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ABSTRACT
The ability for a ranking function to control its own execu-
tion time is useful for managing load, reigning in outliers,
and adapting to different types of queries. We propose a
simple yet effective anytime algorithm for impact-ordered
indexes that builds on a score-at-a-time query evaluation
strategy. In our approach, postings segments are processed
in decreasing order of their impact scores, and the algo-
rithm early terminates when a specified number of postings
have been processed. With a simple linear model and a few
training topics, we can determine this threshold given a time
budget in milliseconds. Experiments on two web test collec-
tions show that our approach can accurately control query
evaluation latency and that aggressive limits on execution
time lead to minimal decreases in effectiveness.

Categories and Subject Descriptors: H.3.4 [Information
Storage and Retrieval]: Systems and Software

Keywords: score-at-a-time query evaluation; impact scores

1. INTRODUCTION
Anytime algorithms are algorithms where the quality of

results improves as the computation time increases [21]. Typ-
ically, such algorithms return a valid solution even if inter-
rupted before they naturally complete. This idea was in-
troduced in the mid-1980s by Dean and Boddy [9] in the
context of time-dependent planning. Applied to information
retrieval, an anytime ranking function is able to provide a
document ranking in response to a user’s query, given an
arbitrary time constraint. We would, of course, expect the
output quality to rise as the time budget increases.

This idea is relevant to search because managing query
latency is an important aspect of modern information re-
trieval, particularly in a web search context. Users are
impatient and latency has measurable costs: for example,
Brutlag [5] reports for Google search that artificially inject-
ing delays ranging 100 to 400 ms reduces the daily number
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of searches per user by 0.2% to 0.6%. Query latencies are
typically managed by partitioning the document collection
across many (in the case of the web, thousands) of servers
such that the latency at each individual server is small. How-
ever, this is often not enough. We see at least three com-
pelling applications for anytime ranking functions:

First, they can be applied for load shedding. During pe-
riods of unexpectedly large query loads (e.g., flash mobs) it
would make sense to restrict the running time of the rank-
ing algorithm. Although this may come at some cost in
effectiveness, degrading quality slightly for everyone is often
preferable to long latencies (or even timeouts) for some.

Second, they can be applied to control variance in exe-
cution times, particularly outliers called “tail latencies” [8].
Partitioned systems are particularly vulnerable to this phe-
nomenon, since overall latency is dictated by the latency of
the slowest component. An anytime ranking function can be
configured to “reign in” these tail latencies without affecting
the majority of the queries.

Third, anytime ranking functions can be used in conjunc-
tion with effectiveness prediction techniques [11] to treat
“easy”and“hard”queries differently (e.g., spend less time on
easy queries). In a multi-stage retrieval architecture where
the initial ranking serves as input to machine-learned rank-
ing models [4], this might yield the same level of effectiveness
with less overall computational effort.

We present a novel anytime ranking algorithm on impact-
ordered indexes in main memory. Building on a score-at-
a-time query evaluation strategy, which processes postings
segments in decreasing order of impact scores, we add an
early termination check to stop when a specified number of
postings ρ has been processed. A simple linear model with a
few training topics allows us to work backwards from a time
budget (in milliseconds) to the proper setting of ρ. Experi-
ments on two web test collections show that our approach is
both simple and effective: we can accurately control query
evaluation latency and we find that aggressive limits on ex-
ecution time leads to minimal decreases in effectiveness.

2. BACKGROUND AND RELATED WORK
Following the standard formulation of ranked retrieval,

we assume that the score of a document d with respect to
a query q can be computed as an inner product: Sd,q =∑

t∈d∩q wd,t ·wq,t, where wd,t is the weight of term t in doc-
ument t and wq,t represents the weight of term t in the
query. The goal of top k retrieval is to return the top k doc-
uments ordered by S. Typically, w’s are a function of term
frequency, document frequency, and the like. This formula-
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tion captures traditional vector-space models, probabilistic
models such as BM25, as well as language modeling and
divergence from randomness approaches.

Nearly all modern search engines depend on an inverted
index for top k retrieval. As is common today, we assume
that the entire index and all associated data structures re-
side in main memory. The literature describes a few ways
in which inverted indexes can be organized: In document-
ordered indexes, postings lists are sorted by document ids
in increasing order. Term frequencies are stored separately.
In frequency-ordered indexes, document ids are grouped by
their term frequencies; within each grouping, document ids
are sorted in increasing order, but the groupings are ar-
ranged in decreasing order of term frequency. In impact-
ordered indexes, the focus of this work, the actual score con-
tributions of each term (i.e., the wd,t’s) are pre-computed
and quantized into what are known as impact scores. We
refer to a block of document ids that share the same impact
score as a postings segment. Within each segment, docu-
ment ids are arranged in increasing order, but the segments
themselves are arranged by decreasing impact score. Re-
gardless of the index organization, the postings are usually
compressed with integer coding techniques. There has been
plenty of work on index compression, which is beyond the
scope of this work, but see a recent study for details [17].

