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ABSTRACT
Document id reordering is a well-known technique in web search

for improving index compressibility and reducing query process-

ing time. We explore and evaluate the benefits of document id

reordering for large-scale e-Commerce search. We observe that

many e-Commerce sites organize offerings according to an ontol-

ogy (i.e. product category). We then present a simple extension

to document-id reordering: ordering based on item category. Our

results show that we not only achieve the expected index size reduc-

tion, but also achieve a latency reduction of over 20% (on average)

per query.
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1 INTRODUCTION
The search engine plays an essential role in e-Commerce: it connects

the user’s need with a set of relevant items based on a query. This

is not a simple task, millions of queries per second need to be

processed over possibly billions of items. Moreover, it is expected

that every query will be executed in just a few hundredmilliseconds.

In order to solve this problem, search engines are implemented

as large distributed systems where there is a limited budget in CPU

and memory that every machine can use. Any improvement in effi-

ciency could potentially be translated into a reduction in hardware,

networking, and operating costs. Tremendous research and engi-

neering efforts has gone into addressing performance challenges:

reduction of memory requirements by improving data compres-

sion, reduction the CPU use by implementing early termination

techniques, and massively parallel execution engines are just a few

of the techniques that have been extensively studied in the past.

In this paper, we focus on one technique originally designed to
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improve data compression and reduce the size of the data that is

loaded into main memory, document id reordering [3].

The inverted index is an old and simple, yet very efficient data

structure that is at the heart of most search engines and is used

to support various search tasks. From a collection of documents,

an inverted index stores for each unique term (or word) a list of

postings. Each posting stores pairs ⟨d,w(t ,d)⟩, where d is a unique

document identifier (doc_id) andw(t ,d) is a relevance measure of

the term t with respect to document d (often the number of times

term t occurs in document d). These posting lists can be extended to

store additional information such as the positions of the termwithin

the document. Posting lists are usually stored sorted by doc_id and

processed document at a time. To help with compression, doc_ids

are often stored difference encoded - the value stored in the list

is the difference (or d-gap) between this id and the preceding id.

These d-gaps are further compressed using a variable-width integer

codec such as variable byte encoding, PForDelta [15], QMX [13],

or similar.

The final compression ratio depends on the number of bits re-

quired to represent the d-gaps, which depends on how the doc_ids

are assigned to documents. If the d-gaps are small they compress

better than if they are large. That is, if all the documents containing

a given term have document ids that are close to each other then

the index is smaller that if they are randomly distributed through-

out the collection, simply because the d-gaps are smaller and so

compress better.

This has motivated several authors in the past [2, 3, 7, 14] to

study the doc_id assignment process in such a way as to optimize

compression. In practice, search engines can assign doc_ids in a

number of different ways: at random, based on document similarity,

in the order documents are indexed (collection order), based on a

global measure of quality such as pagerank, or for web documents,

URL order. Others have noted [7] that document reordering not

only reduces index size, but can also decrease query processing

time.

A popular e-Commerce search technique to improve precision

is to constrain a query to a particular set of categories in a cate-

gory tree. This can be done automatically by a trained classifier, or

manually by the user. For example, the results of the query iphone
case can be constrained so that all the resulting items belong to the

category “Cell Phones & Accessories Cases, Covers & Skins”. These

categories also form a natural partitions, clustering items according

to popular search dimensions.

In this paper we explore a document id reordering technique for

structured and categorized data that both improves compression

and decreases query latency. Our results show that document id
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ordering on category substantially reduces the size of the index. It

also reduces mean latency per query by 27% and 99th percentile

latency by 45%. Latency improvements are seen both with and

without category constraints applied.

2 BASIC CONCEPTS & RELATEDWORK
2.1 Inverted Index
Given a collection D = {d1,d2, . . . ,dD } of text documents, a doc-

ument di can be considered to be a sequence of terms (or words),

the number of words, and an unique document identifier (doc_id)
∈ [1,D]. The number of words in a document is represented by |di |,
and the total number of words in the collection is then

∑D
i=1 |di | = n.

An inverted index maintains the set of distinct terms of the

collection (the vocabulary), which in most cases is small compared

to the total number of words contained in the collection. More

precisely, it is of size O(nβ ), for 0 < β < 1 depending on the text

type (β is normally small).

