
Improving Throughput of a Pipeline Model Indexer

Matt Crane
Department of Computer

Science
University of Otago

Dunedin, New Zealand
mcrane@cs.otago.ac.nz

Andrew Trotman
eBay Inc.

atrotman@ebay.com

David Eyers
Department of Computer

Science
University of Otago

Dunedin, New Zealand
dme@cs.otago.ac.nz

ABSTRACT
There are many competing models for the indexing process
of an information retrieval system, one of which is a pipeline
based model. Information retrieval is also an inherently par-
allel process, indexing one document is independent of an-
other document. A pipeline model allows for easy exper-
imentation on the parallelism within an indexer. In this
paper we investigate areas within a pipeline where index-
ing throughput can be increased, as well as exploiting the
inherent parallelism of indexing.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software – Performance evaluation (efficiency and ef-
fectiveness)

General Terms
Indexing, Performance

Keywords
Buffering, Parallelism, Indexing

1. INTRODUCTION
There are several competing methodologies for performing
indexing, one of which is a pipeline-based model. In a
pipeline model a series of stages are constructed. Each of
these stages is responsible for performing some operation
on data that flows through it. Naturally the time spent
within each stage varies, and some will include more com-
putationally intensive computation than others. This leads
to our first research question: “Which stages of the pipeline
are bottlenecks?” After we identify these stages our next re-
search question is: “What can be done to improve throughput
in those stages?”
A pipeline structure also allows for easy experimentation

on the inherently parallel aspects of the indexing process.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ADCS, December 08 - 09, 2015, Parramatta, NSW, Australia
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4040-3/15/12 ...$15.00.
DOI: http://dx.doi.org/10.1145/2838931.2838943.

Indexing one document is not affected by the indexing of
another, and these can be done concurrently. This leads to
our final research question: “How much parallelism can be
exploited by the indexing process?”

2. RELATED WORK
Ribeiro-Neto et al. [10] present three algorithms for the con-
struction of an index in a distributed platform. In the Local-
Local (LL) algorithm an index is created on each node and
merged together afterwards. The Local-Remote (LR) algo-
rithm constructs postings lists locally to each machine and
distributes these to remote machines. Finally, the Remote-
Remote (RR) algorithm sends postings to a remote machine
periodically during indexing.

Melink et al. [9] show that a software pipeline system
improves the parallelism within an indexer node in a dis-
tributed system and identify three phases that can run in-
dependently. They suggest that three pipelines provides the
best performance, as each of the phases they identify can be
run concurrently without causing resource conflicts.

The first of these stages is loading, where data is read from
disk. The second stage described is a processing stage, in
which sorted posting lists are generated. In the final stage,
flushing, the generated postings lists are written to disk.
Melink et al. found that an indexer that did not use pipelin-
ing was about 30–40% slower than using three pipelines.

Another alternative to these pipeline-based systems are
MapReduce-based systems. Indeed, the introduction of the
MapReduce framework to the public used indexing as an
example application [1]. McCreadie et al. [8] showed how
the single-pass algorithm of Heinz and Zobel [3] could be
adapted to the MapReduce framework, and in later work
provide an extensive overview and analysis of a number of
different approaches to MapReduce-based indexing [7].

A more recent approach based on MapReduce has been
to avoid constructing an inverted index entirely, and sim-
ply perform a linear-scan of the collection [2, 5, 6]. For
some types of experimentation, such as ranking function
parameter tuning [4], or searching across small numbers of
queries [2], this approach performs faster than constructing
an index.

Wei and Jaja [12] describe a system that parses groups of
documents into a set of hybrid trie and B-Tree structures.
These structures are then indexed in parallel to produce a
final index. They found there is a trade-off between the
number of parsers and indexers on a single node. Their dis-
tributed system showed higher throughput than alternative
MapReduce indexers.