Different query evaluation techniques exhibit affinities for
different index organizations. Document-at-a-time (DaaT)
techniques, which are the most popular today, work well
with document-ordered indexes and term-at-a-time (TaaT)
techniques work well with frequency-ordered indexes. Sim-
ilarly, score-at-a-time (SaaT) strategies take advantage of
impact-ordered indexes. A review of query evaluation tech-
niques is beyond the scope of this short paper, but we refer
readers to a survey by Zobel and Moffat [22].

The idea of anytime ranking is not entirely new. In the
context of learning to efficiently rank, Wang et al. [20, 19]
proposed machine-learned ranking models that can control
their own execution costs. Along the same lines, Cam-
bazoglu et al. [6] introduced early-exit optimizations for en-
sembles of machine-learned rankers. In a DaaT query eval-
uation strategy, Macdonald et al. [14] incorporate query per-
formance prediction to facilitate query scheduling. Although
Zobel and Moffat [22] allude in passing to an approach along
the lines of what we propose, we are not aware of any work
that has detailed a concrete implementation with appropri-
ate performance evaluations.

3. ANYTIME RANKING
We take as a starting point the standard inner-product

formulation of ranked retrieval described above. In impact-
ordered indexes, the wd,t’s are pre-computed and quantized
into b bits (called its impact score). Here, we use BM25 term
weighting. The literature discusses a number of techniques
for quantizing the term weights, but in this work we adopt
the uniform quantization method of Anh et al. [1]:

id,t =

⌊
wd,t −min(wd,t)

max(wd,t)−min(wd,t)
× 2b

⌋
(1)

which is an index-wide linear scaling of the term weights
and b is the number of bits used to store the impact. In our
implementation we set b = 8. Crane et al. [7] showed that
this setting achieves effectiveness that is indistinguishable
from using exact term weights.

3.1 Index Organization
Our indexes are organized as follows: The dictionary pro-

vides the entry point to each postings list; each term points
to a list of tuples containing (score, start, end, count). Each
tuple, which we refer to as a header, corresponds to a post-
ings segment with a particular impact score; start and end
are pointers to the beginning and end of the segment data,
and count stores the number of documents in that segment.
Segments for each term are ordered in decreasing impact
score and within each segment, documents are ordered by
increasing document id.

Document ids are compressed with QMX [17], which can
be thought of as an extension of the Simple family [3] that
takes advantage of SSE (Streaming SIMD Extensions) in-
structions in the x86 architecture. Experiments [17] have
shown QMX to be more efficient to decode than SIMD-
BP128 [13] (previously the most decoding efficient overall)
and competitive with all SIMD and non-SIMD techniques
in terms of size.

Following convention, postings code differences between
document ids (called d-gaps) instead of the document ids
directly. In our case, we compute gaps with respect to the
document id four positions earlier, i.e., the fifth integer en-
codes the difference relative to the first, the sixth relative to
the second, etc. This approach takes advantage of a SIMD
instruction to decode four gaps in one instruction.

3.2 Query Evaluation
Our anytime ranking algorithm builds on a score-at-a-time

(SaaT) query evaluation strategy. The algorithm begins
by fetching the headers of all postings lists that correspond
to the query terms and sorting the headers by decreasing
impact score. The postings segments are then processed in
this order. For each document id in a segment, the impact
score is added to the accumulator, and thus the final result is
an unsorted list of accumulators. To avoid sorting this list, a
heap of the top k can be maintained during processing. That
is, after adding the current impact score to the accumulator,
we check to see if its score is greater than the smallest score
in the heap; if so, the pointer to the accumulator is added
to the heap. The heap keeps at most k elements, and we
break ties arbitrarily based on document id.

With SaaT query evaluation, several approaches to accu-
mulator management have been proposed [15, 1, 2, 12]. In
this work, we implement the approach of Jia et al. [12]. Since
the impact scores are 8 bits, and queries are generally short,
it suffices to allocate an array of 16-bit integers, one per doc-
ument indexed by the document id; modern hardware has
ample memory to keep the accumulators in memory. This
approach is much simpler than other accumulator manage-
ment strategies focused on accumulator pruning (e.g., [15,
2]), which made sense when memory was scarce.

