
Elias Revisited: Group Elias SIMD Coding
Andrew Trotman
University of Otago

Dunedin, New Zealand
andrew@cs.otago.ac.nz

Kat Lilly
University of Otago

Dunedin, New Zealand
kat.lilly@gmail.com

ABSTRACT
The prior belief that the Elias gamma and delta coding are slow
because of the bit-wise manipulations is examined in the light of
newCPU instructions that perform thosemanipulations. It is shown
that despite using those instructions, Elias gamma and Elias delta
remain slow compared to SIMD codecs such as QMX. We provide a
theoretical basis on which to bit-wise encode data, and show that it
is equivalent to SIMD extensions to Elias gamma that others have
already introduced. Extending this we introduce a new SIMD Elias
delta variant. Experiments comparing these two codecs to QMX on
public data, and in the JASSv2 search engine show that although the
index is slightly larger than QMX, search throughput is increased
and latency is decreased.

CCS CONCEPTS
• Information systems→ Search index compression;

KEYWORDS
Integer Compression, Elias Compression, Index Compression

1 INTRODUCTION
Index compression has been an area of investigation in Information
Retrieval for many decades. By increasing the compression ratio
(effectiveness) the index of more documents can be stored in the
same space – resulting in a cost saving. Increased decompression
speed (efficiency)1 decreases the CPU costs, and also has a positive
effect on the user experience as a consequence of reduced latency.

Early index compression codecs focused primarily on index size
as there was a belief that a smaller index would be faster. Since
the index was stored on moving parts disks, the index read time
would dominate any decoding time. At that time the Elias gamma
code [8], Elias delta code [8], Golomb code [9] and Rice code [17]
were popular. These codecs are still discussed today in Information
Retrieval textbooks [4], and implementation of these Elias codes is
included in the Terrier [14] and ATIRE [24] search engines.

Trotman [22] later demonstrated that variable byte encoding was
substantially faster at decoding than either the Elias gamma code
1Throughout this contribution we use ‘effective’ to discuss compression ratio and
‘efficient’ to discuss decoding latency.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ADCS ’18, December 11–12, 2018, Dunedin, New Zealand
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6549-9/18/12. . . $15.00
https://doi.org/10.1145/3291992.3292001

or the Elias delta code. He modelled a moving parts hard drive as
well as decoding latency, and showed that even when disk latency
was accounted for, variable byte encoding was the clear winner.
Scholer et al. [19] demonstrated that within the context of a search
engine, use of the less effective variable byte encoding resulted in a
latency decrease due to decoding efficiency.

The work of Trotman and of Scholer et al. lead to a fundamental
change in compression of postings lists. Beforehand the most im-
portant factor was space, afterhand the most important factor was
decoding speed (but effectiveness remained important). Subsequent
to their work others introduced a multitude of codecs including
Simple-9 [1], PForDelta [28], and so on.

The most recent work on postings list compression is far more
integrated than prior work. In the context of a Document-at-a-
Time (DaaT) search engine, Partitioned Elias-Fano [15] codes are
used as they allow the compressed list to be searched without
being decoded – something essential for use with the WAND [3]
or BlockMaxWAND [7] algorithms commonly employed in such
search engines. For Score-at-a-Time search engines (SaaT), linear
decompression speed is important as postings are decoded in blocks.
Partitioned Elias-Fano has proved inefficient at linear decoding [16],
but QMX [23] has proven to be well adapted to this purpose because
of the use of SIMD instructions while decoding. Lin & Trotman [13]
experimented with not using compression for SaaT search and
show a small increase in performance at the cost of a large increase
in index size.

It is now a commonly held belief that the bit-wise codecs of
yesteryear, for example the Elias codes, are “moderately expensive”
to decode because there is “lots of bit twiddling” [21].2 In this inves-
tigationwe directly challenge this belief. Others have already shown
that Elias gamma does not require program-level bit twiddling due
to the introduction of CPU instructions that directly perform the
bit manipulations [27], and we show that neither does Elias delta.
Others have previously introduced group Elias gamma [18] and we
introduce Group Elias Delta SIMD, and show that both codecs are
highly efficient at decoding.

2 POSTINGS LISTS
The inverted index data structure commonly used in search engines
builds, for each unique token in the document collection, a list of
which documents contain that token along with the number of
times that token in seen in that document (the term frequency, t f).
Each document is given a unique numerical identifier (the docid),
which starts with 1 for the first document and increments with
each document being indexed. These < docid, t f > integer pairs

2See slide 29 of https://www.slideshare.net/CraigMacdonald/efficient-query-
processing-infrastructures

https://doi.org/10.1145/3291992.3292001

ADCS ’18, December 11–12, 2018, Dunedin, New Zealand Anonymous

are called postings and the lists are called postings lists, the docids
for a given token forming a strictly increasing sequence.

It is common to store the difference between consecutive do-
cids rather than the ids themselves as the differences (known as
d-gaps) are smaller than the docids and further compress very well.3
When SIMD instructions are used for decoding, various different
d-gapping techniques have been used, with a preference being for
computing the difference between docids that are machine word dis-
tance apart (such as 4 when SSE 128-bit registers are used) because
decoding multiple d-gaps can be done with a single instruction.
However there is an effectiveness loss due to using other than
consecutive integers (D1 d-gaps).

Postings lists stored in increasing docid order are known as
docid-ordered and there are several Document-at-a-Time (DaaT)
processing strategies such as WAND and BlockMaxWAND that
employ skipping to efficiently merge these lists. Codecs such as
Partitioned Elias-Fano are well suited to DaaT processing because
they allow skipping without decoding.