For every distinct word, the inverted index stores a list of postings.
Each posting stores the document identifier (doc_id), the weight of
the term in the document w(t ,d) and, if needed, the positions of
the term within the document. The weight w(t ,d) of term t in d
is a utility function that represents the importance of that word

inside the document. That utility function is often just the number

of times the term occurs in the document – the term frequency.

There are many different ways to encode posting lists including

term-frequency ordered, impact ordered, and so on, but the most

common way appears to be ordering on increasing document id.

Either way, in order to improve efficiency the inverted index is

typically loaded into main memory when the search engine starts

up, and parts of it are compressed in order to reduce the memory

footprint.

The weights are hard to compress and usually small so they are

often stored uncompressed in a fixed number of bytes (often 1). The

document ids, however have been the subject of much research.

The list of doc_ids ⟨d1,d2,d3, . . .dn⟩, is a strictly monotonically

increasing sequence. These integers can be decreased in size by

calculating the differences between each document id and the pre-

ceding document id, resulting in a list of d-gaps ⟨d1,d2 − d1,d3 −
d2, . . . ,dn − dn−1⟩. The list of d-gaps is then encoded using a

variable-length encoding scheme.

Bit-aligned codes were used in the past, but proved to be inef-

ficient when decoding. Byte-aligned codes [11] and word-aligned

codes [14] are now preferred as decoding speed is of concern. A

simple, yet efficient byte-aligned technique is Variable Byte Encod-
ing (VByte), but an alternative approach is to word-align blocks of

integers using an encoding such as PForDelta. Integer compression

techniques for monotonic integer sequences have been studied for

decades. We recommend the reader to see the work of Trotman

[13] for a comprehensive study and comparison of techniques.

Merging lists can be done by traversing the lists from the start to

finish, but in order to support more complicated query processing

techniques random access to postings in a list is needed. A recent

approach is postings list encoding using Elias-Fano, but a more

common approach is the use of skip-lists.

A skip-list for a postings list is generated by dividing the postings

list into blocks. Each block starts with a given doc-id and is at a

given offset from the start of the postings list. These ⟨doc-id, offset⟩
tuples provide entry points into the postings [6, 10].

To implement random access to a posting, a binary search is per-

formed on the skip list, then the appropriate block is decompressed

and searched linearly.

2.2 Query Processing
Query processing involves a number of processes such as query

parsing, query rewriting and the computation of complex machine-

learned ranking functions that may include hundreds or thousands

of features derived from the documents, the query, and the user. To

rank efficiently, it is common to separate the query processing into

multiple stages. The first stage is responsible for identifying which

documents must be ranked and the subsequent stages rank those

documents. In the first phase, a simple and fast retrieval filtering

such as WAND [4] and BlockMax-WAND [8] are often used. We do

not consider these algorithms further as Boolean is common as the

first stage in e-Commerce search.

A conjunctive Boolean query of the form “Last AND Jedi” re-
quires an intersection calculation, whereas a disjunctive query of

the form “Episode OR VIII” requires a union calculation. Union

queries are solved by linearly traversing all postings lists for all

terms in the expression and returning all documents containing

either term. Efficiently resolving intersection queries requires com-

plicated traversal of the postings lists and has been examined for

decades [1, 5, 9]. It has been proven that the optimal intersection

algorithm for two sets of lengthm and n withm ≤ n isO(m log
n
m ).

The most popular algorithm for solving intersections is Set Versus
Set (and also known as Small Versus Small) [1].

In the second and subsequent phases, an increasingly expensive

set of ranking functions is used to identify the most relevant doc-

uments. Each stage provides to the next stage a better ranking of

the recall set, but also reduces the number of documents that are

ranked (each time the top-k, for decreasing k, are re-ranked). The

final stage might just rank the top-10 using thousands of features

derived from the document, the query, meta-data (the price), and a

user profile (for e-Commerce, a buyer profile and a seller profile).

In general, improving the efficiency of the first stage frees more

resources for the subsequent stages, and thus increases the overall

performance of the search engine.

