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ABSTRACT

We make available a document collection of a million product titles

from 3, 008 anonymized categories of the rakuten.com product cat-
alog. The anonymization has been done due to intellectual property

rights on the underlying data organization taxonomy. Our analysis

of the characteristics of the 800, 000 training and 20, 000 validation

titles show that they match the test set of 180, 000 titles. Twenty

six independent teams participated in an automatic product catego-

rization challenge on this dataset. We present results and analysis

and suggest strong baselines for this collection and task.
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1 INTRODUCTION

Taxonomy categorization of product listings is a fundamental prob-

lem for any e-commerce platform and has applications ranging from

basic data organization and personalized search recommendation,

to query understanding and targeted campaigning. Manual and

rule based approaches to categorization are error prone and expen-

sive [15] because commercial product taxonomies have thousands

of leaf nodes with semantically similar paths to the root. Academic

advances on this task have been limited by a lack of real-world data

from a commercial e-commerce platform.

We are making available a real-world data set with one million

product listings from 3, 008 categories. Twenty six teams (from

academic and from industrial backgrounds) participated in the

automatic product categorization data challenge that was run on

this data. This paper presents our analysis of the data we provide,

and strong baselines for further research on this task.
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Product Titles Category path

Replacement Viewsonic VG710 LCD Monitor 48Watt AC Adapter 12V 4A 3292>114>1231

Ka-Bar Desert MULE Serrated Folding Knife 4238>321>753>3121

5.11 TACTICAL 74280 Taclite TDU Pants, R/M, Dark Navy 4015>3285>1443>20

Skechers 4lb S Grip Jogging Weight set of 2- Black 2075>945>2183>3863

Generations Small Side Table White 4015>3636>1319>1409>3606

Table 1: Examples from the training set. Category paths are

anonymized to retain intellectual property.

Product Titles

Disc Brake Caliper Guide Pin Boot Kit Front Carlson 16137

Wire Shelf, Green ,Metro, 2442NK3

Parallel Lines Velvet Cushion

GROZ 36JN79 Filter Element, 40 Microns, Intermediate

Chenille Kraft Wonderfoam Magnetic Alphabet Letters, Assorted Colors. 105/Pack - CKC4357

Table 2: Examples from the test set.

2 RELATEDWORK

There have been many discussions about the immense importance

of ontologies and taxonomies for e-commerce [5], and we concur

with their conclusions. The problem of assigning products to taxon-

omy has been addressed for some time [2, 4] and anecdotally, this

is a problem currently faced by large scale e-commerce platforms.

We are not the first to release data for product classification, or

to run a challenge on such data. In 2015, The Otto Group (which

includes Crate & Barrel) released a training set of 61, 879 products

and a test set of 144, 369 products on Kaggle1. That dataset has

product listings represented as a set of ninety three strictly numeric

features and the task is to categorize them into nine categories that

represented top level categories in their taxonomy tree. Evaluation

was with multi-class logarithmic loss. Our data significantly differs

from theirs, for instance, we include one million product titles

organized into an organizational taxonomy of 3, 008 leaf nodes.

Data challenges in a related area have also occurred, for instance,

Schulten et al. [12] present the challenge of taxonomy mapping.

This is an important and active area of research [1, 7], that is differ-

ent from the one presented here.

McAuley et al. [11] provide a crawl of Amazon’s product pages

including 142.8 million reviews2, but do not run a data challenge.

They address recommendation of substitute products (e.g. would

you prefer this phone to that phone) and complementary items (e.g.

do you need batteries with that). A navigational taxonomy could be

extracted from that data, but we are interested in an organizational

taxonomy, which is normally proprietary. Our dataset contains the

organizational taxonomy labels for each listing, albeit anonymized.

3 DATA SET

A large-scale e-commerce platform usually handles millions of

product listings on a daily basis. Data of this scale is difficult to

1https://www.kaggle.com/c/otto-group-product-classification-challenge
2http://jmcauley.ucsd.edu/data/amazon/
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Figure 1: Title length distributions (in tokens).
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Figure 2: Lengths of category paths (proportion of data set).
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Figure 3: Frequencies of each of the 3008 category (ordered

from most to least frequent).

work with, and so in January 2018, we sorted and deduplicated the

product titles of the full catalog snapshot from rakuten.com3 and
then randomly sampled without replacement, exactly one million

product listings.

We partition this dataset into a training set of 800, 000, a valida-

tion set of 20, 000, and a test set of 180, 000 listings using category-

wise stratified sampling. Each listing consists of a product title and

taxonomy tree path to the leaf node (the category). To preserve

intellectual property, labels in the taxonomic tree are replaced with

random integers and only those parts of the tree that are covered

by the million listings are released. The anonymization does not

change the nature of the problem of taxonomy categorization.