Many first-round ranking functions (such as BM25 and Language
Models with Dirichlet smoothing) can be described as the sum,
over each token, t , in the query, q, of some function of the token
statistics, the document, d , statistics, and the collection, c , statistics:∑
t ∈q f (t ,d, c).
All except the sum can be computed at indexing time – that is, the

impact of the term in the document given the collection is known
in advance of any searching. The principal of impacted indexes is
to compute this impact at indexing time and to store it in the index
in place of the term frequency. However, these impact scores are
typically not integers, a problem that is overcome if the impact
scores are bucketed. Prior work suggests that a small number of
buckets (for example, 255 for .gov2, but larger for larger collections)
is often enough to avoid any significant loss of results quality [5].

Impact-ordered indexes store the postings lists sorted on de-
creasing impact rather than increasing docid. More precisely, store
< ih , < dh,l , ...dh,h >> ... < il , < dl,l ...dl,h >> where ih is the
highest impact, dh,l is the lowest docid for the highest impact, il is
the lowest impact, dl,h is the highest docid for the lowest impact,
and likewise for dh,h and dl,l . One < i, < dl , ...dh >> chunk is
known as a segment.

The advantage of storing docids in increasing order is that d-gap
encoding can be used. The advantage of storing from highest to
lowest impact is that highest impact docids can be processed first.
The advantage to bringing all documents with the same impact
together is a reduction in the number of integers stored in the index
(and hence a smaller index).

When processing queries Score-at-a-Time (SaaT), all the seg-
ments for all the terms in the query are ordered from highest to
lowest impact score. The highest impact segment is pulled from this
sorted list, decoded, and processed in full. The process is continued
until all segments have been processed or an early termination
criterion has been met.

SaaT processing takes advantage of the CPUs ability to pre-fetch
encoded postings frommemory to cache, and of fast linear decoding
of compressed docids. Encoding schemes such as Partitioned Elias-
Fano are not efficient at linear decoding, but SIMD codecs are

3This technique is not used in Partitioned Elias-Fano encoding.

because they can decode many consecutive integers in a small
number of instructions.

We are interested in fast linear decoding of compressed d-gaps
within the context of an impact-ordered search engine using the
SaaT processing strategy known as anytime [12]. This investigation
examines the use of Elias codes for this purpose, and compares to
variable byte encoding, because it is popular; and to QMX because
it has proven to be efficient in SaaT search [13].

3 PRIORWORK
3.1 Variable Byte Encoding
Variable byte encoding is not a single encoding, but a class of
encodings that all follow the principal that an integer should be
stored in the minimum possible number of whole bytes [23].

The particular variant used herein takes a single binary integer
and stores it in 7-bits with the high bit of each byte being used as a
stop bit (a 0 indicates continuation and a 1 indicates stop). The bytes
are written to memory from most significant to least significant.

190510 = 111011100012 → [0]0001110[1]1110001
Figure 1: Variable byte encoding of190510190510190510 (111011100012111011100012111011100012) when stored
big-endian and using the high bit as a stop-bit.

Figure 1 illustrates this process. It shows the integer 190510
(111011100012) being broken into 2 × 7-bit chunks (00011102 and
11100012) and then the high bit of the first byte being set to 0 to
indicate continuation and the high bit of the second byte being set
to 1 to indicate stop.

Decoding is straightforward and fast. Initialise a sum to 0, read
a byte, if the high bit is 0 then shift the sum left by 7 and add the
byte to it, moving on to the next byte. If the high bit is 1 then
turn that bit off, add it to the sum, then return the sum. In fast
implementations, such as that of Zhang et al. [26], the decoding is
done with an unwound loop. We employ this optimisation.

The number of bits needed to store an integer, n, using variable
byte encoding, bv , is: ⌈⌈log2 (n + 1)⌉/7⌉ × 8.

3.2 Unary
The unary encoding encodes integers one at a time. First an arbi-
trary symbol is chosen, then that symbol is repeated n times for
the integer n. When encoding multiple integers in a stream it is
convenient to encode the last (or first) symbol differently from the
others. One such convention is to use n − 1 zeros followed by a 1
(the stop bit). In this way, 610 would be represented as 0000011.

Decoding a stream of integers from a unary coded bit-stream
is performed by counting zeros until the stop bit is found, then
returning the number of symbols read (including the stop bit).

The number of bits necessary to store an integer, n, using unary,
bu , is: n.

3.3 Elias gamma code
The Elias gamma code encodes integers one at a time. Each integer
is encoded in two parts (called snips): the base-2 magnitude of the
integer, and the integer itself. The magnitude is stored in unary
while the integer is stored in binary. To encode an integer, first
compute the magnitude, M = ⌊log2 (x)⌋, write out M zeros, then

Elias Revisited: Group Elias SIMD Coding ADCS ’18, December 11–12, 2018, Dunedin, New Zealand

write out the integer in binary. For example, the magnitude of the
integer 610, is M = 2, the binary is 1102, and so the Elias gamma
encoding of the magnitude snip is [001], the binary snip is [1102],
giving a gamma encoding of 001102.

To decode, count the number of leading 0s, add 1, then read
that number of binary digits. So for 001102, read two zeros then
reconstitute the integer by reading three binary digits.

The number of bits necessary to store an integer, n, using the
gamma code, bд , is: 2 × ⌊log2 (n)⌋ + 1.

3.4 Elias delta code
The delta code is designed to be space efficient with larger integers.
This is achieved by storing the magnitude (strictly, one more than
the magnitude) of the integer using the gamma code rather than
unary, then storing the integer in binary (with the high bit sup-
pressed). For example, the magnitude of the integer 610, isM = 2,
the binary is 1102. So first write out M + 1 = 3 using the gamma
code [0112], followed by the binary of 610, but with the high bit
suppressed [102] giving 011102.

To decode delta encoded integers first gamma decode the mag-
nitude then read that number of bits, then turn on the suppressed
high bit. But more directly, read the number of leading zeros, then
one more than that binary bits (call this h), then read h − 1 binary
digits to get the number with the high bit suppressed, then add 2h−1
to get the decoded integer. So for 011102, readMm = 1 zeros, then
Mm + 1 = 2 binary digits (giving 3), thenMm − 1 = 2 binary digits
(giving 102), then add 2Mm−1 (giving 1002), resulting in 1102 = 610.