Since we are processing postings segments in decreasing
impact order, we can terminate at any time. By defini-
tion, the segments are processed in decreasing importance:
larger score contributions will be added earlier such that the
ranking is gradually refined as query evaluation progresses.
Early termination to satisfy a time budget is controlled by
a parameter ρ, the maximum number of postings to pro-
cess. Translating a time budget (in milliseconds) into ρ is
accomplished using a simple linear model, described later.

The query evaluation algorithm keeps a cumulative count
of the number of postings it has processed. Before process-
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Name # Docs TREC Topics

ClueWeb09b 50,220,423 51-200 (’10–’12)
ClueWeb12-B13 52,343,021 201-300 (’13–’14)

Table 1: Summary of TREC collections and topics
used in our experiments.

ing the next postings segment, it checks if processing this
particular segment will exceed ρ; if so, we break out of the
processing loop. At this point, all that remains is to extract
the top k results from the heap (which has a constant cost).
This means that our algorithm is also interruptible, in that
the algorithm does not need to know in advance the time
budget; we can demand the termination of the algorithm at
any time with an external signal.

One might wonder why it is necessary to build a query
efficiency prediction model: why not simply check the query
latency after processing each segment? This would not be
feasible because the system calls for time measurement are
costly operations (relative to processing postings). Even if
one wanted to use such measurements to more carefully con-
trol query evaluation latency, it still makes sense to use a
prediction model to guide the timing of the system calls.

4. EXPERIMENTAL SETUP
Our anytime ranking algorithm is implemented in C++

(compiled with gcc version 4.9.1) and part of an open-source
retrieval engine called JASS.1 Instead of implementing a
complete search engine, we use inverted indexes built by the
ATIRE system [18],2 which saved us from having to write
a separate indexer. Our system reads indexes generated by
ATIRE and rewrites data into an internal format.

Experiments used two standard TREC web test collec-
tions: ClueWeb09 (category B), CW09 for short, and Clue-
Web12-B13 (i.e., “category B”), CW12 for short. Details
for these collections are provided in Table 1, showing the
sizes of each and the corresponding topics used to evaluate
effectiveness. For simplicity, we kept collection processing
to a minimum: for each document, all invalid UTF-8 char-
acters were converted into spaces, alphabetical characters
were separated from numerical characters; stemming was
applied but no additional document cleaning was performed
other than markup tag removal. All experiments were con-
ducted on a server with dual Intel Xeon E5-2680 v3 2.5GHz
(12 cores) with 768 GB RAM, running Red Hat Enterprise
Linux (RHEL) 6. All experiments were conducted on a sin-
gle thread on an otherwise idle machine.

For each of the two test collections, the first ten topics
were used for training and the remaining topics were used
for testing. Our efficiency metric is query latency, the time
it takes for our query evaluation engine to produce the top k
ranking, measured with the chrono library. Measurements
exclude file I/O costs, i.e., we keep track of the time it takes
to materialize the top k documents in main memory, but
do not include the time taken to write the output files for
evaluation. We also exclude one-time startup costs such as
loading dictionaries, postings, etc. into main memory. We
used NDCG@10 as the effectiveness metric, and thus our
experiments retrieved only the top 10 results.

1
https://github.com/lintool/JASS

2
http://atire.org/
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Figure 1: Effectiveness for different ρ settings.

5. RESULTS
Our first set of experiments was designed to highlight the

relationship between ρ (number of postings to process) and
effectiveness. We accomplished this by a parameter sweep
across a wide range of ρ values (10k, 50k . . . , 100m) and mea-
suring the effect on NDCG@10; these results, across all top-
ics in both collections, are shown in Figure 1. Significance
testing with respect to exhaustive evaluation (of all postings)
was conducted using Fisher’s two-sided, paired randomiza-
tion test [16]; following convention, ∗ denotes p < 0.05 and
∗∗ denotes p < 0.01. The rightmost setting of ρ yields iden-
tical results to exhaustive evaluation. Note that we do not
correct for repeated hypothesis testing, so our tests are con-
servative. These results show that we can reduce the number
of postings processed quite a bit without significantly hurt-
ing effectiveness. From this figure, we suggest that setting
ρ to 10% of the collection size achieves a reasonable balance
between effectiveness and efficiency.