Each listing, therefore, consists of a textual name and a sequence

of integers representing the path (left to right, less to more specific)

through the taxonomy. The two fields are tab separated. Listings

only occur at leaves, never at internal nodes. The test and validation

sets contain only titles (the object of the data challenge was to

predict the path). The gold standard contains both the product titles

and the categories. Table 1 and Table 2 show examples of product

titles from the training and test set, respectively.

3.1 Data Characteristics

Table 3 presents the basic statistics of our dataset. Once the titles are

tokenized on white space, the training set of 800, 000 titles ranges

in length from 1 to 58 tokens with an average length of 11 tokens.

Figure 1 illustrates the uneven distribution of title lengths in tokens

3The dataset can be downloaded from https://forms.gle/acBxFo3Qwdi1Edyy5

Parameter Training Validation Test

Titles (Documents) 800, 000 20, 000 180, 000

Length in bytes 1 − 400 2 − 256 1 − 258

Avg length in bytes 68.75 68.83 68.80

Length in tokens 1 − 58 1 − 49 1 − 58

Avg length in tokens 10.93 10.93 10.94

Path length 1 − 8 1 − 7 1 − 8

Table 3: Statistics of each part of the collection.

in the three sets. From visual inspection, the three lines are similar

in shape – and indeed both the validation set and the training set

show a Pearson’s correlation of > 0.99 with the test set. Due to the

use of stratified sampling, the distributions over the three sets are

similar. The titles are unevenly distributed across 3, 008 categories

with a minimum depth of 1, a maximum depth of 8, and an average

depth of 4. Figure 2 presents the proportion of titles according to

their path lengths in the taxonomy. Again due to stratified sampling,

the three sets are similar.

In each of the three sets the top ten categories compose ≈ 30%

of the titles, and the top 37 categories compose ≈ 50% of the titles.

Figure 3 shows the distribution of titles across all the leaf-level

categories (ordered by frequency). From visual inspection, the three

lines are similar in shape – and indeed both the validation set and

the training set show a Pearson’s correlation of > 0.99 with the

test set.

This section has presented the statistics of the three sets in the

collection and shown that the training set and the validation set

both very strongly correlate with the test set. We believe that this

dataset, for taxonomy categorization on real world product listings,

leads itself to strong baselines being developed, and is suited to

furthering the research in this area.

4 EVALUATION

As a method of obtaining a reasonable baseline for automatic prod-

uct categorization, and as a way to assess the difficulty of this

task, we ran a data challenge at the ACM SIGIR 2018 Workshop on

e-commerce. This section describes our experiments.

4.1 Timeline for System Submissions

We started promoting the challenge on 24th March, 2018 and im-

mediately saw several registrations (10 in the first 24 hours).

Participants were permitted to submit up to three runs per day

between 9th April, 2018 and 23rd June, 2018. These runs were eval-

uated on the validation set. On 24th June, 2018 submissions were

finalized and the runs were subsequently evaluated on the test set.

Results are presented in Section 5.

4.2 Metrics

The distribution of listings over the taxonomy is highly skewed (see

Figure 3). In an industrial e-commerce setting, usually, classification

performance on the long tail is not considered to be important. For

this reason, we choose the weighted versions of precision, recall,

and F1 as indicators of system performance. A predicted taxonomy

path is considered correct if and only if it exactly matches the taxon-

omy path in the gold standard (partial matches are considered to be

incorrect). Denote byK , a total number of classes, {ci |i = 1, 2, ...,K}



in the test set. The number of true instances for each class (sup-

port) is ni , and the total number of instances is N =
∑K
i=1 ni . If we

compute the precision (Pi ), recall (Ri ) and F1 (F1i ) for each class

ci , then the weighted metrics are:

Pw =
K∑

i=1

ni
N
Pi Rw =

K∑

i=1

ni
N
Ri F1w =

K∑

i=1

ni
N
F1i

We only report the low Macro-F1 (= 1
K

∑K
i=1 F1i ) numbers in

tables 4 and 5 to highlight the long tail problem.

5 RESULTS
Twenty six teams participated in the challenge (we do not list them

due to space limits). Each team submitted their predicted categories

on the validation set and the test sets in the same tab-separated

format used with the training set (see Table 1). During the challenge,

runswere scored against the validation set usingweighted precision,

recall and F1 as defined in Section 4.2. A leader board on the data

challenge website4 tracked the submission scores.