2.3 Document Reordering
Document reordering is a well studied technique in web search

[2, 3, 7, 14]. Most prior work, has focused on reordering documents

to achieve better compression. The approach is to perform text

clustering on the collection to find similar documents and then

assign doc_ids to minimize the d-gaps in the posting list. Silvestri

[12] explored a much simpler idea that takes advantage of an im-

plicit organization of the documents in the Web. In his work he

proposes to assign doc_ids sequentially according to the document

URL and showed that this simple technique achieved competitive

results when compared to text clustering techniques. In essence,

he roughly clustered on topic because different sites and different

parts of the same sites are usually topically related.

Yan et al. [14] studied integer encoding for the special case of

optimally re-ordered d-gaps and introduced variants of well-known
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Figure 1: User category constrained query on eBay.com
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Figure 2: Document reordering diagram. Different gray levels represent different categories. On the left, we show a sketch of
how documents get new doc_id assignment. On the right, the effect on posting lists.

encoding techniques for the purpose. They also showed that, when

using document reordering, it is possible to effectively compress

term frequencies since similar frequency values are also (conse-

quently) grouped together. Finally, they evaluated different query

processing schemes and showed that document reordering can help

the search engine performance by reducing the number of doc_ids

that requires to be decompressed (because fewer encoded blocks

are decompressed).

Our approach is motivated by the work of Silvestri [12] – we

present a simple but non-optimal document id reordering tech-

nique. It takes advantage of the structured nature of documents

in e-Commerce, specifically that items that are for sale are usually

classified and categorized before being listed. We evaluate this from

both compression and query efficiency perspectives. We analyze

the benefits of employing document id reordering in our search

engine for the different stages in query processing, taking into

consideration special constraints that are common in e-Commerce

search.

3 DOCUMENT REORDERING IN
E-COMMERCE

E-Commerce search is a much more structured and constrained

scenario than web search. In e-Commerce, much of the document

content is given by the item properties such as price, brand, model,

category, color, and so on. It is natural to consider these features as

filtering components of a search and it is consequently common

practice to generate posting lists for those kind of features. For

example, by generating posting lists for each instance of the feature

“brand” (i.e brand:apple, brand:samsung, etc) the user can easily con-

strain their search to just the items made by a given manufacturer

– and indeed they expect to be able to do so.

Category is a particularly interesting property of e-Commerce

items (and queries), because it is not only used to divide the inven-

tory into distinct types of products but it is also commonly used

to improve the precision of the results. Given an user query, the

search engine can constrain the results to just those from the most

relevant category. This can be done in an automatic way by training

query to category classifiers, or by allowing the user to manually

select a category. Figure 1 shows an example user query “star wars”

being constrained to the category “art” on eBay.com.

If the search engine creates posting lists for each category, the

first stage of query processing can be improved significantly, since

it can perform a direct boolean intersection between the (possibly

term expanded) user query and the posting list for the given cat-

egory. Since this cuts down the size of the recall base it increases

the efficiency of the search engine, but since it restricts to the

most likely category it also removes noise from the results list so

increases precision. And this is the motivation for document id

reordering based on item category.

We re-order the collection so that the doc_ids are assigned in

such a way that items belonging to the same category are given

contiguous doc_ids. This reduces the size of the d-gaps in posting

lists which leads to better compression. However, this is not the

only benefit, since posting lists are sorted by doc_id, it creates

implicit category “divisions” within each posting list.

Figure 2 illustrates this. On the top left, the collection of docu-

ments is shown in “collection order”, where the distinct shades of

gray represent different categories. The top right gives example

posting lists for words (w1,w2,w3). The bottom left of the figure

shows the collection category reordered where, for example, col-

lection ordered d2 becomes category ordered d3. The bottom right

shows the effect of document reordering on the posting lists, they

are now implicitly divided by category.

This document reordering scheme not only helps compression,

but also decreases latency: as the d-gaps are smaller the decompres-

sion of the integers is faster since, in general, a smaller number of

operations is required to decode a smaller integer. Equally, since sim-

ilar documents are stored together, fewer accesses to the skip-lists
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are needed. It is obvious that when a query is category constrained

the results must lie within a consecutive part of the postings list.
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Figure 3: Distribution of d-gaps. The x-axis corresponds to
the number of bits required to represent the d-gaps in bi-
nary plus one. The y-axis is the percent of such d-gaps in
the collection.

4 EXPERIMENTS
4.1 Experimental Setup
We conducted our experiments on eBay’s search engine.We selected

12 million random items from our dataset and constructed two

indexes:

• Random Index: documents were assigning doc_ids at ran-

dom.