The number of bits necessary to store an integer, n, using the
delta code, bd , is: ⌊log2 (n)⌋ + 2 × ⌊log2 (⌊log2 (n)⌋ + 1)⌋ + 1.

3.5 Notes on the Gamma and Delta Codes
Table 1 gives the variable byte, unary, gamma, and delta encodings
of the first 32 integers. For integers less than 16, the gamma code
is the most effective. For numbers larger than 16, variable byte
encoding is most effective.

It should also be noted that there is no unary, gamma, or delta
encoding of zero and no encoding of negative numbers for these
codecs (as described). Within the context of a search engine this is
inconsequential because docids can be assigned from 1 rather than
0, and so 0 or less cannot occur if d-gaps are being used.

3.6 QMX
A generational change in decoding efficiency was seen with the
introduction of SIMD-based codecs. Several have been proposed
including varint-G8IU [20], SIMD-BP128 [11], TurboPFor [25], Tur-
boPackV [25], and QMX [23]. Prior work has shown that these last
two do not substantially differ in decoding time, but that they are
both more efficient that the others, which in turn show a substantial
improvement over not using SIMD instructions [23]. SIMD codecs
are efficient decoders because they utilise the parallel nature of
SIMD instructions to extract more than one integer at a time.

Figure 2 illustrates QMX. A 4-bit selector and a 4-bit selector
run-length are fused to form a single 8-bit word which is stored
at the end of the encoding. Payloads are stored starting at the
beginning of the encoding. Each payload stores some number of
integers all of which are stored using the same bit width specified

by the selector. There are heuristic rules that sometimes double the
size of the payload and sometimes a payload isn’t needed, however
the general principal is fixed-width bin-packing of integers into
SIMD words and striping those integers across each of the 32-bit
elements in an Intel SSE4 SIMD 128-bit word.

Decoding involves ANDing with a machine word in order to
extract 4 integers (1 instruction), then right-shifting the word to
prepare for the next extraction (1 instruction). The number of bits
necessary to store an integer, n, using QMX, bq , is dependant on
other integers in the stream being compressed. The worst case for
a 32-bit integer is: bq = 32, but this is unlikely to occur in a search
engine index.

With the introduction of SIMD decoders, it has become possible
to count integers decoded per instruction rather than instructions to
decode an integer – which is why it is a generational improvement
on prior work. Prior work has examined the extension of “light
weight” SIMD codecs (i.e. SIMD-BP) from 128 to 512 bit registers
showing improvements [10]. It is not obvious how to extend QMX
in such a way.

4 ELIAS IMPLEMENTATIONS
4.1 Bitwise Implementations
Implementation of the two Elias codecs are seen in several open
source search engines. Terrier [14] (written in the Java) includes an
implementation of both the gamma code and the delta code. The
gamma code reads the unary magnitude byte-at-a-time and if that
byte is non-zero it performs a table lookup to find which bit is set.
The binary decoding is also performed byte at a time with masking
operations. The delta code calls the gamma code implementation
to extract the magnitude then calls the binary extractor to get the
integer.

ATIRE [24] (written in C++) also includes an implementation of
both the gamma code and the delta code. Both are reliant on a long
bit-stream library that keeps track of how many bits have been
consumed. To unary decode, bits are consumed one by one until
a 1 bit is found. To binary decode, bits are extracted (one by one)
to give the decoded value. The delta code calls the gamma code
implementation to extract the magnitude then bit by bit extracts
the integer.

It is reasonable to assume that the approach taken by Terrier
is more efficient that that taken by ATIRE, but it is not clear that
this is the case as there is a greater overhead involved. We do not
investigate this further as neither are SIMD and so both can be
assumed to be slow relative to an SIMD codec.

4.2 Non-Bitwise Implementation
In 2013 Intel introduced Haswell CPUs that included the (then)
new BMI1 and BMI2 bit manipulation instruction subsets. Three
instructions from BMI1 are of particular interest for the implemen-
tation of decoders for the gamma and delta codes: TZCNT, LZCNT,
and BEXTR. The first instruction, TZCNT, counts the number of
trailing zeros in an integer. LZCNT counts the number of leading
zeros in an integer. BEXTR extracts the given number of bits from
the given location in an integer and right aligns them.

A gamma decoder can be implemented with these instructions.
First count the number of leading zeros (LZCNT), then extract that

ADCS ’18, December 11–12, 2018, Dunedin, New Zealand Anonymous

8 4 7 3 6 2 5 1 16 12 15 11 14 10 13 9 · · · S2 R2 S1 R1
Figure 2: The QMX encoding first stores the 4 × 324 × 324 × 32-bit payloads then the selector / run-length pairs afterwards and in reverse. The image shows
8 × 168 × 168 × 16-bit integers per payload striped across the 32-bit integers with the placement being in the order given. The second 128-bit word storing
integers 9 through 16. The dotted line shows the separation between parts of a word (16-bits of a 32-bit word of a 128-bit payload, and 4-bits
of an 8-bit selector run-length pair).

Table 1: Variable byte, unary, Elias gamma, and Elias delta encoding of the first 32 integers, along with the size (in bits) of the encoding. QMX
is not included because the encoding is dependant on other integers in the sequence. Zero cannot be encoded in Unary or the Elias codes.
Numbers less than 16 are best encoded using Elias gamma, numbers larger than 16 are best encoded using Variable Byte.

