show that although 
this is an interesting theoretical result, left-greedy is empirically 
near optimal in effectiveness and efficiency. 

Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval]: Content Analysis 
and Indexing - Indexing methods 

General Terms 
Algorithms, Performance. 

Keywords 
Inverted Files, Compression, Procrastination. 

1. INTRODUCTION 
The typical index seen in a search engine is known as an inverted 
file. An inverted file stores a vocabulary of all unique terms seen 
in the collection along with a postings list for each term. These 
postings lists are usually represented as an ordered list of <d, tf> 
tuples, where d is a document identifier and tf is the term frequen-
cy (more accurately, the number of times the term occurs in the 
document). As indexing can be performed in a single linear pass 
over the document collection, the document identifiers form a 
strictly monotonically increasing sequence but the term frequen-
cies do not. 

In a term-frequency ordered index [9] the <d, tf> tuples are sorted 
first on decreasing tf, then on increasing d. The index is thus rep-
resented <tf1:d1,1, d1,2, … d1,n>…<tfm: dm,1, dm,2, dm,n> where tf 
scores decrease as m increases and d scores increase as n increas-
es. The sequences of document identifiers continue to form mono-
tonically increasing sequences; however such a representation is 
smaller than a document-ordered index as fewer integers are 
stored overall. 
In a process known as impact ordering [2], the ranking function is 
partially computed at indexing time and the result is quantized 
into a fixed sized value (typically a single-byte or smaller). In this 

case the <tfm: dm,1, dm,2, dm,n> sequences in the term-frequency 
ordered index are replaced with <qm: dm,1, dm,2, dm,n> sequences, 
where qm is the quantized impact of the term with respect to the 
document. Such an impact score might be computed from a rank-
ing function such as BM25 [10]. Regardless of how it is comput-
ed, the document identifiers continue to form strictly monoton-
ically increasing sequences. An impact ordered index is typically 
larger than a term-frequency ordered index, but faster to process. 
Postings lists are normally compressed in order to reduce their 
size and to increase throughput. A substantial amount of prior 
work exists on this topic. 
First a monotonic sequence is converted into a series of d-gaps [8] 
(also known as deltas, or differences). There are two popular ap-
proaches. In the first, known as D1 and used herein, each d-gap, 
gn, is computed by subtracting the previous integer, dn-1 from the 
current integer, dn: gn = dn - dn-1. For example, the sequence <3, 5, 
8, 21, 23, 24, 26, 28> becomes <3, 2, 3, 13, 2, 1, 2, 2>. These d-
gap sequences further compress more effectively than when d-
gaps are not used because each gn can be no larger than dn. 
In the second approach, known as D4, four such interleaved d-gap 
sequences are constructed; (gn, gn+1, gn+2, gn+3) = (dn, dn+1, dn+2, 
dn+3) – (dn-4, dn-3, dn-2, dn-1). In this way the sequence <3, 5, 8, 21, 
23, 24, 26, 28> becomes <3, 5, 8, 21, 20, 19, 18, 7>. This second 
approach is seen with schemes that use SIMD instructions to de-
code [8]. 
There are four approaches to compressing these d-gaps. The first, 
bit-aligned codes, is typified by schemes such as Elias gamma [5] 
and Golomb [6] encoding. The second, byte aligned codes, is 
typified by Variable Byte Encoding [11] and Group Varint [4]. 
The third, word-aligned codes (also known as the Simple family), 
is typified by Simple-9 [1], Simple-16 [15], Simple-8b [3], and 
variants such as PForDelta [16] and VSEncoding [12]. The fourth 
are SIMD schemes such as SIMD-BP128 [7] and QMX [13]. 

Common to the third and fourth approaches is the task of packing 
integers into machine words. This is typically implemented in a 
left-greedy fashion, packing as many integers as possible into the 
current codeword before moving on to the next. We ask: 
Is left-greedy packing optimal? 
And show by counter example that it is not.  

We then present a graph-based model of the optimal packing, and 
a dynamic programming solution to find it. 
We apply it to three members of the Simple family resulting in 
Simple-9 packed, Simple-16 packed, and Simple-8b packed. 
Experiments on two standard collections show a small but negli-
gible difference in both space effectiveness and decoding efficien-
cy. Despite the elegance of being optimal, empirically we find 
that: left-greedy packing is near optimal in space and decoding 
time. 