• Reordered Index: documents were sorted by category and

then assigning doc_ids.

All of our experimentswere conducted on a dedicated serverwith

two 10-core Intel Xeon E5-2670 v2 CPU running at 2.50Ghz, 25 MB

of cache, and 128 GB RAM running Ubuntu 16.04 on Linux Kernel

4.4.0-57. Our search engine is written in C++ and was compiled

using g++ 5.4.0 and maximum optimization level.

To evaluate the performance of our document reordering tech-

nique we use two sets of queries:

• General Queries: approximately 3 million queries from pro-

duction logs of one eBay data center. These queries included

user issued queries as well as system-issued queries (such

as those from the eBay public APIs). No country-specific

filtering was performed, so queries are in many languages.

• User Queries: a random sample of 57,058 queries from eBay.com

exactly as entered into the search box by ebay.com users.

4.2 Index Space Results
Since compression improvements will depend on the d-gaps values,

we first analyzed the differences in the distribution of the d-gaps

between random doc_id assignment and category-based doc_id

assignment. Figure 3 shows on a log-linear scale the distribution

Random Reordered Change (%)
Avg. log2(d-gaps) 5.73 4.11 -28%

d-gaps = 1 890 × 10
6

1, 510 × 10
6

+70%

Avg. d-gaps 1966 639 -67.5%

Avg. Bytes/d-gap (vByte) 1.30 1.22 -6.1%

Index Size 29.67 GB 28.72 GB -3.2%

Table 1: Space savings and bits per d-gap obtained before and
after applying document reordering.

of g-gaps. The x-axis is ⌈log
2
(дapsize)⌉ while the y-axis is the per-

centage of d-gaps of that size. It can be seen that the reordered

distribution has many more d-gaps on the left – the reordered

index has substantially more small d-gaps than the random index.

Table 1 presents a summary of the figure. It shows that the num-

ber of d-gaps equal to 1 has increased by 70%, that the average

d-gap has decreased by 67.5%, and that the average number of bits

required to represent d-gaps is reduced by 28%. In practice, the ac-

tual size reduction in the index will depend on the integer encoding

scheme. For the purpose of this paper, we constructed a special

index that uses variable byte encoding to compress doc_ids. We see

a reduction of 6.1% in the average number of bytes required to rep-

resent a doc_id using this encoding scheme, while this represents a

3.2% space reduction of the complete index.

4.3 Query Processing Results
In order to evaluate the improvement of query processing, we

executed two sets of experiments with the two different query sets.

The first experiment considered throughput using the General

Queries – that is, its a mirror of the production environment. We

computed the average number of queries per second (QPS) that

could be resolved when the CPU was held at 80% utilization (the

other 20% is used in eBay for processes such as index maintenance).

We found that on average the Reordered Index could process about

about 30% more queries per second than the Random Index.

Table 2 shows the average search time per query (in milliseconds)

at the mean, median, 95th percentile and 99th percentile. In all cases

we see a substantial improvement, the mean latency improved by

26.9%while 95th percentile latency is almost halvedwhen compared

to the random document Reordering.

Random Reordered Latency Reduction
Mean 22.43 16.4 26.9%

Median 4.35 3.21 28.3%

95th Pct. 57 30.2 47%

99th Pct. 375 224 40%

Table 2: Comparison of random doc_id assignment versus
category doc_id reordering. Mean, median, 95th and 99th
percentiles of query processing times in milliseconds for
general queries.

For the second experiment, with user queries, we evaluated the

impact of document reordering depending on the recall set size

(as output by the first stage of the search process) and the latency
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Figure 4: Recall size vs latency with full ranking enabled and without ranking. Blue triangles represent data points with
document reordered index, while red plus signs represents random document reordering.

Without Category Constraint With Category Constraint
Random Reordered Latency Reduction Random Reordered Latency Reduction

Mean 26.8 14.3 47% 18.9 8.4 55%

Median 5.9 3.5 42% 3.2 1.7 48%

95th Pct. 85.8 50.8 41% 61.6 27.6 55%

Table 3: Execution time in milliseconds for user queries with and without category constraint enforcement.

before ranking and after ranking. The results are presented in figure

4. The blue plus signs represent the Reordered Index, while the red

triangles represent the Random Index. On the left we show the

impact post ranking, where it can be seen that the largest latency

improvements are obtained when the queries generate a large set

of results. On the right we show the recall versus latency results

when ranking is disabled, in other words, just recall identification.