Integer Variable Byte bv Unary bu Elias Gamma bд Elias Delta bd
1 00000001 8 1 1 1 1 1 1
2 00000010 8 01 2 010 3 0100 4
3 00000011 8 001 3 011 3 0101 4
4 00000100 8 0001 4 00100 5 01100 5
5 00000101 8 00001 5 00101 5 01101 5
6 00000110 8 000001 6 00110 5 01110 5
7 00000111 8 0000001 7 00111 5 01111 5
8 00001000 8 00000001 8 0001000 7 00100000 8
9 00001001 8 000000001 9 0001001 7 00100001 8
10 00001010 8 0000000001 10 0001010 7 00100010 8
11 00001011 8 00000000001 11 0001011 7 00100011 8
12 00001100 8 000000000001 12 0001100 7 00100100 8
13 00001101 8 0000000000001 13 0001101 7 00100101 8
14 00001110 8 00000000000001 14 0001110 7 00100110 8
15 00001111 8 000000000000001 15 0001111 7 00100111 8
16 00010000 8 0000000000000001 16 000010000 9 001010000 9
17 00010001 8 00000000000000001 17 000010001 9 001010001 9
18 00010010 8 000000000000000001 18 000010010 9 001010010 9
19 00010011 8 0000000000000000001 19 000010011 9 001010011 9
20 00010100 8 00000000000000000001 20 000010100 9 001010100 9
21 00010101 8 000000000000000000001 21 000010101 9 001010101 9
22 00010110 8 0000000000000000000001 22 000010110 9 001010110 9
23 00010111 8 00000000000000000000001 23 000010111 9 001010111 9
24 00011000 8 000000000000000000000001 24 000011000 9 001011000 9
25 00011001 8 0000000000000000000000001 25 000011001 9 001011001 9
26 00011010 8 00000000000000000000000001 26 000011010 9 001011010 9
27 00011011 8 000000000000000000000000001 27 000011011 9 001011011 9
28 00011100 8 0000000000000000000000000001 28 000011100 9 001011100 9
29 00011101 8 00000000000000000000000000001 29 000011101 9 001011101 9
30 00011110 8 000000000000000000000000000001 30 000011110 9 001011110 9
31 00011111 8 0000000000000000000000000000001 31 000011111 9 001011111 9
32 00100000 8 00000000000000000000000000000001 32 00000100000 11 0011000000 10

number plus one bits from that position in the integer (BEXTR).
If integers are restricted to 32-bits and byte-aligned then one 64-
bit read is guaranteed to contain an entire gamma encoded 32-bit
integer, which can be decoded using LZCNT then BEXTR.

Byte aligning integers is ineffective as there are many wasted bits
between integers – especially if those integers are small: whereas
the gamma code can encode a 1 in one bit, byte aligning would
result in 1 bit being used and 7 bits being wasted. In practice a long
bit-string is needed and a pointer into that bit-string must be kept.
In order to avoid wastage at the end of the long bit-string, it is
best to pack from the low end to the high end of a machine word
(because words are stored in memory little-endian). However, this
introduces a problem.

The gamma code relies on the unary being stored in the high
bits followed by the integer in binary because the unary stop-bit
is shared with the high bit of the binary integer. By moving the
unary to the low end of the encoding, the stop-bit is no longer
shared. For example, encoding 610 using the gamma code results in
[002][1102], but by storing it as the low bits results in [1102][002]
which incorrectly unary decodes because the low bit of the binary
encoding is zero.

Shifting the high bit to the low bit is a standard technique known
as zigzag encoding, and is used in Google Protocol Buffers to encode
negative numbers.4 It is a form of left shift known as a circular shift
(or rotate without carry). For Elias coding, the difference is that the
rotation is not through the entire length of the machine word, it is
up-to and including the highest set bit.

Figure 3 illustrates this process. The value 100001102 when
shifted left gives 000011002 as the bottom bit is shifted in from
the carry, when rotated left gives 000011012 as the top bit is shifted
to the low bit. The difference we employ is that we rotate around
the highest set bit rather than the highest bit. For example, when
1102 is zigzagged it results in 1012 as leading zeros are ignored.
Decoding of a zigzagged integer whose magnitude is known can
be done with a shift right and a bit set.

Zigzag encoding guarantees the low bit will be set, and so the
unary decoding will work correctly (610 is gamma encoded as
[1012][002]. Decoding a single gamma encoded integer from a 64-bit
word involves counting trailing zeros with TZCNT, then extraction
of the integer with BEXTR, then decoding the zigzag with a shift-
right and a bit set. To prepare for the next extraction a bit-shift to

4https://developers.google.com/protocol-buffers/docs/encoding

Elias Revisited: Group Elias SIMD Coding ADCS ’18, December 11–12, 2018, Dunedin, New Zealand

Byte Result
Shift left 1 0 0 0 0 1 1 0 → 0 0 0 0 1 1 0 0

Rotate left 1 0 0 0 0 1 1 0 → 0 0 0 0 1 1 0 1

Our zigzag 0 0 0 0 0 1 1 0 → 0 0 0 0 0 1 0 1
Figure 3: The difference between shift left, rotate left, and our zigzag left (assuming a 0 carry). Our zig-zag rotates around the highest set bit.
This moves the most significant set bit to the least significant bit and moves all other bits one to the left.

Table 2: The partitions of 5 and the permutations of those partitions.
There are 7 partitions and 16 compositions of 5.

Partition Permutations of Partition (Compositions)
5 5
4+1 4+1, 1+4
3+2 3+2, 2+3
3+1+1 3+1+1, 1+3+1, 1+1+3
2+2+1 2+2+1, 2+1+2, 1+2+2
2+1+1+1 2+1+1+1, 1+2+1+1, 1+1+2+1, 1+1+1+2
1+1+1+1+1 1+1+1+1+1

re-align to the next integer is need, then some management for the
next read from memory.