Collection Documents Size

DOTGOV2 (.GOV2) 25,205,179 426GB
ClueWeb09 Category B (CW09B) 50,220,423 1.5TB

Table 1: Summary of document collections used.

3. THE ATIRE PIPELINE
ATIRE’s indexing process uses a producer/consumer-
inspired pull-model pipeline-based structure [11]. A prepro-
cessing pipeline is built from a series of stages, each of which
performs a single process on the data that is passed through.
Each stage is also built to respond to, and construct, re-
quests for more data. The pipeline produces a stream of
document objects to be handled by the indexing subsystem.

Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4

Indexing

File

Decompress

 A

De-Warc

 B

Clean

Combine

File

Decompress

De-Warc

Clean

File

Decompress

De-Warc

Clean

File

Decompress

De-Warc

Clean

Pre-Index

Worker 1 Worker 2 Worker 3 Worker 4

Post-Index

Global In-Memory Index

 Merge

Figure 1: An ATIRE pipeline construction for
the CW09B collection. Four pipelines (grouped by
dashed outlines); and internals of the pre-indexing
stage (grouped by the dotted line), are shown.

An example pipeline for processing CW09B is shown in
Figure 1. Shown are four pipelines each consisting of file,
decompress, de-warc, and clean stages. The internals of the
pre-indexing stage are shown, with four pre-indexing work-
ers. The number of pipelines and workers created is con-
trolled at indexing time, as discussed in Section 7.
We perform an investigation into the indexing process

used within ATIRE to identify those parts of the pipeline
that are decreasing the overall throughput. We perform a
selection of experiments that attempt to address these areas
and show an improvement in indexing throughput.
We use two document collections, details of which are

shown in Table 1. Experiments were conducted without
serialising the index to disk using revision 233a24b694f0

of ATIRE. Experiments were performed on single machines
with Intel Xeon E5 CPUs (specifically an 8 core 2665 for
CW09B, and a 4 core 2609 for .GOV2), 256GiB memory and
running Linux kernel version 2.6.32.

4. BASELINE
A number of open-source search engine systems participated
in the RIGOR reproducibility challenge at SIGIR 2015. For
the challenge authors of each system prepared scripts to in-

System Indexing Time
(minutes)

ATIRE 46
ATIRE Quantized 56

Lucene lucene.apache.org 85
MG4J mg4j.di.unimi.it 85
Galago lemurproject.org/galago.php 392
Indri lemurproject.org/indri/ 460
Terrier terrier.org 484

Table 2: Comparative time to index .GOV2 on the
same hardware for a selection of open source infor-
mation retrieval systems.

dex and search the .GOV2 collection. The scripts were then
run on the same machine (an r3.4xlarge Amazon EC2 in-
stance), and the resulting indexing times are shown in Ta-
ble 2. Each system could be configured in multiple ways,
and the results presented here are the fastest among these,1

and include serialisation time. All systems except Terrier
used parallel indexing.

5. WAITING
The first step of our investigation is an exploration of the
stages of the pipeline that are causing delays. Examina-
tion of time spent in each stage does not immediately reveal
which are causing processing delays. It appears as though an
equal proportion of time was being spent in the de-warc and
decompress stages. However, the de-warc stage is processing
the decompressed, and thus significantly larger, data. With
this knowledge, the decompress stage is the primary tar-
get to improve throughput. However, ATIRE uses standard
open-source decompression routines that have already been
heavily optimised, such as zlib. This means improvements
have to be made outside of the decompression itself.

6. BUFFERING
Buffering is a technique that has been applied in numer-
ous areas, for example, operating systems, networking, and
graphics. Buffers allow fast parts of a program to continue
processing without waiting for slow parts. A buffer after the
disk reading and decompression pipeline stages should im-
prove throughput. As buffers are constructed separately for
each pipeline, there is no need to coordinate access to them.