2. SIMPLE ENCODING 
This section provides an overview of three Simple family codecs 
and discusses left-greedy packing. 
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2.1 Simple-9 
In Simple-9 [1] a 32-bit codeword is broken into two parts, (called 
snips), a selector and a payload. The payload carries as many 
fixed-width integers as possible, while the selector gives the num-
ber of integers in the payload (and hence their width in bits). For 
Simple-9 the selector is 4 bits wide and the payload is 28 bits 
wide. 

Table 1: Simple-9 integer packings 

Selector 0 1 2 3 4 5 6 7 8 

Integers 1 2 3 4 5 7 9 14 28 

Width 28 14 9 7 5 4 3 2 1 

Table 1 lists the 9 possible ways to pack fixed-width integers into 
a 28-bit payload. The first row lists the selectors, the second lists 
the number of integers, while the third row lists the width of each 
integer. For example, encoding the sequence <260, 270, 240> 
using Simple-9 requires 9 bits per integer, and hence the sequence 
would become (in binary): <0010><100000100, 100001110, 
011110000>. 

2.2 Simple-16 
Simple-16 [15] adds two space savings to Simple-9. First, it is 
observed that only 9 of the possible 16 selectors are used; in Sim-
ple-16 the remaining 7 are used to store asymmetric combinations. 
The second saving is that some Simple-9 combinations result in 
wasted bits; for example, storing five 5-bit integers leaves three 
unused bit. Simple-16 alters these selectors to make them asym-
metric and in doing so is no worse than the Simple-9 original. 

Table 2 lists the way the selectors are used in Simple-16. The first 
column gives the selector value, the second gives the number of 
integers that are being stored, while the third gives the usage of 
the 28-bits (the remaining columns are discussed in Section 2.3). 
For example, the selector value 6 represents one 3-bit integer fol-
lowed by four 4-bit integers followed by three 3-bit integers. 

The first space saving is seen in a selector such as 2, which stores 
21 integers in a combination not possible in Simple-9. The second 
space saving is seen in selectors such as 10 and 11 which store 
combinations of 5-bit and 6-bit integers without wastage whereas 
Simple 9 stores five 5-bit integers with 3 bits wasted. 

2.3 Simple-8b 
Both Simple-9 and Simple-16 store codewords in 32-bit integers 
made up of selectors and payloads. Simple-8b [3] extends the size 
of the codeword to 64-bits, but retains the 4-bit selector. Doing so 
results in a space saving because fewer selectors are stored per 
encoded bit (4 per 60 encoded bits rather than 4 per 28 encoded 
bits). 

Table 2 additionally lists the Simple-8b selectors and their mean-
ings. The first column gives the selector value, the fourth column 
the number of integers being stored and the fifth gives the width 
in bits. For example, selector 6 indicates that the payload stores 
twelve 5-bit integers.  

The space saving comes when a long sequence of similar sized 
integers must be stored, for example twelve 5-bit integers can be 
stored in one 64-bit codeword with Simple-8b whereas it would 
take three 32-bit codewords using Simple-9. A second space sav-
ing comes due to the addition of selectors 0 and 1 which encode 
long sequences of 0s. 

When decoded on a 64-bit architecture Simple-8b is more effi-
cient than Simple-9 because 64-bit instructions can be used to 
perform shifts during decoding. 

Table 2: Simple-16 and Simple-8b integer packings 

 Simple-16 Simple-8b 

Selector Integers Integers × Width Integers Width 

0 28 28×1 240 0 

1 21 7×2, 14×1 120 0 

2 21 7×1, 7×2, 7×1 60 1 

3 21 14×1, 7×2 30 2 

4 14 14×2 20 3 

5 9 1×4, 8×3 15 4 

6 8 1×3, 4×4, 3×3 12 5 

7 7 7×4 10 6 

8 6 4×5, 2×4 8 7 

9 6 2×4, 4×5 7 8 

10 5 3×6, 2×5 6 10 

11 5 2×5, 3×6 5 12 

12 4 4×7 4 15 

13 3 1×10, 2×9 3 20 

14 2 2×14 2 30 

15 1 1×28 1 60 

2.4 Encoding 
Encoding integers using the Simple family is straightforward. 
Compute the number of bits necessary to store the first integer in 
the sequence. If storing that number of bits fills a codeword then 
move on to the next codeword. If not then examine the next inte-
ger, and so on until a codeword is full, and then move on to the 
next codeword. 

This packing approach is left-greedy. As many integers as possi-
ble are packed into the current codeword before moving on to the 
next. 