At the end of the challenge, the final run for each team was eval-

uated on the test set. Although the performance on the validation

set could be known during the challenge, the performance on the

test set could not be known until the challenge had finished. Table 4

shows the leader board at the end of the challenge, giving the final

scores on the validation set, while Table 5 shows the final scores

on the test set computed after the challenge.

The top five teams on the validation set as shown on the leader

board are mcskinner, MKANEMAS, tiger, Uplab and JCWRY

with 0.8510, 0.8421, 0.8404, 0.8375 and 0.8278 F1w scores respec-

tively. The same five teams rank top and in the same order on the

test set with F1w scores of 0.8510, 0.8397, 0.8379, 0.8364 and 0.8295

respectively. Although there is no change in the rank of the top five

teams between validation and test, changes are seen lower down

in the ranks (amongst others, for instance, Uplab-2 changes rank).

We computed a Pearson’s correlation coefficient of > 0.99 on the

absolute F1w scores and a Spearman’s rank correlation coefficient

of > 0.98 on the rank ordering of systems. This very high corre-

lation suggests that the validation set is an excellent indicator of

expected performance on this task.

6 SYSTEM DESCRIPTIONS

In this section we outline the approaches taken by teams that per-

formed best on the validation and test sets, ordered by the perfor-

mance on the test set.

• mcskinner (F1w : 0.8510) achieved the highest scores. The

system uses an ensemble of LSTMs and show a positive

impact of dense connections between recurrent and output

layers through the use of pooling layers. Their final solution

is produced using a bidirectional ensemble of six LSTMs with

a balanced pooling view architecture [13].

• MKANEMAS (F1w : 0.8397) formulate the task as a simple

classification problem of just leaf categories. The key feature

of their system is the combination of a convolutional neu-

ral network and bidirectional LSTM using ad-hoc features

generated from an external data set [14].

4We also made available a script that computes these scores. https://github.com/
sigir-ecom/dataChallenge

Team Pw Rw F1w Macro-F1

mcskinner 0.8734 0.8425 0.8510 0.4999

MKANEMAS 0.8509 0.8445 0.8421 0.4994

tiger 0.8552 0.8389 0.8404 0.4881

Uplab 0.8435 0.8427 0.8375 0.4902

JCWRY 0.8545 0.8172 0.8278 0.4670

neko 0.8311 0.8296 0.8245 0.4717

Ravenclaw 0.8394 0.8118 0.8197 0.3939

ssdragon 0.8310 0.8173 0.8185 0.4068

RITB-Baseline 0.8389 0.8097 0.8172 0.3909

inception 0.8364 0.8087 0.8166 0.3860

Uplab-2 0.8196 0.8228 0.8149 0.4621

minimono 0.8119 0.8042 0.8020 0.3782

Tyche 0.8536 0.7655 0.7976 0.0538

Topsig 0.8009 0.8042 0.7967 0.4240

VanGuard 0.7950 0.7915 0.7871 0.3233

Waterloo 0.7819 0.7853 0.7767 0.4065

CorUmBc 0.7822 0.7722 0.7702 0.3728

Sam-chan 0.7695 0.7704 0.7617 0.3636

Tyken2018 0.7545 0.7561 0.7431 0.3415

Or 0.7446 0.7232 0.7226 0.2925

Table 4: Final results on the validation set of 20, 000 titles

ordered by F1w scores for the top twenty systems.

Team Pw Rw F1w Macro-F1

mcskinner 0.8693 0.8417 0.8510 0.4989

MKANEMAS 0.8423 0.8425 0.8397 0.4992

tiger 0.8398 0.8429 0.8379 0.4893

Uplab 0.8367 0.8418 0.8364 0.4881

JCWRY 0.8531 0.8172 0.8295 0.4696

neko 0.8268 0.8306 0.8256 0.4732

Ravenclaw 0.8291 0.8114 0.8174 0.3922

Uplab-2 0.8188 0.8245 0.8174 0.4629

ssdragon 0.8229 0.8162 0.8172 0.4061

RITB-Baseline 0.8276 0.8075 0.8140 0.3894

inception 0.8261 0.8076 0.8138 0.3852

Tyche 0.8597 0.7643 0.8001 0.0572

minimono 0.8016 0.8021 0.7991 0.3804

Topsig 0.7919 0.8011 0.7937 0.4235

VanGuard 0.7902 0.7917 0.7885 0.3282

HSJX-ITEC-YU 0.7807 0.7819 0.7787 0.4192

Waterloo 0.7803 0.7858 0.7780 0.4076

CorUmBc 0.7744 0.7711 0.7689 0.3726

Sam-chan 0.7721 0.7749 0.7669 0.3654

Tyken2018 0.7658 0.7608 0.7514 0.3444

Table 5: Final results on the test set of 180, 000 titles ordered

by F1w scores for the top twenty systems.