The next step was to train a model for predicting ρ (num-
ber of postings to process) given a time budget (in millisec-
onds). We used the first ten topics of each test collection for
training and conducted the same parameter sweep as above,
recording per-query latency and the number of postings pro-
cessed; this procedure was repeated for three trials. Given
the 10% heuristic above, we retained only data points where
the number of postings processed was less than 10% of the
collection, since this is the operating region we wish to focus
on. For both CW09 and CW12, the data fit a linear regres-
sion well, which corresponds to a model that includes a con-
stant overhead plus a cost per posting processed. For space
considerations, we are unable to include the scatter plot of
the performance model, but the best fit line for CW09 has a
slope of 2× 10−5 with an intercept of 11.741 (R2 of 0.944);
the best fit line for CW12 has a slope of 3 × 10−5 with an
intercept of 18.404 (R2 of 0.982). In our final model of ρ,
we rounded the intercept values up to 12 and 19 for CW09
and CW12, respectively.

Finally, we evaluated our anytime algorithm with time
budgets of {25, 50, 100, 150, 200} milliseconds. For each
time budget, we used the linear model above to determine
the appropriate setting of ρ. Results are shown in Table 2,
averaged over three trials. Each row shows a particular time
budget; relative effectiveness differences are computed with
respect to exhaustive processing (final row denoted “max”).
Note that NDCG@10 is computed over all topics to facili-
tate comparison with published results, but the remaining
columns are with respect to the test topics only (140 for
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ClueWeb09b ClueWeb12-B13
target NDCG@10 time ET miss mean max NDCG@10 time ET miss mean max

25ms 0.1076 (−15%) ∗∗ 22.3 112 45 0.79 2.3 0.0798 (−36%) ∗∗ 25.4 87 76 0.64 1.2
50ms 0.1159 (−8.7%) ∗ 37.2 97 3 0.77 1.5 0.1102 (−12%) ∗ 47.5 74 49 1.3 3.2

100ms 0.1244 (−2.0%) 59.5 77 0 - - 0.1118 (−11%) ∗∗ 80.1 63 9 1.7 3.8
150ms 0.1280 (+0.9%) 75.6 71 0 - - 0.1172 (−6.2%) ∗ 104 55 0 - -
200ms 0.1264 (−0.4%) 87.8 62 0 - - 0.1149 (−8.1%) ∗∗ 122 49 0 - -

max 0.1269 160 0 - - - 0.1250 291 0 - - -

Table 2: Evaluation of our anytime algorithm for various time budgets and exhaustive processing (“max”).
Times are measured in milliseconds; NDCG@10 is computed over all topics, but other columns are with
respect to the test topics only (see text for explanation).

CW09 and 90 for CW12): The column “time” shows the
mean latency for that condition. The column “ET” shows
the number of topics that terminated early. The column
“miss” shows the number of topics that missed the time
budget on average across the three trials. For these top-
ics, “mean” shows the average deficit (i.e., how far past the
allotted time) in milliseconds, and “max” is the maximum.
For example, in the 25ms condition, 45 out of 140 queries in
CW09 exceeded the time budget, by an average of 0.79ms
and a maximum of 2.3ms. For reference, exhaustively pro-
cessing all postings averaged 160ms for CW09 (max 1.51s);
291ms for CW12 (max 1.21ms).

Overall, we are able to quite precisely control the exe-
cution time of our anytime ranking function. In the cases
where the time budget is violated, the delays are minor, and
it would be simple to add a constant “safety factor” if we de-
sired a more stringent observance of the time budget. Our
algorithm becomes more conservative as the time budget in-
creases, since segments with lower impact scores tend to be
longer and we never partially process a postings segment.
Note that exhaustively processing all postings takes much
longer on CW12 than CW09, which means that the same
time budget leads to more effectiveness compromises; thus,
we see significant losses in NDCG@10 for CW12.

Finally, these experiments highlight the ability of our any-
time algorithm to control tail latencies. For example, con-
sider the 200ms case with CW09: the mean latency across
all topics is only 87.8ms and 140− 62 = 78 topics (the “ET”
column) in fact finish processing all postings within the time
budget. The ρ cutoff in effect aborts queries that are taking
too long, without significantly compromising effectiveness.

6. CONCLUSION
Our SaaT strategy represents a very different approach to

query evaluation than DaaT algorithms that are popular to-
day [10]. Although we see a few different ways that a DaaT
strategy can be modified into an anytime algorithm, they all
seem much more complex than our SaaT approach. How-
ever, the interesting question is: for a given time budget, can
we achieve higher effectiveness with the SaaT approach here
or a yet-to-be-developed DaaT anytime algorithm? This re-
mains an open question deserving future investigation.
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