5 GROUP ELIAS SIMD
5.1 Combinatorics
Starting from first principles, we ask how many ways there are to
non-uniformly pack integers into a 32-bit machine word (without
loss of generality, and ignoring decoding). This question is exactly
equivalent to asking how many ways there are to make 32 by
adding natural numbers. The 32 being the machine word size that
we wish to pack into, and the natural numbers being the different
bit-widths (magnitudes) of integers being packed. This is a well
known problem in combinatorics and is known as the number of
partitions of an integer. Imagining a 5-bit word, Table 2 column 1
gives the 7 partitions.

So a 5-bit word could fit a 4-bit integer and a 1-bit integer, or
a 3-bit integer and a 2-bit integer, and so on. There is no simple
formula for computing the number of partitions of an integer, but
there are 8, 349 partitions of 32.

The integers being packed into the machine word can come in
any order, so the number of sequences that might be seen is the
sum of the number of permutations of each partition of the width
of the machine word. For example, with a 5-bit word we might see
any or all of 3+ 1+ 1, 1+ 3+ 1 or 1+ 1+ 3. For the 5-bit word there
are 16 possible sequences not just the 7 partitions (see Table 2).

The number of permutations of all partitions of an integer, n, is
known as the number of compositions of the integer n. There are
2n−1 compositions of n. The proof is well known5, but informally
reproduced here as it relates to Elias’s encodings:

Write the number being composed, n, as a sequence of n 1s (in
unary). For example for 5, write

11111
between each 1, either write a ‘,’ or a ‘+’, for example,

1 + 1, 1, 1 + 1
5See the Wikipedia article: “Composition (combinatorics)”

re-write this equation as a composition by computing the results
of the sums, in this case giving:

2, 1, 2.
Since there aren−1 binary decisions to be made (‘+’ or ‘,’ between

each digit) there are 2n−1 compositions. For n = 32, there are
231 = 2, 147, 483, 648.

There is an obvious numbering of each composition. By replacing
‘+’ with 0 and ‘,’ with 1, each of the compositions of n = 32 can be
uniquely identified by a 31-bit integer. For convenience, we store a
1 in the high bit and use a 32-bit integer. As an example, using 5-bit
integers, the bit sequence 101102 would number the composition
1 + 1, 1, 1 + 1, or 2, 1, 2.

We observe that the bit sequence given from the composition
number can be used as the unary encoding of the magnitude of
integers being packed into words. That is, the 5-bit selector 101102
would describe 3 integers being packed into a 5-bit word where
the width of the first integer is 2, the second integer is 1, and
the third integer is 2. For example, the integer sequence 2, 1, 3
could be encoded with the composition number first [101102] then
the integers second [102][12][112], giving 10110101112. To decode,
extract the three bit widths first, then extract the three integers.

Our derivation from first principles has resulted in an encoding
that is equivalent to the Elias gamma coding, except thatmagnitudes
have been pulled together and stored first (in unary) then a payload
containing the integers (in binary) is stored second. For this reason
we call this encoding group Elias gamma (after group-varint [6])
and observe that it is referred to as k-Gamma by Schlegel [18]
and generalised to Group-Scheme with a 1-bit granularity by Zhao
et al. [27]. Our proof is that in this encoding the selector is the
same size as the payload, and there are no wasted bits between the
codewords as each is encoded in the smallest possible number of
bits.

We now introduce two improvements. In the first, likewise to
others before us [18, 27], we use SIMD (in our case, AVX-512 SIMD
16×32-bit) payloads. In the second the unary composition numbers
are replaced by the Elias gamma coding of the unary.

5.2 Group Elias Gamma SIMD
Figure 4 shows the layout used in Group Elias Gamma SIMD. First
the 512-bit payload is broken into 16 × 32-bit integers that we call
rows. Then 16 integers are read from the input stream and the
base-2 magnitude of the largest is computed. This magnitude, M ,
is written in unary to the selector. A column ofM bits is allocated
from each row, and the integers are striped across those columns.
The process is continued until the payload is full. First the 32-bit
selector is written then the 512-bit payload is written. In the case
where there are ‘spare’ bits in the payload, the integer sequence is

ADCS ’18, December 11–12, 2018, Dunedin, New Zealand Anonymous

Selector
· · · · · · 1 0

Payload
· · · · · · 0 1

· · · · · · 1 1
· · ·

· · · · · · 1 0
Figure 4: Group Elias Gamma SIMD breaks the 512-bit payload into
16 × 3216 × 3216 × 32-bit words called rows and then allocates fixed-width columns
from those rows for storing the integers (in this case 110110110, 310310310, ... 210210210).
The width is stored in the selector which is encoded in unary from
least significant bit to most significant bit (in this case 102102102).

Payload Selector
Pointer Pointer
↓→ ←↓

Payload 1 Payload 2 · · · Selector 2 Selector 1
Figure 5: Group Elias delta SIMD encoding stores all the 512-bit pay-
loads before the selectors and uses two pointers to keep track of
decoding progress.

split with the high bits being stored in the first payload and the low
bits being carried over to the next payload (and the low bits are
stored in the selector, with the high bits being carried over to the
next selector). It is always possible to store selectors and payloads
interlaced because each payload is one composition of 32 and its
composition number fits in one 32-bit integer.

When decoding, the width of the columns is extracted from the
composition number (the selector) using TZCNT, then that number
of bits is extracted from each row of the payload using the VPANDD
instruction. Both are then shifted right so that the decoder can
move on to the next column.

An integer sequence encoded using group Elias gamma SIMD
is expected to be larger than the gamma encoding as there can be
wasted bits between encoded integers (because the column width
is the same for each row). Decoding, however, is expected to be
vastly more efficient.

5.3 Group Elias Delta SIMD
Zhao et al. [27] experimented with using binary or unary selector
lengths. We differ from previous work in that in group Elias delta
SIMD the length selector is gamma encoded.

Figure 5 shows the layout used in group Elias delta SIMD. By
gamma encoding the selector the property that each selector en-
codes exactly and completely one payload no longer exists. For this
reason we first store the payloads then we store the selectors in
reverse order (a technique used in QMX).