It can be seen that there is a strict boundary at the bottom, and

there is no significant improvement for the queries that are located

within that boundary. Latency improvements can be seen overall,

but are large for expensive queries.

We also evaluated the impact of applying category constrains to

the queries. The results are shown in table 3. The left side shows

the latency (in milliseconds) when category constraint is not used.

In this case the Reordered index improved mean query latency by

47% and the 95th percentile by 41%. The right shows the effect

of enabling category constrain on the queries. There the mean

query latency has reduced by 55% when the Reordered Index is

used, and a similar effect is observed for the 95th percentile. Clearly

both unconstrained and category constrained queries are materially

improved.

4.4 Latency Improvement Analysis
Categories naturally cluster both document terms and query terms.

Items satisfying a multi-term AND query will tend to come from

a small number of categories. Ordering posting lists by category

will put documents satisfying these queries near each other both in

posting lists and in the forward index. This should improve CPU

cache hit rates and even improve the inherent efficiency of the

posting list processing algorithms. The latter effect would result

from having larger clusters of posting list entries that are either

matched or skipped than in a random assignment of the documents.

Query expansion is likely to compound these effects, especially

in an e-Commerce environment. As in most search engines, we

make extensive use of query expansion to improve recall and preci-

sion. Rewritten queries often form a complex Boolean expression

involving many posting lists and nested AND / OR constructs. Ex-

pansions involve not only text keywords, but also the structured

meta-data associated with products. For example, the term “black”

may expand to “color:black” and “samsung” to “brand:samsung”.

To examine these effects we used the CPU usage profiling tool

perf, while processing a portion of a General Queries collection, to

analyze and identify the exact locations where the improvement

wasmore noticeable.We observed the functions performing the task

of iterating (and skipping) through posting lists was consuming

about 5% of the total CPU time, and we observed a noticeable

improvement especially in these parts. We also saw improvements

in the doc_id variable byte decoding section. Finally we analyzed the

effect of how cache misses were affected by the document reordered

index. We observed a 7% reduction in overall cache misses and a
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13% reduction in last-level cache misses (LLC). These numbers

show that that document ordering by category yielded a significant

improvement in overall CPU cache hit rates. These numbers are

consistent with our hypothesis for the improvements in latency.

Additional analysis is still needed to quantify the effects on posting

listing processing.

The probability that any given cluster of posting list entries

will be referenced by a query is far from uniform in the General

Queries collection, and more likely following something like a

zipfian curve. This should reduce the number of CPU cache entries

filled with posting list data during processing of a query, and thus

reducing the CPU cache worked set size for the portion of query

processing dedicated to processing posting lists. The reduction in

CPU cache working set size for posting lists allows a larger amount

of CPU cache to be used for other functions performing query

processing work, which improves the CPU cache hit rate for those

other functions.

The above discussion focuses on the recall component of query

processing. As mentioned earlier, document reordering also better

co-locates forward index data for items satisfying the recall ex-

pression for a query. Forward index data is used extensively in the

ranking component of query processing. As such, this is also has

potential to improve CPU cache hit rates. We have not measured

this effect directly, but it is consistent with the results shown in

figure 4. These graphs show a latency improvement from ranking

beyond the improvement from recall processing alone.

5 CONCLUSIONS AND FUTUREWORK
We presented a simple, yet efficient, document reordering technique

that takes advantage of structured component from the queries

and the data. This is particularly common in e-Commerce search

engines. We showed that by performing this simple re-arrangement

of the doc_ids we can improve the capacity of the system by 30%,

and process category-constrained queries in about half the time

that it took without the re-arrangement.

As future work, we plan to add more document reordering crite-

ria to other dimensions such as item aspects like color, brand and

also the location of the item by ordering by country, another impor-

tant task is to measure the behavior of the cache in this scenario.

We also plan to perform a deeper analysis and quantification of

the latency improvements seen in both boolean only queries and

when ranking is enabled. A topic for future study is whether there

is a material difference between these two cases when considering

per-document latency benefits. The current analysis is insufficient

to answer this question.
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