• tiger (F1w : 0.8379) combinemultiple models based on single-

label and multi-level label predictions, as well as characteris-

tics of the taxonomy tree structure. The training data set and

the validation data set are merged to pre-train word vectors

for calculating semantic similarity. To address high category

imbalance, sampling and data enhancement techniques are

used. They build eight sample data sets according to the cat-

egory hierarchy and develop two classification algorithms



to build models for different levels and search paths using

category trees [16].

• Uplab submitted three systems based on different classifier

types, including single flat linear support vector machines

classifier (F1w : 0.8364), a top down ensemble which com-

bines top-level and sub-level classifiers (F1w :0.8174) and a

CNN with pre-trained word embeddings (F1w : 0.6511). They

found that tf-idf weighting with both bi-gram and unigram

features work best for categorization [8].

• JCWRY (F1w : 0.8295) use deep convolutional neural net-

works with oversampling, threshold moving and error cor-

rect output coding to predict product taxonomies. Their

highest accuracy was obtained through an ensemble of mul-

tiple networks, such as Kim-CNN and Zhang-CNN, trained

on different extracted features inputs, including doc2vec,

Named Entity Recognition and Parts of Speech features [9].

6.1 Confidence Intervals

We use bootstrap, a re-sampling strategy [6, 10], to estimate the

confidence intervals for the weighted F1 scores of the top twenty

systems. The basic principle of the bootstrap is to evaluate the prop-

erties of an arbitrary estimator θ (y1, ...,yn ), through the empiri-

cal cumulative distribution function (cdf) of the sample Y1, ...,Yn ,
Fn (y) =

1
n

∑n
i=1 IYi ≤y , instead of the theoretical cdf F . More pre-

cisely, θ (Fn ) =
∫
h(y)dFn (y) is an obvious estimator to estimate

θ (F ) =
∫
h(y)dF (y) for any continuous function h.

Figure 4: 95% confidence intervals

for top twenty teams.

For each submit-

ted system, θ is the

estimator for the

weighted F1 func-

tion,h(y), computed

over the set of n =
180, 000 test titles,

where yi s are the bi-
nary indicators for

correct predictions

for the test titles xi s.
When the Xi s and

hence the Yi s are in-
dependent and iden-

tically distributed ran-

dom variables, as

in our case, the Glivenko-

Cantelli theorem [3] states that Fn (y) converges in probability to F
and hence θ (Fn ) is a consistent estimator for θ (F ).

The bootstrap estimator becomes θB (Fn (y)) =
1
B

∑B
b=1

h(Y∗
b
),

where Y∗
b
is a sampling with replacement of Y and B is the num-

ber of bootstrap samples. We set B = 1, 000. The bias of the es-

timator, EFn [θB (Fn (y)) − θ (Fn (y))] is used to calculate the confi-

dence interval of the estimator for θ (F ). The confidence interval
[θ (Fn ) − α, θ (Fn ) − β] on θ (Fn ) is constructed by imposing the con-

straint pFn (α ≤ θB (Fn ) − θ (Fn ) ≤ β) = c on (α, β), where c is the
desired confidence level, which is our case is 0.95.

For each system, we re-sample the predictions (with replacement)

for a total of B = 1, 000 times. For each of the b re-samplings,

we keep track of the weighted F1 scores and sort the B biases in

ascending order. Therefore, the lower and upper bounds of the

confidence interval are determined by subtracting from θ (Fn )(=

F1w ), the α = 2.5th percentile and −β = 97.5th percentile values

from the sorted array. Figure 4 shows the confidence intervals

and clustering of the top twenty systems. The clusters are shown

with black ovals. Within a cluster, differences between systems are

statistically insignificant based on a confidence level of 95%.

7 CONCLUSIONS

With this paper we have released a set of a million product titles

from 3, 008 categories of rakuten.com. Our analysis shows that
the characteristics of the training set and the validation set closely

match those of the test set. A successful data challenge saw twenty

six teams from academia and industry compete. The highest per-

forming team achieving a weighted F1 score of 0.8510 on the test

set – which we consider to be a high-mark baseline for automatic

product categorization on this collection.

This data presents several additional research avenues. Such

tasks include designing better classifiers that address the long tail

problem, topic modeling over a taxonomy, or even a minimally

supervised attribute extraction from product titles.
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