3. PACKING 
This section shows that left-greedy is not optimal and then intro-
duces the optimal packing algorithm. 

3.1 Non-optimal Left-greedy Packing 
Left-greedy can be shown to be non-optimal by using a proof by 
counter example using Simple-9 

Take the thirty-two integer sequence <260, 260, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 260, 260>, 
that is, two 9-bit integers followed by twenty-eight 1-bit integers, 
followed by two 9-bit integers. Such a sequence might be the d-
gaps for a single term in the inverted index. 

Packing left-greedy, three 9-bit integers <260, 260, 1> are packed, 
then fourteen 2-bit integers <1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, 
then seven 4-bit integers <1, 1, 1, 1, 1, 1, 1> then five 5-bit inte-
gers <1, 1, 1, 1, 1> then three 9-bit integers <1, 260, 260> for a 
total of 5 codewords. 

A smaller packing stores two 14-bit integers <260, 260> then 
twenty-eight 1-bit integers <1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 



1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1> then two 14-bit integers <260, 
260> for a total of 3 codewords. 

Hence, by counter example, left-packing is not space-optimal for 
all sequences. 

3.2 Optimal Packing 
In Simple-9 there are at most 9 possible ways any one integer 
might be packed (see Table 1). As such, an integer sequence can 
be thought of as a 9-way branching tree with each vertex repre-
senting the start of the next codeword and each edge labeled with 
the number of integers to pack to get to that codeword. The opti-
mal packing is the shortest valid path through this tree, the path 
that touches the minimum number of nodes (ignoring edge 
weights). A similar construction exists for Simple-16, Simple-8b, 
and similar codecs. Without loss of generality, the solution to 
Simple-9 is presented. 

For long integer sequences, such as long postings lists, it is pro-
hibitively expensive to build and exhaustively search the tree. The 
optimal path can, however, be built using dynamic programming. 
Doing so requires starting at the final integer to be encoded, the 
right hand end of the sequence, and working backwards.  At each 
step the optimal solution up to that point is computed. 

The first integer can be optimally packed into one codeword, so 
store a 1 for this integer (in extra storage). Moving back one inte-
ger, there are at most two ways the integer might be packed: on its 
own, or with the next integer. Compute all valid packings and 
store for this integer: the minimum number of codewords neces-
sary to store this integer and the tail of the sequence, and which 
branch in the tree to take to get that packing. Move to the previous 
integer, which might be packed in three ways, and repeat the pro-
cess. By the tenth integer there are at most nine combinations to 
check – one of which is optimal if the sequence started there; so 
store the optimal number of codewords, and the branch to take. 
Repeat the process until the start of the list is reached. 

At each point the extra storage holds the optimal number of 
codewords necessary to store that integer and the tail of the se-
quence, along with the optimal branch to take if starting at that 
point. At most 9 branches need be followed for each integer – and 
hence the computation is linear time in the length of the sequence 
to be compressed, O(n). 

Given the extra storage it is possible to now move forward and 
pack. Start at the left-hand end of the extra storage. Repeatedly 
follow the tree-branch and packing accordingly. As each branch is 
optimal starting at that point, so to must be the result.  The pack-
ing process is also linear time, O(n). 

As stated at the start of this section, this approach is optimal. At 
all times the optimal packing of the tail of the list is known, and 
the optimal way to add one integer to the start is computed. 

4. EXPERIMENTS 
Two experiments were conducted, one measuring the effect, per 
integer, on the index, the other measuring the effect in situ in the 
search engine. 

4.1 Effect Per Integer 
The two packing approaches discussed in Section 3 (left-greedy 
and optimal packing) were implemented for the 3 Simple family 
schemes discussed in Section 2 giving a total of 6 schemes. Im-
plementation was in the ATIRE search engine [14]. 

For the experiments the left-greedy algorithms are known as S9, 
S16, S8b for Simple-9, Simple-16 and Simple-8b. The optimally 
packed versions are suffixed with a ‘p’ (e.g. S9p). 

Experiments were conducted on two collections. First, the TREC 
.gov2 collection of 25,205,179 web pages crawled from the .gov 
domain in 2004. Second, the INEX 2009 Wikipedia collection of 
2,666,190 documents, a dump taken in 2008 annotated using 
YAGO and converted into XML. A single core of a 64-core AMD 
Opteron 6276 at 2.3GHz with 512 GB RAM was used throughout. 