There are three main factors relating to buffers: position,
type, and size. Placing buffers in unnecessary positions in-
creases processing time as data is moved through the buffer.
There are different types of buffer: double buffers, for in-
stance, use a secondary buffer that fills in the background
while processing continues on the primary buffer. The size of
the buffer is also important—taken to one extreme, a buffer
of one byte is practically no different to not buffering.

6.1 Position and Type
As previously mentioned, both the position and type of a
buffer can be important factors. In these experiments we
only consider double and single buffers—triple buffers can
be simulated by using two double buffers one after the other.

1Complete results can be found at github.com/lintool/
IR-Reproducibility

lucene.apache.org
mg4j.di.unimi.it
lemurproject.org/galago.php
lemurproject.org/indri/
terrier.org
github.com/lintool/IR-Reproducibility
github.com/lintool/IR-Reproducibility

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25
Time (s)

D
at

a
In

de
xe

d
(M

B
)

Embedded
Buffer
Buffer
Section
No
Buffer

Figure 2: Effect on indexing throughput on CW09B
of embedding a 1MB buffer in decompression, an
external 16MB buffer, and no buffering. Shown is
the median of three runs.

Within the pipeline structure described in Section 3 there
are two places that buffers can be reasonably inserted: after
the disk reading stage (A), and after the decompressor (B).
Both are good places as both preceding stages are generally
slow compared to the rest of the indexing process. Both
positions are labelled in Pipeline 1 of Figure 1.
An alternative to an external buffer in position A is em-

bedding a buffer inside the decompression stage. Figure 2
shows the effect on indexing throughput of the different op-
tions. The buffer section results in lower throughput when
compared to the embedded buffer. This is due to the over-
head of the decompressor repeatedly requesting the next
chunk to decompress from the buffer. Having no buffer-
ing at all shows the lowest throughput. For the remainder
of this paper the embedded buffer is used.

155

160

165

170

175

No Extra SA SB SAB DA DB DAB

Buffer Position & Type

T
im

e
to

In
de

x
(m

in
)

(a) CW09B.

35

40

45

50

55

No Extra SA SB SAB DA DB DAB

Buffer Position & Type

T
im

e
to

In
de

x
(m

in
)

(b) GOV2.

Figure 3: Effect of buffer type and position on in-
dexing time. Shown are results from nine runs.

Figure 3 shows the effect of buffers of different types (sin-
gle and double) in the proposed locations on the indexing
time of CW09B (3a), and .GOV2 (3b). The type is identified
by the first letter, and positions placed in by the remain-
ing letters. For example, SAB indicates a single buffer was
placed at both positions A and B.
Placing a buffer at A decreases the throughput on CW09B.

This is because, on this collection, the extra buffer intro-
duces overheads when combined with the embedded buffer
in the decompressor. Meanwhile on .GOV2 the buffer im-
proves throughput by ≈10% (two-tailed t-test, p ≪ 0.01).
The difference between the collections is likely due to the

number of pipelines constructed. By default, 16 pipelines
are created for CW09B, and 273 are created for .GOV2. Due
to the number of pipelines, it is more likely during indexing
.GOV2 that pipelines will be stalled waiting for the document
indexes to be merged with the final index. By default there
are eight indexing workers, and a pipeline is created for each
of the top-level folders in a collection (see Section 7).
The buffer in position B significantly increases throughput

compared to no buffering on both collections. CW09B by
≈8% (two-tailed t-test, p ≪ 0.01), and .GOV2 by ≈15%
(two-tailed t-test, p ≪ 0.01).

While a buffer at B improved throughput on CW09B, and
in either location on .GOV2, placing a buffer in both posi-
tions showed no gain over the individual positions.

Double buffering provides no gain over single buffering
for either collection. One cause of this could be that the
stages after buffering are substantially faster than those
prior. Once the later stages had processed the contents of
the first buffer, the secondary buffer is only filled a small
amount. These buffers would then wait for the same time
as a single buffer. The additional cost to manage the buffer
then results in a lower throughput.