Two pointers are used for decoding: a payload pointer which
starts at the beginning of the encoded sequence, and a selector
pointer which starts at the end. Each time a new selector is needed
the selector pointer is decremented by one. Each time a new payload
is needed a pointer is incremented by one.

The group Elias delta SIMD encoding is expected to be larger
than the gamma SIMD encoding for long postings lists, but smaller
for shorter postings lists. In the gamma version the composition
number is stored in unary, but in the delta version it is stored gamma
encoded. Examining Table 1, the draw even point on storing an

integer using unary versus gamma is 5 – so any d-gap smaller than
26 = 64 will be more effectively stored using unary than using
gamma.

6 EXPERIMENTS
6.1 Experimental Conditions
Experiments were conducted on an 18-core (36-thread) Dell Pre-
cision 5820 with an Intel Xeon W-2195 at 2.30GHz with 256GB
DDR4-2666 RAM running 64-bit Windows 10. Programs were writ-
ten in C++ and were compiled with Microsoft Visual Studio 2017
with C++ compiler version 19.14.26430 and maximum optimisation.

6.2 In Vacuo Experiment
To examine space (effectiveness) and decompression speed (effi-
ciency), the open indexes of Lemire6 were used. These datasets
are postings lists of the TREC .gov2 collection of 25,205,179 web
pages crawled from the .gov domain in 2004. There are two vari-
ants, the first is the collection in collection order, the second is the
collection sorted in URL order, a technique well known to improve
effectiveness and efficiency on this collection [2]. Terms that appear
in fewer than 100 documents are not in the data. These datasets
were altered only in so far as each docid was incremented by one
as Lemire counts from 0 – recall that 0 cannot be encoded with the
Elias codecs. In all cases d-gaps of 1 were used (which is not the
most efficient for SIMD).

We implemented variable byte encoding, we used the ATIRE
implementations of Elias gamma and Elias delta, we implemented
Elias gamma and Elias delta using BMI1 instructions, and we imple-
mented the group Elias gamma SIMD and group Elias delta SIMD.
We did not implement the non-SIMD versions of the group Elias
codecs because we had no reason to believe that they would be as
efficient at decoding as the SIMD versions. The version of QMX we
used came from the source code of JASS. All implementations were
verified on the URL sorted data by compressing, then decompress-
ing, then comparing the decompressed to the original of each and
every postings list.

In our experiments we, one by one and for all postings lists,
loaded a postings list from file, encoded it, measured the space taken,
then measured the wall clock decoding time using using the C++
std::chrono::steady_clock – all in a single thread of the
otherwise idle machine. This was repeated 5 times and the numbers
reported here are the medians of those 5 runs. We choose median
as we believe it is a better indication of expected performance than
fastest, mean, or slowest.

6.3 In Vacuo Results
Figure 6 presents the space requirements of each of the codecs on
the .gov2 collection in collection order. Not surprisingly, variable
byte encoding takes the most space, also not surprisingly, QMX
takes more space than the Elias codes, the group Elias SIMD codecs
place in between. Of the group Elias SIMD codecs, the gamma
performs better when postings lists are long.

Group Elias SIMD encodes each column of integers in the space
required to store the largest number in the column – but this width

6http://lemire.me/data/integercompression2014.html

Elias Revisited: Group Elias SIMD Coding ADCS ’18, December 11–12, 2018, Dunedin, New Zealand

0 2 4 6 8 10 12

List length (millions of integers)

0

2

4

6

8

10

C
om

p
re

ss
ed

si
ze

(M
B

)

Compressed size, unsorted

Vbyte

QMX

γ-bit

γ-BMI1

γ-SIMD

δ-bit

δ-BMI1

δ-SIMD

Figure 6: Space taken for encoded lists of .gov2 in collection order.

0 2 4 6 8 10 12

List length (millions of integers)

0

2

4

6

8

10

C
om

p
re

ss
ed

si
ze

(M
B

)

Compressed size, documents sorted by URL

Vbyte

QMX

γ-bit

γ-BMI1

γ-SIMD

δ-bit

δ-BMI1

δ-SIMD

Figure 7: Space taken for encoded lists of .gov2 in URL order.

0 2 4 6 8 10 12

List length (millions of integers)

0

20

40

60

80

100

D
ec

om
p

re
ss

io
n

ti
m

e
(m

s)

Decompression speed, unsorted

Vbyte

QMX

γ-bit

γ-BMI1

γ-SIMD

δ-bit

δ-BMI1

δ-SIMD

Figure 8: Time to decode lists from .gov2 in collection order. Vbyte
is partially occluded by QMX.

0 2 4 6 8 10 12

List length (millions of integers)

0

20

40

60

80

100

D
ec

om
p

re
ss

io
n

ti
m

e
(m

s)

Decompression speed, documents sorted by URL

Vbyte

QMX

γ-bit

γ-BMI1

γ-SIMD

δ-bit

δ-BMI1

δ-SIMD

Figure 9: Time to decode lists from .gov2 in URL order.

is likely to be larger than the space required to encode the smallest
integer in the column. When this happens there is wastage that
does not happen in the non SIMD versions and hence it takes more
space. QMX packs as many integers as it can into a 128-bit integer,
all integers taking the width of the largest integer. In the case of
highly frequent terms with a typical d-gap of 1, it only requires

Table 3: Size of JASS .gov2 postings file encoded using QMX and the
group Elias SIMD codecs.

Codec Size (bytes) Relative to QMX
QMX 12,855,247,344 100%

Group Elias Gamma SIMD 14,659,573,813 114%
Group Elias Delta SIMD 18,028,897,041 140%

a single 2 to drop the effectiveness from 128 integers per word to
64 integers per word (to halve the effectiveness). In the case of the
group Elias SIMD this ‘damage’ is limited to a single column of
integers – the effect of an outlier is substantially reduced. The worst
case of the selector for QMX is one byte per 128-bit word, for group
Elias gamma SIMD uses 4 bytes per 512-bit word – in other words,
the worst case for QMX is the normal case for group Elias gamma
SIMD. This QMX effectiveness gain does not appear to compensate
for the loss due to an outlier.