A term-frequency ordered index was built for each collection and 
the mean number of bits per integer used to store the document 
identifiers was recorded. The term-frequency index was preferred 
because it is smaller than a document-ordered or impact-ordered 
index of the same collection. The time taken to decode each post-
ings list was measured 10 times using the CPUID RDTSC combi-
nation and the minimum was recorded. The minimum of 10 was 
preferred because it reduces the effect of outliers.  

Table 3 presents the size and time required to store and decode 
each document identifier in the postings lists (7,688,185,119 for 
.gov2 and 813,998,392 for Wikipedia). The first column gives the 
name of the codec, the second column the average size of an inte-
ger in bits per integer (bpi), the third column the mean time to 
decompress in cycles per integer (cpi). The table shows that, as 
expected, a Simple-8b index is smaller than a Simple-16 index, 
which is smaller than a Simple-9 index. It also shows virtually no 
difference between the left-greedy and optimal versions of each 
codec – suggesting that left-greedy is near-optimal. 

Table 3: bits per integer (bpi) and cycles per integer (cpi) av-
eraged over the entire index 

 .gov2 Wikipedia 

bpi cpi bpi cpi 

S9 11.09 6.87 11.85 9.29 

S9p 11.08 6.87 11.84 9.31 

S16 10.73 6.71 11.49 9.01 

S16p 10.73 6.72 11.49 9.02 

S8b 10.00 4.56 11.01 6.79 

S8bp 9.99 4.55 11.00 6.77 

4.2 Effect In Situ 
A search engine index contains many short postings list, which 
are unlikely to appear in queries; it also contains many long lists 
also unlikely to appear in queries. This section measures the index 
size, and time effect on the search engine by using queries. 

The size of the six indexes (in gigabytes) is presented in Figure 1. 
Top shows .gov2 and bottom shows Wikipedia. ATIRE produces 
only a single index file containing postings, vocab, external do-
cids, and so on; so these figures show the true size of the entire 
index not just the postings size. The figure also shows that there is 
little effect due to optimal-packing. 

To measure the throughput effect on the Wikipedia collection, the 
titles of all the assessed topics available for it (2009 & 2010, 120 
topics in total) were used. For .gov2, the titles of the TREC ad hoc 
topics 701-850 were used. The search process was annotated to 
measure the time to fully decompress the postings lists before 
being processed. The experiment was repeated 95 times (over-
night). The mean time to decode all lists is presented as it is rea-
sonably resembles the expected time, however variation was very 
small, with standard deviations always less than 1% of the mean. 



Figure 2 presents the sum of times required to decode the lists. 
For example, it took approximately 2 seconds to decode all the 
postings lists for the 150 topics for .gov2. The figure shows virtu-
ally no difference between Simple-9 and Simple-16, but Simple-
8b is more efficient. The variation between the left-greedy and 
optimal packing is negligible, varying from 2% worse to 2% bet-
ter; simple-8b, however, took 36% less time than Simple-9. The 
improvement due to switching schemes is vastly greater than due 
to the packing strategy – again suggesting that left-greedy is near 
optimal. 

 

 
Figure 1: Index size in GB 

5. CONCLUSIONS 
In an inverted file based search engine the postings lists are typi-
cally compressed using d-gaps and then further compressed using 
a scheme such as Simple-9, Simple-16, or Simple-8b. 

Compression is used for two reasons. First it can reduce the size 
of the index and second it can increase throughput. If the index is 
stored in memory, as is often the case, then the space saving 
makes it possible to store the index of a larger number of docu-
ments in the same amount of space. If the index is stored on disk 
then the reduction in size decreases the time necessary to read a 
postings list from disk. Regardless of where the index is stored, 
touching fewer memory cells to achieve the same goal can de-
crease processing time in a system that is memory bandwidth 
limited (such as a modern PC). The Simple family of compression 
algorithms has proven popular because schemes such as Simple-9 
are both space efficient and fast to decode whereas previous 
schemes such as Elias gamma and Golomb were space efficient 
but costly to decode.  

This investigation proved by counter example that the left-greedy 
approach to packing integers into codewords typically seen in 
implementations of the Simple family is not optimal. The optimal 
packing is given as the shortest path through the tree representing 
all possible packings. A linear time dynamic programming algo-
rithm is given for computing this. 

Experiments conducted on .gov2 and the INEX Wikipedia 2009 
collections compared left-greedy with optimal and show negligi-
ble difference between the two. This suggests that the prior use of 
left-greedy has been effective and should be continued. Despite 
not being optimal, left-greedy is straightforward to implement and 
requires less work to compute.  

 

 
Figure 2: Mean time to decompress 
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