Further experiments are performed with a buffer in posi-
tion B alongside the embedded buffer in decompression.

6.2 Size
The third factor in relation to buffering is the size of the
buffer. If the buffer is too large the later stages have to wait
for it to fill. Too small and the later stages are able to pro-
cess the data quickly and negate the presence of the buffer.
As the size of the buffer approaches zero, the throughput
approaches that of an unbuffered process with an overhead
of managing the buffer.

150

160

170

180

190

200

2 4 8 16 32 64 128
Buffer Size (MB)

T
im

e
to

In
de

x
(m

in
)

(a) CW09B.

42.0

42.5

43.0

43.5

44.0

44.5

2 4 8 16 32 64
Buffer Size (MB)

T
im

e
to

In
de

x
(m

in
)

(b) .GOV2.

Figure 4: Effect of buffer size on indexing time.
Shown are results from nine runs.

Figure 4 shows the effect that buffer size has on indexing
time for CW09B (4a), and .GOV2 (4b). The results on .GOV2
show that the best performing size is 2MB and trends toward
a smaller buffer. However, a size of zero is equivalent to no
buffering, shown previously to have a lower throughput.

The results for CW09B, however, show an evident u-shape
with the best performing tested size being 16MB. As this
is the larger collection, and the size has a larger impact on
indexing time (≈ 4% on CW09B compared to≈ 1% of a 2MB
on .GOV), a size of 16MB is selected for further experiments.

7. PARALLELISM
Indexing is inherently parallel: the result of indexing one
document does not rely on the indexing of another. There
are two places within ATIRE’s indexing system that can
take advantage of this. The first is the number of pipelines,
and the second is the number of indexing workers created.

In ATIRE a separate pipeline is created for each index-
ing argument specified on the command line. Each pipeline
is constructed in a separate thread, introducing a practical
limit to the number that can be created.

Each indexing worker is also created in a separate thread,
again introducing a practical limit on how many can be cre-
ated. Creating too many would cause merging of the per
document indexes into the global index to become a bottle-
neck. However, too few and the pipelines are waiting for the
workers to consume the documents generated.

To investigate the effect of the number of pipelines on in-
dexing, groupings of both collections were created, although
only the process for CW09B is explained. The CW09B collec-
tion ships documents organised into compressed warc files,
containing about 100MB of compressed content. These are
grouped into folders of 100 files each, and these are then
grouped into 16 top-level folders.
A grouping is created by combining top-level folders in

pairs by creating hard links to the files within. Using a
hard link minimises disk effects as the files remain in the
same physical location. These groups are repeatedly joined
in pairs until there a single group remains.
Previous experiments in this paper have used 16 pipelines

for CW09B, and 273 for .GOV2, both in line with the collec-
tion as shipped. In addition, previous experiments on both
collections were performed with eight indexing workers.

1

2

4

8

16

2 4 8 16 32 64
Workers

Pi
pe

lin
es

1.0

1.5

2.0

2.5

3.0

Relative
Time

(a) CW09B. Default:
16 pipelines, 8 workers.

2

3

5

9

18

2 4 8 16 32 64
Workers

Pi
pe

lin
es

1.0

1.5

2.0

2.5

3.0

Relative
Time

(b) .GOV2. Default:
273 pipelines, 8 workers.

Figure 5: Relative performance (to given default) of
worker/pipeline numbers.

Figure 5 shows the relative time taken to index the col-
lections relative to the default combination for CW09B (5a),
and .GOV2 (5b). A lighter shade indicates higher through-
put. The results suggest there is minimal gain to be had
from further dividing collections compared to other poten-
tial improvements. Previous work has shown that taken to
the extreme of storing each document in separate uncom-
pressed files throughput drops dramatically [11].
There is a distinct drop-off as the number of pipelines is

reduced. However, there is only slight variation in relative
time based on the number of indexing workers for a given
number of pipelines. This suggests that the work of indexing
an individual document only contributes slightly to the over-
all time taken. As more workers are added, the throughput
can be decreased (evident in Figure 5b), as either merging
document indexes becomes a bottleneck, or documents can-
not be produced fast enough from the pipelines. Increasing
the number of pipelines alleviates this, suggesting the latter.