Figure 7 presents the space requirements of each of the codecs
on the .gov2 collection in URL order. Again, variable byte encoding
takes the most space, the others are highly variable on the effective-
ness, with QMX showing a wider variability than the others, and
with the Elias codecs performing better than the SIMD versions.
There is no clear “always best” performer.

Figure 8 presents the decoding time requirements of each of the
codecs on the .gov2 collection in collection order. As expected, the
bitwise implementations all take longer than the BMI1 implementa-
tions. Variable byte encoding is faster than the Elias codecs, and on
this architecture, there is little difference in the decoding time of
it and QMX. The group Elias SIMD codecs outperform the others
with little difference between the gamma and delta versions.

Figure 9 presents the decoding time requirements of each of the
codecs on the .gov2 collection in URL order. The Elias codecs are
variable in performance, but take longer than variable byte and
QMX. The group Elias SIMD decoders are the most efficient, and
again there is little difference between them.

6.4 In Situ Experiment
We indexed .gov2 using ATIRE’s impact ordered indexer, 8-bit quan-
tized with BM25 (k1 = 0.9, b = 0.4) and then used an extended
atire_to_jass_index to convert the index into JASS format.
Three indexes were generated, one for each of: QMX, group Elias
gamma SIMD, and group Elias delta SIMD. We then compared the
sizes of the index. Finally, using JASSv2 we loaded the entire index
intomemory and used the C++std::chrono::steady_clock
to measure time to search to completion (no early termination, but
with top-k = 100) for all 20,000 queries from the TREC Million
Query Track (from 2007 and 2008). We ran the timing experiment 5
times and report medians. We repeated the experiment as the num-
ber of queries processed in parallel increased from 1 to 32 (recall,
the computer has 18 cores giving 36 hyperthreads).

6.5 In Situ Results
JASS stores the postings lists in a file separate from the remainder
of the index (the vocabulary, etc.), and Table 3 shows the size of
the postings file for each of the three codecs along with the size
relative to QMX. QMX takes the least space, most probably because
it can encode small postings lists (for example, with one posting)

ADCS ’18, December 11–12, 2018, Dunedin, New Zealand Anonymous

1 2 4 8 16 32
Number of threads

0

500

1000

1500

2000

2500

3000

S
ec

on
d

s
p

er
20

,0
00

q
u

er
ie

s

Parallel search time

QMX

γ-SIMD

δ-SIMD

Figure 10: Wall time to execute
all 20,000 TREC Million Query
Track queries on .gov2 as the
level of parallelism increases.

12 14 16 18 20

Compressed size (GB)

2500

2600

2700

2800

S
ec

on
d

s
p

er
20

,0
00

q
u

er
ie

s

Efficient / effective

QMX

γ-SIMD

δ-SIMD

Figure 11: Postings list size and
time to sequentially process
all 20,000 TREC Million Query
Track queries on .gov2.

in less than 128 bits, but the group Elias SIMD codecs cannot store
an encoding in less than a single 512-byte payload and a 32-bit
selector. We leave for further work the obvious extension of only
using group Elias SIMD when size warrants.7 Group Elias gamma
SIMD takes less space than the delta variant because the majority
of d-gaps in the index are small and the gamma code is better at
storing smaller integers than the delta code.

Examining the throughput, Figure 10 shows the wall time re-
quired to complete all 20,000 queries as the level of parallelism is
increased from 1 to 32. The figure shows that group Elias gamma
SIMD is more efficient than the delta version which is more efficient
than QMX. When the number of threads is small this is likely to
be simply the number of integers that can be decoded per SIMD
instruction. The levelling-out at approximately 8 threads suggests
a hardware bottleneck. Given the small number of instructions
necessary to decode the integers, this is likely to be the CPU / mem-
ory bandwidth being flooded (i.e. the memory wall). At 32-threads,
there is little difference between the codecs, this is most likely be-
cause once the encoded data is in the cache the CPU can process
it quickly and then stalls waiting for more data – and that stall is
approximately the same regardless of the codec.

Figure 11 presents the space / time tradeoff of the three codecs
(index size vs search time) with a single thread (as might be seen in
a desktop search environment). It shows group Elias exhibiting an
effectiveness loss for an efficiency improvement over QMX.

7 DISCUSSION AND CONCLUSIONS
One of the advantages of the group Elias SIMD codecs over QMX
and other SIMD codecs is that it is obvious how to extend to larger
(or reduce to smaller) word sizes. An AVX-2 version using 256-bit
SIMD registers would differ only in the number of rows being used
for encoding (from 16 × 32-bit to 8 × 32-bit).8 When wider SIMD
registers become available the number of rows seen in Figure 4
could simply be increased to match the number of 32-bit words in
that SIMD register. Indeed, it could be parameterised in an imple-
mentation. It is not obvious how to extend QMX as the width of a
machine word increases as it is not grounded on a solid theoretical

7This technique is standard practice for codecs such as PForDelta where variable byte
encoding is normally used when a block (of typically 128 integers) cannot be filled.
8Our implementation chooses, at compile time, between 512-bit registers (if available),
or 2 × 256-bit registers (if not), differing from this suggestion.

base. Although the group Elias gamma SIMD .gov2 index is larger
than the QMX index, no account has been made for short postings
lists or the ends of long postings lists (partly-full payloads). This
we leave for further investigation, however since it is obvious how
to manage 256-bit, 128-bit, or even 64-bit or 32-bit payloads, there
is an obvious channel of investigation.