8. CONCLUSION
Section 6 shows the effect that buffering has on indexing
throughput. Specifically the use of an embedded buffer
within decompression substantially improves throughput.
The addition of further buffering improved throughput when
placed after decompression on both tested collections. Dou-
ble buffering provided no additional gain. The buffer size
was investigated next and there was an evident trade-off be-
tween this and indexing throughput. Providing exclusive
access to the file system also increased throughput.
In Section 7 the relationship between the number of

pipelines and indexing workers was investigated. There was
a distinct relationship between the number of pipelines cre-

ated and the total indexing time. However the best con-
figuration was in line with the collection as shipped. The
number of indexing workers also influenced the indexing
time, and more workers may actually decrease throughput
as merging document indexes becomes a bottleneck, or doc-
uments are not produced fast enough by the pipelines.

Results from these experiments were incorporated in the
script submitted as part of the RIGOR challenge (discussed
in Section 4). The results of the challenge show ATIRE has
an indexing throughput that is almost twice that of the next
fastest system.

9. ACKNOWLEDGEMENTS
The authors would like to thank the Queensland University
of Technology for providing use of the machines to perform
experimentation.

References
[1] J. Dean and S. Ghemawat. MapReduce: Simplified

Data Processing on Large Clusters. Commun. ACM,
51(1):107–113.

[2] T. Elsayed, F. Ture, and J. Lin. Brute-Force Ap-
proaches to Batch Retrieval: Scalable Indexing with
MapReduce, or Why Bother? Technical report, HCIL-
2010-23, University of Maryland.

[3] S. Heinz and J. Zobel. Efficient Single-Pass Index Con-
struction for Text Databases. JASIST, 54(8):713–729.

[4] D. Hiemstra. Personal communication, 2013.

[5] D. Hiemstra and C. Hauff. MapReduce for Information
Retrieval Evaluation: “Let’s Quickly Test This on 12
TB of Data”. In Multilingual and Multimodal Informa-
tion Access Evaluation, pages 64–69. 2010.

[6] D. Hiemstra and C. Hauff. MIREX: MapReduce Infor-
mation Retrieval Experiments, 2010.

[7] R. McCreadie, C. Macdonald, and I. Ounis. MapRe-
duce Indexing Strategies: Studying Scalability and Ef-
ficiency. IP&M, 48(5):873–888.

[8] R. M. C. McCreadie, C. Macdonald, and I. Ounis.
On Single-Pass Indexing with MapReduce. SIGIR ’09,
pages 742–743.

[9] S. Melink, S. Raghavan, B. Yang, and H. Garcia-
Molina. Building a Distributed Full-text Index for the
Web. ACM Trans. Inf. Syst., 19(3):217–241.

[10] B. Ribeiro-Neto, E. S. Moura, M. S. Neubert, and N. Zi-
viani. Efficient Distributed Algorithms to Build In-
verted Files. SIGIR ’99, pages 105–112.

[11] A. Trotman, X.-F. Jia, and M. Crane. Towards an Effi-
cient and Effective Search Engine. In SIGIR 2012 OSIR
Workshop, pages 40–47.

[12] Z. Wei and J. Jaja. An Optimized High-Throughput
Strategy for Constructing Inverted Files. IEEE
Transactions on Parallel and Distributed Systems,
23(11):2033–2044, Nov 2012.

	Introduction
	Related Work
	The ATIRE Pipeline
	Baseline
	Waiting
	Buffering
	Position and Type
	Size

	Parallelism
	Conclusion
	Acknowledgements