REFERENCES
[1] V. N. Anh and A. Moffat. 2005. Inverted Index Compression Using Word-Aligned

Binary Codes. Information Retrieval 8 (2005), 151–166.
[2] D. Blandford and G. Blelloch. 2002. Index compression through document re-

ordering. In Proceedings of the Data Compression Conference (DCC 2002). 342–351.
[3] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. 2003. Efficient

Query Evaluation Using a Two-level Retrieval Process. In CIKM 2003. 426–434.
[4] S. Büttcher, C. L. A. Clarke, and G. V. Cormack. 2010. Information Retrieval:

Implementing and Evaluating Search Engines. MIT Press. xxiv + 606 pages.
[5] M. Crane, A. Trotman, and R. A. O’Keefe. 2013. Maintaining Discriminatory

Power in Quantized Indexes. In CIKM 2013. 1221–1224.
[6] J. Dean. 2009. Challenges in Building Large-scale Information Retrieval Systems:

Invited Talk. In WSDM 2009. 1–1.
[7] S. Ding and T. Suel. 2011. Faster Top-k Document Retrieval Using Block-max

Indexes. In SIGIR 2011. 993–1002.
[8] P. Elias. 1975. Universal Codeword Sets and Representations of the Integers. IEEE

Transactions on Information Theory 21, 2 (1975), 194–203.
[9] S. W. Golomb. 1966. Run-Length Encodings. IEEE Transactions on Information

Theory 12, 3 (1966), 399–401.
[10] D. Habich, P. Damme, A. Ungethüm, and W. Lehner. 2018. Make Larger Vector

Register Sizes New Challenges?: Lessons Learned from the Area of Vectorized
Lightweight Compression Algorithms. In Proceedings of the Workshop on Testing
Database Systems (DBTest 2018). Article 8, 6 pages.

[11] D. Lemire and L. Boytsov. 2015. Decoding Billions of Integers Per Second Through
Vectorization. Software: Practice & Experience 45, 1 (2015), 1–29.

[12] J. Lin and A. Trotman. 2015. Anytime Ranking for Impact-Ordered Indexes. In
ICTIR 2015. 301–304.

[13] J. Lin and A. Trotman. 2017. The Role of Index Compression in Score-at-a-time
Query Evaluation. Information Retrieval 20, 3 (2017), 199–220.

[14] C. Macdonald, R. McCreadie, R. L. T. Santos, and I Ounis. 2012. From Puppy
to Maturity: Experiences in Developing Terrier. Proceedings of the SIGIR 2012
Workshop on Open Source Information Retrieval (2012), 60–63.

[15] G. Ottaviano and R. Venturini. 2014. Partitioned Elias-Fano Indexes. In SIGIR
2014. 273–282.

[16] M. Petri and A. Moffat. 2018. Compact Inverted Index Storage Using General-
Purpose Compression Libraries. Software: Practice & Experience 48, 4 (2018),
974–982.

[17] R. F. Rice. 1979. Some Practical Universal Noiseless Coding Techniques. JPL
Publication 79-22. NASA Jet Propulsion Laboratory, Pasadena, CA, USA.

[18] B. Schlegel, R. Gemulla, and W. Lehner. 2010. Fast Integer Compression Using
SIMD Instructions. In Proceedings of the 6th International Workshop on Data
Management on New Hardware (DaMoN ’10). 34–40.

[19] F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel. 2002. Compression of Inverted
Indexes for Fast Query Evaluation. In SIGIR 2002. 222–229.

[20] A. A. Stepanov, A. R. Gangolli, D. E. Rose, R. J. Ernst, and P. S. Oberoi. 2011.
SIMD-based Decoding of Posting Lists. In CIKM 2011. 317–326.

[21] N. Tonellotto and C. Macdonald. 2018. Efficient Query Processing Infrastructures:
A Half-day Tutorial at SIGIR 2018. In SIGIR 2018. 1403–1406.

[22] A. Trotman. 2003. Compressing Inverted Files. Information Retrieval 6, 1 (2003),
5–19.

[23] A. Trotman. 2014. Compression, SIMD, and Postings Lists. In ADCS 2014. Article
50, 8 pages.

[24] A. Trotman, X.-F. Jia, and M. Crane. 2012. Towards an Efficient and Effective
Search Engine. In Proceedings of the SIGIR 2012 Workshop on Open Source Infor-
mation Retrieval. 40–47.

[25] A. Trotman and J. Lin. 2016. In Vacuo and In Situ Evaluation of SIMD Codecs. In
ADCS 2016. 1–8.

[26] J. Zhang, X. Long, and T. Suel. 2008. Performance of Compressed Inverted List
Caching in Search Engines. In WWW 2008. 387–396.

[27] W. X. Zhao, X. Zhang, D. Lemire, D. Shan, J.-Y. Nie, H. Yan, and J.-R. Wen. 2015. A
General SIMD-Based Approach to Accelerating Compression Algorithms. TOIS
33, 3, Article 15 (2015), 28 pages.

[28] M. Zukowski, S. Heman, N. Nes, and P. Boncz. 2006. Super-Scalar RAM-CPU
Cache Compression. In Proceedings of the 22nd International Conference on Data
Engineering (ICDE 2006). Article 59, 12 pages.

	Abstract
	1 Introduction
	2 Postings Lists
	3 Prior Work
	3.1 Variable Byte Encoding
	3.2 Unary
	3.3 Elias gamma code
	3.4 Elias delta code
	3.5 Notes on the Gamma and Delta Codes
	3.6 QMX

	4 Elias Implementations
	4.1 Bitwise Implementations
	4.2 Non-Bitwise Implementation

	5 Group Elias SIMD
	5.1 Combinatorics
	5.2 Group Elias Gamma SIMD
	5.3 Group Elias Delta SIMD

	6 Experiments
	6.1 Experimental Conditions
	6.2 In Vacuo Experiment
	6.3 In Vacuo Results
	6.4 In Situ Experiment
	6.5 In Situ Results

	7 Discussion and Conclusions
	References

